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Gleichverteilung modulo Eins

Urs Stammbach

Einleitende Bemerkungen

Die frithe Geschichte der Gleichverteilung haben E. Hlawka und Ch. Binder in der in-
teressanten Arbeit [9] dargestellt. Sie stellen darin fest, dass Hermann Weyls Arbeit [22]
zu dessen wichtigsten Ieistungen gehére. Mit dieser Arbeit beginne eine neue Ara in der
analytischen Zahlentheorie und in der Theorie der Diophantischen Ungleichungen und
Gleichungen (siehe [9, S. 197 bzw. S. 222]).1 In der Tat ist bemerkenswert, wie lebendig
sich die Forschung auf der Grundlage von Weyls Arbeit in diesem Gebiet entwickelt hat.?
Dabei hat sich auch gezeigt, dass die Eigenschaft der Gleichverteilung in erstaunlich vie-
len unterschiedlichen Gebieten eine wichtige Rolle spielt; entsprechende Fragestellungen
gibt es in so weit voneinander entfernten Gebicten wie der klassischen und der moder-
nen Zahlentheorie, der statistischen Mechanik, der Wahrscheinlichkeitstheorie® und der
Theorie numerischer Integration. Dementsprechend zahlreich und weitgespannt sind auch
die einschldgigen Veroffentlichungen. So enthilt die Bibliographie des bereits 1974 er-
schienenen Buches Uniform distribution of sequences von L. Kuipers und H. Niederreiter
[14] gegen 1000 Eintrédge. Heute wire eine entsprechende Liste selbstverstdndlich noch
erheblich langer.

IDie friihen Anwendungen in der Zahlentheorie kreisen i.a. um Abschétzungen der Summe der Exponential-
funktionen, wie sie im einfachsten Fall in der Gleichung (3) auftreten. Neuere zahlentheoretische Anwendungen
betreffen oft Verallgemeinerungen der Gleichverteilung, z.B. die Gleichverteilung von Punkten in homogenen
Réumen. Um einen Eindruck von der Intensitit der Forschung in diesem Bereich zu erhalten, konsultiere man
z.B. die Arbeit [4], das zugehorige Review und die dort zu findende eindrucksvolle Literaturliste.

2Weyl selbst hat sich in seinem weiteren Werk im wesentlichen nur noch als interessierter Zuschauer mit dem
Thema beschiftigt.

3Der Zusammenhang seiner Uberlegungen zur masstheoretischen Auffassung der Wahrscheinlichkeit, wie
sie zwischen 1900 und 1910 von Borel [3] u.a. erstmals entwickelt wurde, war Weyl durchaus bewusst, wie ver-
schiedene Bemerkungen in [22] belegen. Auf Grund der Umstinde darf man annehmen, dass die in der (reinen)
Mathematik wurzelnden Weylschen Arbeiten zur Gleichverteilung die in den folgenden Jahre stattfindende Ent-
wicklung zu einer mathematisch fundierten Behandlung der Wahrscheinlichkeit stark beeinflusst haben. Diesen
Zusammenhingen ist J. von Plato in seinem 1994 erschienenen Buch [16] eingehend nachgegangen. — Ich danke
Norbert Schappacher fiir einen entsprechenden Hinweis.
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Hermann Weyl hatte auf das Wintersemester 1913/14 hin die ordentliche Professur an der
Eidgendssischen Technischen Hochschule angetreten. Seine die Gleichverteilung betref-
fenden Arbeiten [20], [21], [22] miissen demzufolge kurz nach seiner Ubersiedlung nach
Zlrich fertig gestellt worden sein. Aus einer Bemerkung in der Arbeit [20] geht allerdings
hervor, dass Weyl bereits 1909/10 begann, sich mit dem Themenkreis zu beschiiftigen:
er habe damals einen Beweis fiir den Satz 1 (siehe unten) gefunden. Es ist ferner anzu-
nehmen, dass sich die Arbeit an der grosseren Veroffentlichung [22], die sicherlich als
Zusammenfassung der bisherigen Resultate gedacht war, wegen des Ausbruchs des Er-
sten Weltkrieges im Herbst 1914 stark verzdgert hat. Hermann Weyl wurde ndmlich im
Mai 1915 in den deutschen Heeresdienst eingezogen. Aus diesem Grunde konnte er sei-
ne bereits angekiindigten Vorlesungen an der ETH nicht abhalten und musste fiir einen
Teil des Sommersemesters 1915 sowie fiir das Wintersemester 1915/16 beim Schwei-
zerischen Schulrat um Urlaub von der ETH nachsuchen. Dank mehrerer diplomatischer
Interventionen der Schweiz direkt beim Ministerium in Berlin konnte Weyl seine Vor-
lesungstitigkeit im Sommersemester 1916 wieder aufnehmen. Schliesslich wurde er im
August 1916 zufolge wiederholter militdrischer Untersuchungen vom Waffendienst bis
auf weiteres zurlickgestellt (siche [6, S. 2011.]).

