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Elemente der Mathematik

Gleichverteilung modulo Eins

Urs Stammbach

Einleitende Bemerkungen

Die frühe Geschichte der Gleichverteilung haben E. Hlawka und Ch. Binder in der
interessanten Arbeit [9] dargestellt. Sie stellen darin fest, dass Hermann Weyls Arbeit [22]
zu dessen wichtigsten Leistungen gehöre. Mit dieser Arbeit beginne eine neue Ära in der
analytischen Zahlentheorie und in der Theorie der Diophantischen Ungleichungen und
Gleichungen siehe [9, S. 197 bzw. S. 222]).1 In der Tat ist bemerkenswert, wie lebendig
sich die Forschung auf der Grundlage vonWeyls Arbeit in diesem Gebiet entwickelt hat.2

Dabei hat sich auch gezeigt, dass die Eigenschaft der Gleichverteilung in erstaunlich vielen

unterschiedlichen Gebieten eine wichtige Rolle spielt; entsprechende Fragestellungen
gibt es in so weit voneinander entfernten Gebieten wie der klassischen und der modernen

Zahlentheorie, der statistischen Mechanik, der Wahrscheinlichkeitstheorie3 und der
Theorie numerischer Integration. Dementsprechend zahlreich und weitgespannt sind auch
die einschlägigen Veröffentlichungen. So enthält die Bibliographie des bereits 1974
erschienenen Buches Uniform distribution of sequences von L. Kuipers und H. Niederreiter
[14] gegen 1000 Einträge. Heute wäre eine entsprechende Liste selbstverständlich noch
erheblich länger.

1Die frühen Anwendungen in der Zahlentheorie kreisen i.a. um Abschätzungen der Summe der Exponentialfunktionen,

wie sie im einfachsten Fall in der Gleichung 3) auftreten. Neuere zahlentheoretische Anwendungen
betreffen oft Verallgemeinerungen der Gleichverteilung, z.B. die Gleichverteilung von Punkten in homogenen
Räumen. Um einen Eindruck von der Intensität der Forschung in diesem Bereich zu erhalten, konsultiere man
z.B. die Arbeit [4], das zugehörige Review und die dort zu findende eindrucksvolle Literaturliste.

2Weyl selbst hat sich in seinem weiteren Werk imwesentlichen nur noch als interessierter Zuschauer mitdem
Thema beschäftigt.

3Der Zusammenhang seiner Überlegungen zur masstheoretischen Auffassung der Wahrscheinlichkeit, wie
sie zwischen 1900 und 1910 von Borel [3] u.a. erstmals entwickelt wurde, war Weyl durchaus bewusst, wie
verschiedene Bemerkungen in [22] belegen. Auf Grund der Umstände darf man annehmen, dass die in der reinen)

Mathematik wurzelnden Weylschen Arbeiten zur Gleichverteilung die in den folgenden Jahre stattfindende
Entwicklung zu einer mathematisch fundierten Behandlung der Wahrscheinlichkeit stark beeinflusst haben. Diesen

Zusammenhängen ist J. von Plato in seinem 1994 erschienenen Buch [16] eingehend nachgegangen. – Ich danke
Norbert Schappacher für einen entsprechenden Hinweis.
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HermannWeyl hatte auf das Wintersemester 1913/14 hin die ordentliche Professur an der
Eidgenössischen Technischen Hochschule angetreten. Seine die Gleichverteilung
betreffenden Arbeiten [20], [21], [22] müssen demzufolge kurz nach seiner Übersiedlung nach
Zürich fertig gestellt worden sein. Aus einer Bemerkung in der Arbeit [20] geht allerdings
hervor, dass Weyl bereits 1909/10 begann, sich mit dem Themenkreis zu beschäftigen:
er habe damals einen Beweis für den Satz1 siehe unten) gefunden. Es ist ferner
anzunehmen, dass sich die Arbeit an der grösseren Veröffentlichung [22], die sicherlich als
Zusammenfassung der bisherigen Resultate gedacht war, wegen des Ausbruchs des
Ersten Weltkrieges im Herbst 1914 stark verzögert hat. Hermann Weyl wurde nämlich im
Mai 1915 in den deutschen Heeresdienst eingezogen. Aus diesem Grunde konnte er seine

bereits angekündigten Vorlesungen an der ETH nicht abhalten und musste für einen
Teil des Sommersemesters 1915 sowie für das Wintersemester 1915/16 beim
Schweizerischen Schulrat um Urlaub von der ETH nachsuchen. Dank mehrerer diplomatischer
Interventionen der Schweiz direkt beim Ministerium in Berlin konnte Weyl seine
Vorlesungstätigkeit im Sommersemester 1916 wieder aufnehmen. Schliesslich wurde er im
August 1916 zufolge wiederholter militärischer Untersuchungen vom Waffendienst bis
auf weiteres zurückgestellt siehe [6, S. 20ff.]).

