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Cyclic polygons in non-Euclidean geometry

Lienhard Wimmer

Lienhard Wimmer studierte Mathematik an der Paris-Lodron-Universitdt in Salz-
burg. Nach einem Studienaufenthalt in Marseille promovierte erin Salzburg iiber die
gleichmibige Verteilung von Punkten auf der Einheitskugel. Er arbeitet als Software-
entwickler in Miinchen.

It is well-known that in Euclidean geometry among all quadrilaterals with prescribed edges
the cyclic quadrilateral, i.e. the quadrilateral whose vertices all belong to a single circle,
has largest area. In fact this theorem is valid for every polygon. But does it also hold in
non-Euclidean geometry?

In this note we answer this question for hyperbolic and spherical polygons. Of course
we are only interested in non-degenerate triangles. Therefore in the hyperbolic plane H?2
we study only polygons consisting of non-asymptotic triangles, i.e. triangles with vertices
belonging to the finite part of the plane, and on the sphere S we study only polygons
which do not exceed the half-sphere and consist of Eulerian triangles, i.e. triangles whose
angles and edges are < 7.

1 Area of a non-Euclidean triangle

A good method to handle plane non-Euclidean geometry is the use of trigonometry. It
is therefore appropriate to point out some elementary formulas concerning triangles in
hyperbolic and spherical geometry.

1.1 Hyperbolic geometry

We start with the trigonometry of the hyperbolic plane. Let AABC be a non-asymptotic
triangle, leta := BC, b := CA,andc:= ABbeitsedgesand o := S CAB, g .= ZABC,

Ein Sehnenviereck ist ein Viereck, dessen Eckpunkte auf einem Kreis liegen. Bekannt-
lich besitzt unter allen Vierecken mit gegebenen Seiten das Sehnenviereck die grofite
Flache. Doch gilt diese Aussage auch in der nicht-euklidischen Geometrie? Im vorlie-
genen Beitrag beantwortet der Autor diese Frage vollstidndig flir Vierecke der hyper-
bolischen und der sphérischen Geometrie.
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and y := ZBCA be its angles. Then, the theorem of sine for the non-asymptotic triangle
ANABC is given by

sing  sinf  siny

sithe  sinhd  sinhc’
and there are two theorems of cosine

coshec — cosha -coshb — sinh g - sinh & - cos y,

COsy — —cosa-cos B + sina - 8in B - coshe.

Lemma 1. In hyperbolic geomeiry the edges and angles of a non-asymplotic triangle fulfil
the following equations

sinhg - sinh ¥ - gin

]/IQ’COSh2§~ cos y —I—COS(OI—I—‘B), (1)

sin y
Q:Jrﬁ_cosh% ¥

- cot =, )

tan =
2 cosh % 2

Proof. We start with the addition theorems of the hyperbolic functions
cosh(x + y) = coshx - coshy &+ sinhx - sinh y.
From these equations we get

X+ X =)
_2 kS

cosh(2x) = sinh®x + cosh®>x = 1 + 2 - sinh® x,

- cosh

coshx + coshy = 2. cosh

together with the two half-angle-relations

b X —
coshx - cosh y = cosh? % + cosh? Ty -1,
sinhx - sinhy = cosh? % — cosh? %

For a non-degenerate triangle in the hyperbolic plane we get immediately from the second
theorem of cosine

Cosy + cosa - cos B

. . :coshc:1_|_2‘sinh2f’
sin« - sin B 2

resp.
Q‘SiHhZE _ cosy + cos(a + B)
4 sing -sinf

With the theorem of sine this gives the first equation of the lemma because of

sin o - sin
sinhg - sinh & - siny = 7’6 -sinh? ¢.
sy
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For the proof of the second equation we need
(cosha + cosh d) - siny = sin(a + g) - (1 + coshe). (3)

We get this equation from sin(a + B) = sin« - cos § 4 cos« - sin 8, if we replace sina
and cos «, resp. sin 8 and cos g by the terms we get from the theorem of sine and the first
theorem of cosine.