Weyl wurde erstmals auf den Themenkreis aufmerksam, als er 1909/10 im Zusammenhang
mit einem speziellen Problem iiber Eigenwerte eine Aussage benotigte, die der spiter so
genannten Gleichverteilung modulo 1 im zweidimensionalen Fall entsprach. Zur selben
Zeit war P. Bohl [2] von einer astronomischen Fragestellung ausgehend auf das gleiche ab-
strakte Problem gestossen.4 Ferner hatte W. Sierpinski [17], [18] um die selbe Zeit in der
Zahlentheorie eng verwandte I'ragen bearbeitet. Hermann Weyl erkannte offenbar rasch
die wesentlichen gemeinsamen Grundlagen und entwickelte seine tibergreifende Theorie.
Unabhéngig von Weyl haben Hardy und Littlewood gleichzeitig fiir Fragestellungen im
Zusammenhang mit der ¢-Funktion dhnliche Sitze bewiesen (siehe [10], [11] v.a., sowie
[51°). Es sind also drei vollig verschiedene Problemstellungen, die in der zentralen Weyl-
schen Arbeit [22] iiber die Gleichverteilung von 1916 ihre Synthese gefunden haben.

Dank. Ein herzlicher Dank geht an Manfred Einsiedler fiir eine Reihe kritischer Hinweise und vor allem fiir eine
ausgedehnte Privatvorlesung tiber neuere zahlentheoretische Arbeiten, die mit der Gleichverteilung in Zusam-
menhang stehen.

Grundlagen

Das Problem der Gleichverteilung modulo Eins beschreibt Hermann Weyl zu Beginn der
Arbeit [22] in seiner unnachahmlichen klaren Art wie folgt:

Es seien auf der Geraden der reellen Zahlen unendlich viele Punkte

1,002,003, ...

4Weyl geht in [21] auf die astronomische Fragestellung von Bohl ein; sie steht im Zusammenhang mit der
Stabilitit des Planetensystems.

n [22] weist Weyl félschlich auf ,, Herr[n] Towler, ein[en] Schiiler der Herren Hardy und Littlewood* hin.
Man entnimmt [9], dass es sich dabei um R.H. Fowler handelt.
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markiert; wir rollen die Gerade auf einen Kreis vom Umfange 1 auf und fragen, ob dabei
die an den Siellen o, befindlichen Marken schliesslich den Umfang des Kreises itiberall
gleich dichr bedecken. Dies wiirde dann der Fall sein, wenn die Anzahl ng derjenigen
unter den n ersten Marken o1, o2, o3, ..., welche beim Aufrollen in den Teilbogen a der
Kreisperipherie hineinfallen, asvmptotisch durch |al - n gegeben isi:

lim "% = |q (1)
n—oc 1l
unter |a| ist dabei die Linge des Bogens a verstanden. Dann und nur dann, falls diese Li-
mesgleichung fiir jeden Teilbogen a erfiillt ist, sprechen wir von einer gleichmdissig dichten
Verteilung der Marken iiber die Kreisperipherie. Das Aufrollen der Geraden auf den Kreis
besagt, dass wir die reellen Zahlen mod. 1 betrachten, d.h. dass zwei Zahlen bereits dann
als gleich gelien, wenn sie sich um eine ganze Zahl unterscheiden.