Weyl wurde erstmals aufden Themenkreis aufmerksam, als er 1909/10 im Zusammenhang
mit einem speziellen Problem über Eigenwerte eine Aussage benötigte, die der später so

genannten Gleichverteilung modulo 1 im zweidimensionalen Fall entsprach. Zur selben

Zeit war P. Bohl [2] von einer astronomischen Fragestellung ausgehend auf das gleiche
abstrakte Problem gestossen.4 Ferner hatte W. Sierpiński [17], [18] um die selbe Zeit in der
Zahlentheorie eng verwandte Fragen bearbeitet. Hermann Weyl erkannte offenbar rasch
die wesentlichen gemeinsamen Grundlagen und entwickelte seine übergreifende Theorie.
Unabhängig von Weyl haben Hardy und Littlewood gleichzeitig für Fragestellungen im
Zusammenhang mit der -Funktion ähnliche Sätze bewiesen siehe [10], [11] u.a., sowie
[5]5). Es sind also drei völlig verschiedene Problemstellungen, die in der zentralen Weylschen

Arbeit [22] über die Gleichverteilung von 1916 ihre Synthese gefunden haben.

Dank. Einherzlicher Dank geht an Manfred Einsiedler für eine Reihe kritischer Hinweise und vor allem für eine
ausgedehnte Privatvorlesung über neuere zahlentheoretische Arbeiten, die mit der Gleichverteilung in
Zusammenhang stehen.

Grundlagen

Das Problem der Gleichverteilung modulo Eins beschreibt Hermann Weyl zu Beginn der
Arbeit [22] in seiner unnachahmlichen klaren Art wie folgt:

Es seien auf der Geraden der reellen Zahlen unendlich viele Punkte

a1,a2,a3,

4Weyl geht in [21] auf die astronomische Fragestellung von Bohl ein; sie steht im Zusammenhang mit der
Stabilität des Planetensystems.

5In [22] weist Weyl fälschlich auf ”Herr[n] Towler, ein[en] Schüler der Herren Hardy und Littlewood“ hin.
Man entnimmt [9], dass es sich dabei um R.H. Fowler handelt.
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markiert; wir rollen die Gerade auf einen Kreis vom Umfange 1 auf und fragen, ob dabei
die an den Stellen an befindlichen Marken schliesslich den Umfang des Kreises überall
gleich dicht bedecken. Dies würde dann der Fall sein, wenn die Anzahl na derjenigen
unter den n ersten Marken a1, a2, a3, welche beim Aufrollen in den Teilbogen a der
Kreisperipherie hineinfallen, asymptotisch durch |a| · n gegeben ist:

lim
n.8

na

n |a| ; 1)

unter |a| ist dabei die Länge des Bogens a verstanden. Dann und nur dann, falls diese
Limesgleichung für jeden Teilbogen a erfüllt ist, sprechen wir von einer gleichmässig dichten
Verteilung der Marken über die Kreisperipherie. Das Aufrollen der Geraden auf den Kreis
besagt, dass wir die reellen Zahlen mod. 1 betrachten, d.h. dass zwei Zahlen bereits dann
als gleich gelten, wenn sie sich um eine ganze Zahl unterscheiden.

Wenn die Limesgleichung 1) für alle Teilintervalle a erfüllt ist, nennt Weyl die Folge

a1, a2, a3, gleichverteilt modulo 1; sie erfüllt das Gesetz der Gleichverteilung modulo

1. Die Terminologie wurde offenbar von Weyl eingeführt. Zwar liegt jede im Intervall

[0,1] gleichverteilte Folge in diesem Intervall auch dicht, aber die Umkehrung gilt nicht
allgemein. Der hier neu definierte Begriff gleichmässig dicht, gleichverteilt beinhaltet eine

wesentliche Verschärfung der bisher im Kroneckerschen Approximationssatz betrachteten
Eigenschaft. Darüber hinaus ist der Zusammenhang mit dem Ergodensatzder statistischen
Mechanik offensichtlich.