From (3) and the second law of cosine we get

(cosha + coshb) - siny

sinfa + ) = 1 4+ cosha - cosh® — sinha - sinhb -cosy

By the half-angle-relations this is equal to

2‘cosh¥ . cosh% -siny

sinfle + B) = 2
@+8) cosh? % (1 — cosy) + cosh® a_;b (1 + cosy)
resp.
cosh 452 Vv
2~tan# —— ‘cosh%‘mta
—=— —=sin(x + B) = - :
1 + tan2 # ! sh? % cof? ¥y
cosh? % 2
the second equation of the lemma follows directly. Ul

1.2 Spherical geometry

In spherical geometry we use the same notations for the edges and angles of an Eulerian
triangle. By similar considerations as in the hyperbolic case we get

2 ¢ cosy + cos(a + B)

—ging - sink -siny —2-co . 4)
siny
cos 252
tana+ﬁ = 2 'cotz. (5
2 cos# 2

2 Quadrilaterals with maximal area

Let #4ABCD be a quadrilateral in non-Euclidean geometry, let its edges be given by a 1=
AB, b = BC,c := CD, and d .= DA, and let { be the diagonal BD. The angles
of the quadrilateral shall be given by « := ZDAB, g .= ZABC,y = ZBCD, and
§ .= ZCDA; furthermorelet ¢ :— ZABD + /BDAand .= ~ACDB 4+ SCBD.

Theorem 1. Among all non-Euclidean gquadrilaterals with given sides there is a guadri-
Lateral with largest area; it is characterizedbya +y = B 4 4.
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D

Fig. 1 Cyclic quadrilateral

Proof. The area € of the quadrilateral is given by the sum or the difference of the area of
the triangles AABD and ABCD (see Fig. 1); of course the largest area can only be given
by the sums. We consider ¢ to be a continuous function of £. The smallest possible value of
t is given by the maximum of a —& and ¢ —d. Starting at this value and increasing f the area
obviously also increases. In converse, the area decreases if we start at an appropriate value
of f near the maximal possible value (i.e. the minimum of @ + # and ¢ 4+ 4) and decrease
f. Between the smallest and largest possible values for § the area of the quadrilateral is
continuous as a function of £. It attains its maximum for a value £y between the minimal
and maximal possible value; at fy the first derivative necessarily has to vanish.

It is easy to express the area € of the quadrilateral by its angles, because the area of AABD
is given by
. { («+¢)—7m AABD c S?,
"l a-(ete) AABDC H?,

and the area of ABCD is given by

g e b WU~ 7 ABCD c 52,
"\ mz—-(+v¥) ABCDc HZ

Thus ¢ = ¢1 + ¢2 depends linearily on

b= (af 4 2 - arctan (Kad - cot %)) + (y 4 2 - arctan (Kbc -cot %))

with constants K,y and Kj,. only depending on 4 and d, resp. & and c¢. 'This follows
immediately from (5), resp. (2).

Our aim is to find the extremal value of p, resp. € under the condition

cosa-cosd +sing-sind -cosa =cos BD = cosb-cosec +sinb - sinc-cosy. (6)
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We assume that « and y depend strictly monotone on {. Then we get

d d Ko - csc? 2 do
g = (o: 4 2 - arctan (Kad cot — )) = (1 = ) C—_
dr dr 2 1+ Kad . cot? % dt

d d Kpe - csct d
_2__(V+2’3T0t3ﬂ(KbC‘COtz)):(1— b & )—V
dt dt 2 1+ K -cot2L/ dt

Reexpressing K 4 by tan ~tan § and Kp, by tan 1*!’ tan , we find for the first derivative

of p, resp. ¢
dp:(ls%n(p) daer(lsi.m/f).dy' b
dr sina/ df sin y df
From condition (6) we get
: . . @ : : dy
sing-sind -sin¢ - — —sind-snc-siny - —.
dr dr