Wenn die Limesgleichung (1) fiir alle Teilintervalle a erfiillt ist, nennt Weyl die Folge
o1, 0, &3, ... gleichverteilt modulo 1; sie erfiillt das Gesetz der Gleichverteilung modu-
lo 1. Die Terminologie wurde offenbar von Weyl eingefiihrt. Zwar liegt jede im Intervall
[0, 1] gleichverteilte Folge in diesem Intervall auch dicht, aber die Umkehrung gilt nicht
allgemein. Der hier neu definierte Begriff gleichmiissig dicht, gleichverteilt beinhaltet eine
wesentliche Verschidrfung der bisher im Kroneckerschen Approximationssatz betrachteten
Eigenschaft. Dartiiber hinaus ist der Zusammenhang mit dem Ergodensatz der statistischen
Mechanik offensichtlich.

Hermann Weyl stellt anschliessend an seine Einleitung folgendes fest. Wenn die Zahlen «y,
modulo 1 das Gesetz der Gleichverteilung erfiillen, so gilt fiir jede beschrinkte, Riemann
integrierbare Funktion f(x), die periodisch mit Periode 1 ist, die Limesgleichung

1
lim > flaw) = | S dx. )
h_

Mit anderen Worten: der mittels der diskreten Zahlen o, gebildete Mittelwert der Funktion
f stimmt mit dem kontinuierlichen Mittelwert fol J (x) dx lberein.
Es folgt ndmlich direkt aus der Definition der Gleichverteilung, dass die Gleichung (2) fiir

stiickweise konstante Funktionen erfullt ist. Ferner kann man zu einer Riemann integrier-
baren Funktion immer zwei stiickweise konstante Funktionen f1 < f < f> so angeben,

dass sich die Integrale fol J1(x) dx und fol J2(x) dx um beliebig wenig unterscheiden. Mit
einigen formalen Zwischenschritten ergibt sich der Beweis.

Mit Hilfe dieser Uberlegung lisst sich ein Kriterium fiir die Gleichverteilung modulo 1
einer Zahlfolge erhalten; es ist heute als Wevisches Kriterium bekannt.

Man betrachte die (komplexe) Exponentialfunktion, wobei wir zur Abkiirzung

e(x) — eZJIix

setzen. Damit ordnen wir der reellen Zahl x die komplexe Zahl e(x) vom Betrage eins
7u, beschreiben also formelmissig nichts anderes als das ,, Aufrollen der Gerade auf einen
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Kreis (in der komplexen Zahlebene) mit Umfang 1%. Ist m eine ganze Zahl, so hat auch
die Funktion e(mx) die gleiche Eigenschaft — das ,,Aufrollen geschieht einfach m-mal
schneller. Wenn nun die Zahlfolge o1, a2, o3, ... das Gesetz der Gleichverteilung erftillt,
so folgt nach (2) fiirm # 0

1 & 1
lim —Ze(mah):[ e(mx)dx = 0.
0
h=1

H—>00 7

Aus der Theorie der Fourierreihen ergibt sich, dass sich jede periodische Funktion durch
die Funktionen e(mx) linear zusammensetzen ldsst. Dies erlaubt es, die Umkehrung des
eben erhaltenen Resultates zu beweisen — dies ist das gewiinschte Kriterium:

Satz 1. Gilt fiir jede ganze Zahl m # O die Limesgleichung

A

1
lim — e(map) =0, (3)
n—07n P

S0 geniigen die Zahlen oy, modulo 1 dem Gesetze der Gleichverteilung.