HermannWeyl stellt anschliessend an seine Einleitung folgendes fest. Wenn die Zahlen an
modulo 1 das Gesetz der Gleichverteilung erf üllen, so gilt für jede beschränkte, Riemann
integrierbare Funktion f x), die periodisch mit Periode 1 ist, die Limesgleichung

lim
n.8

1

n

n

h=1

f ah)
1

0
f x) dx 2)

Mit anderenWorten: der mittels der diskreten Zahlen ah gebildeteMittelwert der Funktion

f stimmt mit dem kontinuierlichenMittelwert 1
0 f x) dx überein.

Es folgt n ämlich direkt aus der Definition der Gleichverteilung, dass die Gleichung 2) für
stückweise konstante Funktionen erfüllt ist. Ferner kann man zu einer Riemann integrierbaren

Funktion immer zwei stückweise konstante Funktionen f1 f f2 so angeben,

dass sich die Integrale
1

0 f1(x) dx und 1
0 f2(x) dx um beliebig wenig unterscheiden. Mit

einigen formalen Zwischenschritten ergibt sich der Beweis.

Mit Hilfe dieser Überlegung lässt sich ein Kriterium für die Gleichverteilung modulo 1
einer Zahlfolge erhalten; es ist heute als Weylsches Kriterium bekannt.

Man betrachte die komplexe) Exponentialfunktion,wobei wir zur Abkürzung

e(x) e2pix

setzen. Damit ordnen wir der reellen Zahl x die komplexe Zahl e(x) vom Betrage eins
zu, beschreiben also formelmassig¨ nichts anderes als das Aufrollen der Gerade auf einen”
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Kreis in der komplexen Zahlebene) mit Umfang 1“. Ist m eine ganze Zahl, so hat auch
die Funktion e(mx) die gleiche Eigenschaft – das Aufrollen“ geschieht einfach m-mal”schneller. Wenn nun die Zahlfolge a1,a2,a3, das Gesetz der Gleichverteilung erfüllt,
so folgt nach 2) für m 0

lim
n.8

1

n

n

h=1

e(mah)
1

0
e(mx) dx 0

Aus der Theorie der Fourierreihen ergibt sich, dass sich jede periodische Funktion durch
die Funktionen e(mx) linear zusammensetzen lässt. Dies erlaubt es, die Umkehrung des

eben erhaltenen Resultates zu beweisen – dies ist das gewünschte Kriterium:

Satz 1. Gilt für jede ganze Zahl m 0 die Limesgleichung

lim
n.0

1

n

n

h=1

e(mah) 0 3)

so genügen die Zahlen ah modulo 1 dem Gesetze der Gleichverteilung.

Zum Beweis bemerkt man zuerst, dass die Gleichung 2)für die Funktion e(0x) 1
trivialerweise erfüllt ist. Mit der in Satz 1 gemachten Annahme folgt die Gleichung 2) somit für
alle endlichen trigonometrischen Reihen trigonometrischen Polynome). Insgesamt muss

man nachweisen, dass die Gleichung 2) für jede stückweise konstante Funktion f der
Periode 1 gültig ist. Zu diesem Zweck ändere man dieFunktion f geringfügig ab, indemman
sie an den Sprungstellen durch hinreichend steile geradlinige Böschungen ersetzt. Diese
abgeänderte stetige) Funktion lässt sich gemäss der Theorie der Fourierreihen, durch eine

endliche trigonometrischeReihe r beliebig genau approximieren.Dies liefert eine beliebig
kleine Differenz derWerte der Integrale über f undr Mit einigen formellen Überlegungen

lässt sich der Beweis vervollständigen.

In [9] wird mit Recht darauf hingewiesen, dass Weyl hier die Gleichverteilung einer Folge

von reellen Zahlen durch ihr Verhalten gegenüber gewissen Klassen von Funktionen
Riemann integrierbare Funktionen bzw. Exponentialfunktionen) charakterisiert. Dies ist

ein völlig neuer Gesichtspunkt: Keiner seiner Vorgänger hat ähnlich gedacht siehe [9,

S. 210]). Dieser bemerkenswerte Sichtwechsel ermöglicht insbesondere einfachere und
durchsichtigere Beweise der zentralen Resultate.