Because of (4), resp. (1) this is equal to

(cosa+cosgo) da (COSJ/-I-COSW) deO ®)

Sin dr sin y dt
Therefore the first derivative of p, resp. € can only vanish under the given condition, if

sin o — sing siny — sinr

cosa + cos@  COSY +cosir

resp.
2'cos“;(p sin% 2~cosﬂ.sm%
2-cos % . cos ¥ 2.cos Y4¥ . cos VZ"V
Thus i i
& 2 = — ¥
t = —ta ta ,
an 5 n 5 n 3
resp.
aty=¢+¢=p5+3. O

3 Non-Eunclidean cyclic quadrilaterals

Among all quadrilaterals with edges of given length the quadrilateral with largest area
necessarily fulfils the condition of Theorem 1. This condition is valid for all cyclic quadri-
laterals.

Lemma 2. The angles of a cyclic quadrilateral #AB CD fulfil the equation
@aty=p+3. ©)

Proof. Let M be the center of the circumcircle of the quadrilateral. Then the friangles
AMAB, AMBC, AMCD, and AM DA are isosceles and the angles at A and B efc. are
equal. The equation follows immediately. ]
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But does the quadrilateral with the largest area always have to be cyclic? In Euclidean and
spherical geometry the answer is “yes”, but in hyperbolic geometry the answer cannot be
as clear as that, because even friangles do not necessarily have a circumcircle there.

Lemma 3. In Euclidean and spherical geomeltry a convex quadrilateralwith a+y = 19
is cyclic.

Proof. In Buclidean geometry the angles of a quadrilateral #4BC D sum up to 27 from
the assumed equality we get therefore 8 +6 =  and ¢+ y = 7. Consider the circumcircle
k of AABC and consider AC to be a chord of it. The vertex D cannot belong to the same
side of AC as B, because the quadrilateral would not be convex in that case. By the
converse of the Common Chord Thecrem and because of § — 7 — 8 we find that the
vertex D has to be a part of the second arc of £.

In spherical geometry two great circles always intersect. Therefore we can use the follow-
ing construction:

Case 1. « # p. Without loss of generality we may assume that ¢ > § and g > y. We
construct the line f passing through A with /DAP = § for each point P  f and the
line g passing through B with /@ BC = y for each point (J € g. Let & be the great circle
defined by C and D. Then let €7 be the intersection of g and &, let D’ be the intersection
of f and k, and let E’ be the intersection of f and g (see Fig. 2).

Fig. 2 Spherical quadrilateral

AAD'D and ACC’B are isosceles triangles because they have the same angle at the bot-
tom line AD, resp. B C. Thus the angle bisector at IV, resp. C’ is the median line of AD,
resp. BC.

Let us study the triangle AABE’: its angle at A is given by « — & and its angle at B is
given by 8 — y. By assumption these angles are equal and AABE’ is therefore also an
isosceles triangle; thus the angle bisector at £’ is the median line of AB.
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The points ’, D', and E’ form a triangle. The bisectors of the angles of a triangle intersect
at the incenter of AC’ D' E’, which we name U. The distance from U to B and C is equal
because the bisector of the triangle at C’ is — by construction — the median line of BC. By
the same argument we get that I/ has equal distance from A, B, C,and D; i.e. #ABCD is
cyclic with center U .

Case 2: @« = B, 1.e. y = §. Then the quadrilateral is a convex isosceles trapezoid and
therefore the median line of AD is also the median line of BC. Let IJ be the intersection
point of AB and A D; then U is equidistant to A, B, C, and D. O

To understand the hyperbolic geometry we use the Poincaré disc model. In this model the
hyperbolic plane is given by the interior of a circle C, hyperbolic lines are represented by
arcs of circles that are orthogonal to C plus diameters of C. This model has three important
properties: angles in the model and angles in the hyperbolic plane are equal, a circle in the
hyperbolic plane is represented by a Euclidean circle, and circumcircles of the Euclidean
triangles are also circumcircles of their hyperbolic counterparts.