Zum Beweis bemerkt man zuerst, dass die Gleichung (2) fiir die Funktion ¢ (Ox) = 1 trivia-
lerweise erfiillt ist. Mit der in Satz 1 gemachten Annahme folgt die Gleichung (2) somit fiir
alle endlichen trigonometrischen Reihen (trigonometrischen Polynome). Insgesamt muss
man nachweisen, dass die Gleichung (2) fiir jede stiickweise konstante Funktion f der Pe-
riode 1 gliltig ist. Zu diesem Zweck dndere man die Funktion f geringfiigig ab, indem man
sie an den Sprungstellen durch hinreichend steile geradlinige Béschungen ersetzt. Diese
abgednderte (stetige) Funktion ldsst sich geméss der Theorie der Fourierreihen, durch eine
endliche trigonometrische Reihe r beliebig genau approximieren. Dies liefert eine beliebig
kleine Differenz der Werte der Integrale iiber f und r. Mit einigen formellen Uberlegungen
lasst sich der Beweis vervollstandigen.

In [9] wird mit Recht darauf hingewiesen, dass Weyl hier die Gleichverteilung einer Fol-
ge von reellen Zahlen durch ihr Verhalten gegeniiber gewissen Klassen von Funktionen
(Riemann integrierbare Funktionen bzw. Exponentialfunktionen) charakterisiert. Dies ist
ein vOllig neuer Gesichtspunkt: Keiner seiner Vorgdnger hat dhnlich gedacht (siehe [9,
S. 210]). Dieser bemerkenswerte Sichtwechsel ermoglicht insbesondere einfachere und
durchsichtigere Beweise der zentralen Resultate.

Aus dem Kriterium von Satz 1 ergibt sich der fundamentale

Satz 2. Ist & eine irrationale Zahl, so liegen die ganzzahligen Vielfuchen von &
1y 28 55 52

modulo 1 iiberall gleich dicht.®

5Die Aussage, dass die Verteilung dicht ist, entspricht dem (eindimensionalen) Approximationssatz von
L. Kronecker. Weyl schreibt den Satz in der verscharften Form P. Bohl und W. Sierpinski zu, die 1909 bzw.
1910 unabhingig voneinander Beweise dafiir angegeben hitten (siche [2] und [17], [18]). Ein weiterer Beweis
stamme von H. Bohr.
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Der Beweis ergibt sich mit Hilfe von Satz 1. Fiir m # O setzen wir m& = n. Dann l4sst
sich Z’,:zl e(hn) als (endliche) geometrische Reihe summieren. Es gilt

Ze(hn)‘ =

h=1

e((n+ Ln) —e(n) - 2 _ 1
e(n) — 1 ~le(p =1 |sinmy|’

Mit Satz 1 ergibt sich die Behauptung.

Neben der Folge der Vielfachen einer irrationalen Zahl hat Hermann Weyl in seiner Ar-
beit [22] von weiteren Folgen gezeigt, dass sie gleichverteilt modulo 1 sind. Als Beispiel
erwihnen wir:’

Satz 3. Es sei p(x) = axx* + ar_1x*~' + ...+ a1x + ao ein reelles Polynom. Mindestens
einer unter den Koeffizienten ay, az, . .., ai sei irrational. Dann ist die Folge der Werte
pn), n=1,2,..., modulo 1 gleichverteili.

Inzwischen hat man fiir viele andere Folgen nachweisen konnen, dass sie modulo 1 gleich-
verteilt sind. Zahlentheoretisch interessant ist insbesondere das Resultat von Hlawka, wel-
ches besagt, dass die Folge der Imaginarteile der nichttrivialen Nullstellen der ¢ -Funktion
gleichverteilt ist (siehe [7]).

Zum Schluss dieses Abschnittes seien zwei Sétze erwihnt, die Einschrinkungen fiir Men-
gen vom Mass 0 enthalten. Der erste dieser Sitze geht auf Weyl [22] zuriick; Weyl leitet
dort die entsprechenden Uberlegungen wie folgt ein (siehe [22, S. 345]): [Die] Ausnah-
memenge enthdlt selbstverstindlich alle rationalen Zahlen, es bleibt aber unentschieden,
ob nicht etwa noch weitere Zahlen in ihr enthalten sind. Wenn ich nun freilich glaube,
dass man den Wert solcher Séitze, in denen eine unbestimmite Ausnahmemenge vom Masse
0 auftritt, nicht eben hoch einschdizen darf, mochte ich diese Behaupiung hier doch kirz
begriinden.