Aus dem Kriterium von Satz 1 ergibt sich der fundamentale

Satz 2. Ist eine irrationale Zahl, so liegen die ganzzahligen Vielfachen von

1.,2.,3.,

modulo 1 überall gleich dicht.6

6Die Aussage, dass die Verteilung dicht ist, entspricht dem eindimensionalen) Approximationssatz von
L. Kronecker. Weyl schreibt den Satz in der verschärften Form P. Bohl und W. Sierpiński zu, die 1909 bzw.
1910 unabhängig voneinander Beweise dafür angegeben hätten siehe [2] und [17], [18]). Ein weiterer Beweis
stamme von H. Bohr.
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Der Beweis ergibt sich mit Hilfe von Satz 1. Für m 0 setzen wir m. Dann lässt

sich nh
1 e(h.) als endliche) geometrische Reihe summieren. Es gilt

n

h=1

e(h.)
e((n + 1) - e(

e( - 1

2

|e( - 1|

1

|sinp.|
Mit Satz 1 ergibt sich die Behauptung.

Neben der Folge der Vielfachen einer irrationalen Zahl hat Hermann Weyl in seiner
Arbeit [22] von weiteren Folgen gezeigt, dass sie gleichverteilt modulo 1 sind. Als Beispiel
erwähnen wir:7

Satz 3. Es sei p(x) akxk +ak-1xk-1 +. .+ a1x + a0 ein reelles Polynom. Mindestens
einer unter den Koeffizienten a1, a2, ak sei irrational. Dann ist die Folge der Werte
p(n), n 1, 2, modulo 1 gleichverteilt.

Inzwischen hat man für viele andere Folgen nachweisen können, dass sie modulo 1
gleichverteilt sind. Zahlentheoretisch interessant ist insbesondere das Resultat von Hlawka,
welches besagt, dass die Folge der Imaginärteile der nichttrivialen Nullstellen der -Funktion
gleichverteilt ist siehe [7]).
Zum Schluss dieses Abschnittes seien zwei Sätze erwähnt, die Einschränkungen für Mengen

vom Mass 0 enthalten. Der erste dieser Sätze geht auf Weyl [22] zurück; Weyl leitet
dort die entsprechenden Überlegungen wie folgt ein siehe [22, S. 345]): [Die]
Ausnahmemenge enthält selbstverständlich alle rationalen Zahlen, es bleibt aber unentschieden,
ob nicht etwa noch weitere Zahlen in ihr enthalten sind. Wenn ich nun freilich glaube,
dass man den Wert solcher Sätze, in denen eine unbestimmte Ausnahmemenge vom Masse
0 auftritt, nicht eben hoch einschätzen darf, möchte ich diese Behauptung hier doch kurz
begründen.

Satz 4. Es sei r 2 eine natürliche Zahl. Dann ist die Folge arn, n 1,2,3, für fast

alle reellen Zahlen a gleichverteilt modulo 1.

Dieser Satz erlaubt u.a. eine Anwendungauf die Dezimalbruchdarstellung bzw. r -adische
Darstellung) von reellen Zahlen für Details konsultiere man [8, S. 74ff.]): Für fast alle
reellen Zahlen a gilt, dass in der Dezimalbruchentwicklung bzw. r-adischen) Entwicklung
die Ziffern 0,1,2, 9 bzw. 0, 1, 2, r - 1) asymptotisch gleich oft auftreten. Leider

erlaubt dieses allgemeine Resultat aber keine Aussage zu konkret gegebenen reellen
Zahlen wie etwa e oder p.

Ähnliches gilt für das folgende Resultat von J.F. Koksma siehe [13]):

Satz 5. Die Folge an, n 1, 2, ist für fast alle a gleichverteilt modulo 1.

Seltsamerweise kennt man bis heute keinen einzigen expliziten Wert von a, für den
gezeigt werden kann, dass die Folge an n 1, 2, gleichverteilt ist. Insbesondere ist
unbekannt, ob die Folgen en bzw. pn, n 1, 2, modulo 1 gleichverteilt sind.

7Wie Weyl in [22] bemerkt, haben G.H. Hardy und J.E. Littlewood fast gleichzeitig ein ähnliches Resultat
erhalten siehe [10], [11]).
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Höhere Dimensionen

Bereits Hermann Weyl hat seine eindimensionalen Resultate Satz 1, Satz 2) auf höhere
Dimensionen verallgemeinert. Zu diesem Zweck werden Punkte

x1, x2, xp) Rp

identifiziert, wenn entsprechende Koordinatenmodulo 1 kongruentsind. Die so entstehende

p-dimensionale Mannigfaltigkeit ist das Toroid Tp. Eine Folge von p-Tupeln a(n) von
reellen Zahlen

x1 a1(n), x2 a2(n), x p ap(n) n 0,1,2,

heisst gleichverteilt in Tp, wenn die Anzahl derjenigen unter den n ersten Punkte a(n),
welche in einem beliebigenachsenparallelenQuader vom Volumen V liegen, asymptotisch
durch V · n gegeben ist.8 Es gilt dann der

Satz 6. Die Punktfolge ist in Tp gleichverteilt, wenn für jedes Systemganzer, nicht sämtlich
verschwindender Zahlen m1,m2, mp die Limesgleichung

lim
n.8

1

n

n

h=1

e(m1a1(h) + m2a2(h) + + mpap(h)) 0

erfüllt ist.