All Euclidean triangles have a circumcircle. In the hyperbolic context this circle is a

circumcircle if it is completely contained in the interior of C,
horocycle if it touches the boundary of C,
hypercycle if it intersects the boundary of C.

Lemma 4. In hyperbolic geomelry a convex quadrilateral #ABCD witha +y = B+ 3§
is inscribed info a circle, a horocycle, or a hypercycle.

Proof. We use the Poincaré disc model with boundary circle C. Within this model we
draw the quadrilateral #ABCD. Then we may consider the drawing as Euclidean and
add the Euclidean lines joining the vertices A and B, B and C, C and D, resp. D and
A (s. Fig. 3). In the Euclidean context hyperbolic lines are Euclidean circles intersecting
orthogonally the boundary of C. Thus the Euclidean angles p and p’ at A and B defined
by the hyperbolic line AB and their Euclidean counterpart are equal. The same is valid for
the other lines. [f we name these angles between the Euclidean and the hyperbolic lines
with p = p', g = ¢', r = ', and s — 5" we get for the Euclidean angles at A, B, C, and D

g =8"+ta+p=s+a+p,
Be=p+B+a=p+B+a,
YvE=q +y+r=q+vy+r
Sp=r +8+s5 =r+38+s,

resp.
ag tYE=St+atptgtytr=p+prgtr+d+s=pg+ g

Therefore the vertices form a cyclic quadrilateral in Euclidean geometry, i.e. there is an
Euclidean circle k joining the vertices. This circle also passes through the vertices A, B,
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Q

Fig. 3 Hyperbolic quadrilateral

C, D if we regard them as points of the hyperbolic plane. The actual meaning of £ in
the hyperbolic context, i.e. if it is a circle, a horocycle, or a hypercycle, depends on its
intersection with the boundary of C (see the notes above concerning the circumcircle of
the hyperbolic triangle). ]

4 Applications to spherical geometry
4.1 Cyclic polygons

In Buclidean and spherical geometry we can summarize our results as follows.

Proposition 1. In Euclidean and spherical geometry among all quadrilaterals with given
sides the cyclic quadrilateral has largest area.

Following the proof of van der Waerden [3] it is easy to extend this theorem to polygons
with n given sides.

Theorem 2. [n spherical geomeiry among all polyvgons with n given sides, confained in a
half-sphere, the polygon inscribed info a circle has largest area.

Proof (see [3]). From a vertex we draw the diagonals x, y, . .. etc. (see Fig. 4). Then we
get n — 2 triangles a, b, x, x,c, v, etc. The area of the polygon is the sum of the areas
of these triangles. Of course some of them may have negative area, but it is clear that for
given x, y, ... the area is maximal if the area of all triangles is positive. The area is thus
the sum of a continuous function depending on x, y, ... These parameters are taken from
a closed region defined by the triangle inequalities

a+b=x, x+y=c, etc

The function therefore has a maximum.
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Fig. 4 Cyclic polygon

What does this maximum look like? If we only change the parameter x we get from the
already proven result that the vertices A, B, €, and D are on the boundary of a circle.
By the same argument we get that B, C, D, E are also on the boundary of a circle. The
vertices B, C, and D belong to both circles and thus these circles are equal, i.e. the vertices
A, B, C, D, and E belong to the boundary of the same circle. If we apply this argument
to all other vertices of the maximal polygon we get that the maximal polygon has to be
cyclic. U

4.2 Tangential polygons

The polar counterpart of a cyclic polygon is the tangential polygon, i.e. a polygon which
is circumscribed an incircle. If a, b, ¢, and d denote the sides of the quadrilateral, it is
characterised by

at+ec=>b4+d,

and without any further proof we get from the duality of spherical geometry:

Theorem 3. Among all polygons with n given angles the polygon circumscribing a circle
has smallest area.
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