Satz 4. Es sei r > 2 eine natiirliche Zahl. Dann ist die Folge ar”, n = 1,2, 3, .., fiir fast
alle reellen Zahlen o gleichverteilt modulo 1.

Dieser Satz erlaubt u.a. eine Anwendung auf die Dezimalbruchdarstellung (bzw. r-adische
Darstellung) von reellen Zahlen (fiir Details konsultiere man [8, S. 74{f.]): Ftir fast alle
reellen Zahlen o gilt, dass in der Dezimalbrucheniwicklung (bzw. r-adischen) Eniwicklung
die Ziffern 0,1,2,...,9 (bzw. 0, 1,2, ...,r — 1) asymptotisch gleich oft auftreten. Lei-
der erlaubt dieses allgemeine Resultat aber keine Aussage zu konkret gegebenen reellen
Zahlen wie etwa ¢ oder .

Ahnliches gilt fiir das folgende Resultat von J.F. Koksma (siche [13]):
Satz S. Die Folge ", n = 1, 2, ..., ist fiir fast alle « gleichverteilt modulo 1.

Seltsamerweise kennt man bis heute keinen einzigen expliziten Wert von «, fiir den ge-
zeigt werden kann, dass die Folge o, n = 1,2, ..., gleichverteilt ist. Insbesondere ist
unbekannt, ob die Folgen e” bzw. #”, n = 1, 2, ..., modulo 1 gleichverteilt sind.

TWie Weyl in [22] bemerkt, haben G.H. Hardy und J.E. Littlewood fast gleichzeitig ein dhnliches Resultat
erhalten (siehe [10], [11]).
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Hohere Dimensionen

Bereits Hermann Weyl hat seine eindimensionalen Resultate (Satz 1, Satz 2) auf hihere
Dimensionen verallgemeinert. Zu diesem Zweck werden Punkte

(X1, X2,...,Xp) € R?

identifiziert, wenn entsprechende Koordinaten modulo 1 kongruent sind. Die so entstehen-
de p-dimensionale Mannigfaltigkeit ist das Toroid T#. Eine Folge von p-Tupeln ¢(n) von
reellen Zahlen

Xy =a1(n), X2 =az(n),....xp=apn), n=0,12,...,

heisst gleichverteilt in T?, wenn die Anzahl derjenigen unter den #n ersten Punkte «(n),
welche in einem beliebigen achsenparallelen Quader vom Volumen V liegen, asymptotisch
durch V - n gegeben ist.® Es gilt dann der

Satz 6. Die Punkifolge ist in T? gleichverteilt, wenn fiir jedes System ganzer, nicht simtlich
verschwindender Zahlen mty, ma, ..., mp die Limesgleichung

1 n
lim — E e(miay(h) + moas(h) + ... +mpaph)) =0
n—o0 =

erfiillt ist.

Daraus ergibt sich wie oben die Folgerung

Satz 7. Sind &1, &, ..., &p irgend p reelle Zahlen, zwischen denen keine ganzzahlige li-
neare Relation besteht, so ist die Folge der Punkte
(né1, néa, ..., n&p) (4)

in T? gleichverteilt.