Daraus ergibt sich wie oben die Folgerung

Satz 7. Sind .1, .2, .p irgend p reelle Zahlen, zwischen denen keine ganzzahlige
lineare Relation besteht, so ist die Folge der Punkte

n.1, n.2, n.p) 4)

in Tp gleichverteilt.

Die Tatsache, dass die Punkte 4) in Tp überall dicht liegen, ist die Aussage des
mehrdimensionalen) Kroneckerschen Approximationssatzes. Im Falle von zwei Dimensionen

lässt sich die Aussage des Satzes 7 mit wenigen offensichtlichen Abänderungen, die
insbesondere die Ausdehnung des Resultates auf eine kontinuierliche geradlinige Bewegung
konstanter Geschwindigkeit betreffen) als Aussage über das Billard im Einheitsquadrat
interpretieren siehe [22]). Man starte die Billardkugel im Nullpunkt in einer Richtung,
deren Tangens irrational ist. Dann kommt die Bahn der Billardkugel nicht nur jedem Punkt
des Einheitsquadrates beliebig nahe, sondern die Kugel verweilt in Teilbereichen gleichen
Flächeninhaltes auch gleich lang. Mit Blick auf den Zusammenhang mit der
Wahrscheinlichkeitstheorie und der statistischen Mechanik stellt Weyl explizit fest, dass auf der Bahn
der Kugel die relative Verweilzeit gleich der apriorischen Wahrscheinlichkeit ist. Die
Beziehung zur statistischen Mechanik ist einleuchtend. Siehe [22, S. 319].)

8Statt eines Quaders kann ein beliebig abgegrenztes Raumstück genommen werden, das im Jordanschen Sinn
ein Volumen besitzt siehe [22, S. 318]).
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Integrale
Die Limesgleichung 2), welche die Gleichverteilung auf dem Einheitsintervall definiert,
kann auf zwei verschiedene Arten Informationen liefern. Einmal kann sie dazu verwendet
werden, die links stehende Summe durch das rechts stehende Integral abzuschätzen; dies
bietet sich besonders in den Fällen an, in denen das Integral einfacher zu handhaben ist als

die Summe. In dieser Richtung gibt es zahlreiche zahlentheoretische Anwendungen. Die
Limesgleichung kann umgekehrt aber auch dazu benützt werden, um das rechts stehende
Integral numerisch, also durch eine Summe auszuwerten. In diesem Fall ist es wichtig, eine

Fehlerabschätzung zur Verfügung zu haben. Dieses Problem wurde nachWeyl von
verschiedenen Autoren angegangen für einen Überblick siehe [14, Section 2.4]). Es liegt auf
der Hand, dass sich eine solche Fehlerabschätzung auf zwei Elemente abstützen wird. Einmal

werden darin Eigenschaften der Funktion f eine Rolle spielen, dann wird aber auch

die Qualitat“¨ der benutzten¨ gleichverteilten Folge in die Abschatzung¨ eingehen. Letzteres”wird mit der sogenannten Diskrepanz gemessen, welche beschreibt, wie gleichmassig¨
die Verteilung der Folgeglieder in den verschiedenen Teilbereichen von [0, 1] bzw. Tp
stattfindet.

Bei genauerem Hinsehen zeigte es sich, dass der Begriff der Diskrepanz auch auf nicht
gleichverteilte Folgen angewendet werden kann und dass sich aus dieser Überlegung
vielfältige praktisch durchführbare Methoden der numerischen Integration ergeben;
entsprechende Stichworte sind Quasi-Monte Carlo Methoden und Gitter Methoden lattice
methods). Dies kommt insbesondere im Falle von mehrdimensionalen Integralen zum
Tragen, wo die numerische Integration ein weit schwierigeres Unterfangen ist als im
eindimensionalen Fall. In diesem Bereich haben E. Hlawka, J.F. Koksma u.a. attraktive Resultate

erhalten, auf die hier aber nicht näher eingegangen werden kann für weitere Informationen

vergleiche man [8], [14]). Weiterentwicklungen dieser Methode scheinen sich bei
der Berechnung von sehr hochdimensionalen Integralen, wie sie in neueren Anwendungen
der Physik und Finanzwissenschaft vorkommen, gut zu eignen siehe dazu z.B. [19] und
die dort angegebene Literatur).