Die Tatsache, dass die Punkte (4) in T# {iberall dicht liegen, ist die Aussage des (mehr-
dimensionalen) Kroneckerschen Approximationssatzes. Im Falle von zwei Dimensionen
ldsst sich die Aussage des Satzes 7 (mit wenigen offensichtlichen Abdnderungen, die ins-
besondere die Ausdehnung des Resultates auf eine kontinuierliche geradlinige Bewegung
konstanter Geschwindigkeit betreffen) als Aussage iiber das Billard im Finheitsquadrat
interpretieren (siehe [22]). Man starte die Billardkugel im Nullpunkt in einer Richtung,
deren Tangens irrational ist. Dann kommt die Bahn der Billardkugel nicht nur jedem Punkt
des Finheitsquadrates beliebig nahe, sondern die Kugel verweilt in Teilbereichen gleichen
Flacheninhaltes auch gleich lang. Mit Blick auf den Zusammenhang mit der Wahrschein-
lichkeitstheorie und der statistischen Mechanik stellt Weyl explizit fest, dass auf der Bahn
der Kugel die relative Verweilzeit gleich der apriorischen Wahrscheinlichkeit ist. Die Be-
ziehung zur statistischen Mechanik ist einleuchtend. (Siehe [22, §. 319].)

8Statt eines Quaders kann ein beliebig abgegrenztes Raumstiick genommen werden, das im Jordanschen Sinn
ein Volumen besitzt (siche [22, S. 318]).
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Integrale

Die Limesgleichung (2), welche die Gleichverteilung auf dem Finheitsintervall definiert,
kann auf zwei verschiedene Arten Informationen liefern. Einmal kann sie dazu verwendet
werden, die links stehende Summe durch das rechts stehende Integral abzuschitzen; dies
bietet sich besonders in den Fillen an, in denen das Integral einfacher zu handhaben ist als
die Summe. In dieser Richtung gibt es zahlreiche zahlentheoretische Anwendungen. Die
Limesgleichung kann umgekehrt aber auch dazu beniitzt werden, um das rechts stehende
Integral numerisch, also durch eine Summe auszuwerten. In diesem Fall ist es wichtig, ei-
ne Fehlerabschatzung zur Verfigung zu haben. Dieses Problem wurde nach Weyl von ver-
schiedenen Autoren angegangen (fiir einen Uberblick siehe [14, Section 2.4]). Es liegt auf
der Hand, dass sich eine solche Fehlerabschitzung auf zwei Elemente abstiitzen wird. Ein-
mal werden darin Eigenschaften der Funktion f eine Rolle spielen, dann wird aber auch
die ,,Qualitat” der benttzten gleichverteilten Folge in die Abschitzung eingehen. Letzte-
res wird mit der sogenannten Diskrepanz gemessen, welche beschreibt, wie gleichméssig
die Verteilung der Folgeglieder in den verschiedenen Teilbereichen von [0, 1] bzw. T?
stattfindet.

Bei genauerem Hinsehen zeigte es sich, dass der Begriff der Diskrepanz auch auf nicht
gleichverteilte Folgen angewendet werden kann und dass sich aus dieser Uberlegung
vielfdltige praktisch durchfiihrbare Methoden der numerischen Integration ergeben; ent-
sprechende Stichworte sind Quasi-Monte Carlo Methoden und Gitter Methoden (lattice
methods). Dies kommt insbesondere im Falle von mehrdimensionalen Integralen zum Tra-
gen, wo die numerische Integration ein weit schwierigeres Unterfangen ist als im eindi-
mensionalen Fall, In diesem Bereich haben E. Hlawka, J.F. Koksma u.a. attraktive Resul-
tate erhalten, auf die hier aber nicht niher eingegangen werden kann (fiir weitere Informa-
tionen vergleiche man [8], [14]). Weiterentwicklungen dieser Methode scheinen sich bei
der Berechnung von sehr hochdimensionalen Integralen, wie sie in neueren Anwendungen
der Physik und Finanzwissenschatt vorkommen, gut zu eignen (siehe dazu z.B. [19] und
die dort angegebene Literatur).

Gesetz von Benford fur 2-er Potenzen

Der letzte Abschnitt beschiftigt sich noch mit einer Anwendung der Gleichverteilung auf
ein Problem, das auch in Kreisen ausserhalb der Mathematik Aufmerksamkeit erlangt hat.

Frank Benford (1883-1948) hat 1938 (siche [1]) das (oft nach ihm benannte) ,,Gesetz™
ausgesprochen, welches besagt, dass in Datenmengen die Zahlen mit der fiihrenden Zif-
fer 1 generell hdufiger vorkommen als diejenigen mit anderen filhrenden Ziffern. Ben-
ford hat damit eine Vermutung ausgesprochen, die vor ihm Simon Newcomb bereits 1880
formuliert hatte (siche [15]); man spricht deshalb neuerdings auch etwa vom Newcomb-
Benford-Gesetz. Newcomb hatte bemerkt, dass in Logarithmentafeln die ersten Seiten je-
weils stirker abgegriffen waren als die anderen. Da diese ersten Seiten in solchen Tafeln
in der Regel zu Zahlen gehoren, die mit einer Eins beginnen, schloss Newcomb daraus,
dass solche Zahlen hidufiger vorkommen als die anderen. Er konnte allerdings dafiir keine
Griinde angeben.

Das Gesetz blieb auch nach Benford wihrend ldngerer Zeit wenig bekannt; erst vor eini-
gen Jahren hat man sich wieder ernsthaft damit beschéftigt. Fir viele mathematisch de-
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finierte Mengen von ganzen Zahlen hat man das Benfordsche Gesetz inzwischen sireng
nachweisen konnen (siehe [12] fiir einen Uberblick). Man hat ferner auch versucht, es zur
Enttarnung von Falschungen einzusetzen, indem man nachkontrollierte, ob Messresultate
bzw. die Zahlen in Geschiftsbilanzen und Steuererkldrungen dem Benfordschen Gesetz
gentigen (siehe dazu [12]).

Hier soll gezeigt werden, dass sich das Benfordsche Gesetz fiir die Menge der 2-er Po-
tenzen leicht aus dem obigen Satz 2 der Gleichverteilung modulo 1 ergibt. Es ergibt sich
daraus sogar eine qualitative Wahrscheinlichkeitsaussage, die sich ferner in offensichtli-
cher Weise verallgemeinern lasst.

Satz 8. Die Wahrscheinlichkeit, dass die fithrende Ziffer einer 2-er Potenz eine Eins ist,
betridgtlog,, 2 ~ 0.30.

Die 2-er Potenz 27 beginnt mit einer Eins, wenn
29 =10 - 1.%

gilt, wobei 1.% einen (endlichen) Dezimalbruch im Intervall [1, 2) bezeichnet. Durch Lo-
garithmieren erhalt man
loglo 2q =p —+ loglo L. .

Daraus ergibt sich, dass die 2-er Potenz 27 genau dann mit einer 1 beginnt, wenn der
Nachkommaanteil von log,, 29 zwischen 0 = log;, 1 und log;, 2 liegt. Nun gilt aber

logp27 =g -logp2.

Da schliesslich log,, 2 irrational ist (siche unten), ist gemadss Satz 2 die Folge der Zahlen
q -logyp 2 modulo 1 gleichverteilt. Die Wahrscheinlichkeit, dass der Nachkommaanteil in
ein vorgegebenes Teilintervall von [0, 1] féllt, entspricht also der Ldnge des Intervalles. Es
ergibt sich, dass die fiihrende Ziffer der 2-er Potenz 27 mit einer Wahrscheinlichkeit von
logy 2 eine 1 ist.

Es bleibt nachzuweisen, dass 1og; 2 irrational ist. Wire logy, 2 rational, log,2 = m/n
fiir m, n ganz, so hitte man

107 =2, also 10" =2".5" =2",
Dies ist ein Widerspruch.

Wir erwihnen zum Schluss, dass sich die Aussage von Satz 8 in offensichtlicher Weise
verallgemeinern 14sst: statt 2-er Potenzen kann man viele andere Potenzen in dhnlicher
Weise behandeln. Ferner kann das Resultat auch auf andere fiihrende Ziffern, ja sogar
auf Ziffern-Paare, -Tripel etc. ausgedehnt werden. Die Durchfiihrung der notwendigen
Uberlegungen iiberlassen wir dem Leser, der Leserin.
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