Gesetz von Benford fur¨ 2-er Potenzen

Der letzte Abschnitt beschaftigt¨ sich noch mit einer Anwendung der Gleichverteilung auf
ein Problem, das auch in Kreisen ausserhalb der Mathematik Aufmerksamkeit erlangt hat.

Frank Benford 1883–1948) hat 1938 siehe [1]) das oft nach ihm benannte) Gesetz“”ausgesprochen, welches besagt, dass in Datenmengen die Zahlen mit der führenden Ziffer

1 generell häufiger vorkommen als diejenigen mit anderen führenden Ziffern. Benford

hat damit eine Vermutung ausgesprochen, die vor ihm Simon Newcomb bereits 1880
formuliert hatte siehe [15]); man spricht deshalb neuerdings auch etwa vom Newcomb-
Benford-Gesetz. Newcomb hatte bemerkt, dass in Logarithmentafeln die ersten Seiten
jeweils stärker abgegriffen waren als die anderen. Da diese ersten Seiten in solchen Tafeln
in der Regel zu Zahlen gehören, die mit einer Eins beginnen, schloss Newcomb daraus,
dass solche Zahlen häufiger vorkommen als die anderen. Er konnte allerdings dafür keine
Gründe angeben.

Das Gesetz blieb auch nach Benford während längerer Zeit wenig bekannt; erst vor einigen

Jahren hat man sich wieder ernsthaft damit beschäftigt. Für viele mathematisch de-
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finierte Mengen von ganzen Zahlen hat man das Benfordsche Gesetz inzwischen streng
nachweisen können siehe [12] für einen Überblick). Man hat ferner auch versucht, es zur
Enttarnung von Fälschungen einzusetzen, indem man nachkontrollierte, ob Messresultate
bzw. die Zahlen in Gesch äftsbilanzen und Steuererklärungen dem Benfordschen Gesetz
gen ügen siehe dazu [12]).

Hier soll gezeigt werden, dass sich das Benfordsche Gesetz für die Menge der 2-er
Potenzen leicht aus dem obigen Satz 2 der Gleichverteilung modulo 1 ergibt. Es ergibt sich
daraus sogar eine qualitative Wahrscheinlichkeitsaussage, die sich ferner in offensichtlicher

Weise verallgemeinern lässt.

Satz 8. Die Wahrscheinlichkeit, dass die führende Ziffer einer 2-er Potenz eine Eins ist,
beträgt log10 2˜ 0.30.

Die 2-er Potenz 2q beginnt mit einer Eins, wenn

2q 10p · 1.*
gilt, wobei 1.* einen endlichen) Dezimalbruch im Intervall [1, 2) bezeichnet. Durch
Logarithmieren erhält man

log10 2q p + log10 1. *
Daraus ergibt sich, dass die 2-er Potenz 2q genau dann mit einer 1 beginnt, wenn der
Nachkommaanteil von log10 2q zwischen 0 log10 1 und log10 2 liegt. Nun gilt aber

log10 2q q · log10 2

Da schliesslich log10 2 irrational ist siehe unten), ist gemäss Satz 2 die Folge der Zahlen
q · log10 2 modulo 1 gleichverteilt. Die Wahrscheinlichkeit, dass der Nachkommaanteil in
ein vorgegebenes Teilintervall von [0, 1] fällt, entspricht also der Länge des Intervalles. Es
ergibt sich, dass die führende Ziffer der 2-er Potenz 2q mit einer Wahrscheinlichkeit von

log10 2 eine 1 ist.

Es bleibt nachzuweisen, dass log10 2 irrational ist. Wäre log10 2 rational, log10 2 m/n

für m, n ganz, so hätte man

10 mn 2 also 10m 2m
·

5m 2n

Dies ist ein Widerspruch.

Wir erwähnen zum Schluss, dass sich die Aussage von Satz 8 in offensichtlicher Weise
verallgemeinern lässt: statt 2-er Potenzen kann man viele andere Potenzen in ähnlicher
Weise behandeln. Ferner kann das Resultat auch auf andere führende Ziffern, ja sogar

auf Ziffern-Paare, -Tripel etc. ausgedehnt werden. Die Durchführung der notwendigen
Überlegungen überlassen wir dem Leser, der Leserin.
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