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Differenzierbare Strukturen und die Kervaire-Invariante

Matthias Kreck

1 Einleitung

Der Begriff der Mannigtaltigkeit wurde von Riemann in seinem berithmten Habilitations-
vortrag ,Uber die Hypothesen, welche der Geometrie zu Grunde liegen® im Jahre 1854
eingefiihrt. Das war, wenn man in ein heutiges Lehrbuch schaut, kithn und der Zeit weit
voraus. Denn die von uns heute selbstverstiindlich benutzte Sprache der Mengenlehre gab
es noch gar nicht. Deshalb ist klar, dass es viele Jahre brauchte, bis das Konzept in seinen
verschiedenen Facetten ausgearbeitet war. Fiir eine sehr gelungene Darstellung verweise
ich auf den Artikel von Erhard Scholz [13]. Unverzichtbarer Bestandteil der modernen De-
finition von Mannigfaltigkeiten ist neben der Cantorschen Mengenlehre der Begrift des to-
pologischen Raumes, der 1914 von Hausdorff eingefiihrt wurde. Im Jahre 1929 hat van der
Waerden einen Ubersichtsvortrag bei der Deutschen Mathematiker-Vereinigung gehalten,
wo er allein funf verschiedene Definitionen von Mannigfaltigkeiten gibt, von denen eine
den topologischen Mannigfaltigkeiten entspricht, eine andere mehr differentialtopologisch
ist und wieder andere mehr kombinatorisch sind. Dies hat natiirlich dazu gefiihrt, dass die
Frage nach der Aquivalenz der verschiedenen Strukturen gestellt wurde. Das fritheste Bei-
spiel einer solchen Frage ist die von Kneser formulierte Hauptvermutung, wo es um die
Eindeutigkeit einer kombinatorischen (stlickweise linearen oder PL) Struktur auf einer to-
pologischen Mannigfaltigkeit geht.

Damit wir wissen, wovon die Rede ist, mdchte ich eine prizise Definition von topologi-
schen, differenzierbaren und komplexen Mannigfaltigkeiten geben.

Definition. Eine n-dimensionale topologische Mannigfaltigkeit M ist ein topologischer
Hausdorff-Raum mit abzihlbarer Basis, der lokal homoomorph zu R” ist.

Fur den, der nicht vertraut mit den technischen Bedingungen ist, sei gesagt, dass bis auf
Homoomorphie jede Mannigfaltigkeit als Untermannigfaltigkeit des RY fiir geniigend
grofles N angesehen werden kann. Deshalb kann man eine topologische Mannigfaltigkeit
auch als Teilmenge M eines RV definieren, die lokal homomorph zu R” ist.

Eine Familie von lokalen Homdomorphismen (Kartenabbildungen) ¢; : U; — V; C R”,
so dass die Vereinigung der U; gleich M ist, nennt man einen Aflas von M, ein aus der
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Schule sehr vertrautes Objekt, wenn wir an den Weltatlas denken, der die Erdoberfliche
durch Teile iiberdeckt, die Stiicke des R? sind. Man kann nun, da wo es sinnvoll erklirt
ist, das Inverse einer Kartenabbildung mit einer anderen komponieren, und erhélt die Kar-
fenwechsel, das sind Abbildungen von offenen Teilmengen von R” in den R”. Wenn diese
alle differenzierbar sind, so erhilt man einen differenzierbaren Atlas, wobei man noch
festlegen kann, wie oft die Abbildungen differenzierbar sind. Meist verlangt man, dass sie
beliebig oft differenzierbar sein sollen, was wir hier annehmen wollen.

Nun konnen wir eine differenzierbare Mannigfaltigkeit definieren, das ist eine topologi-
sche Mannigfaltigkeit zusammen mit einem differenzierbaren Atlas, von dem man noch
annimmt, dass er maximal ist, also nicht durch Hinzunehmen weiterer Karten zu einem
differenzierbaren Atlas vergrofert werden kann. Solch einen maximalen differenzierbaren
Atlas nennt man eine differenzierbare Struktfur auf M. In analoger Weise kann man kom-
plexe Mannigfaltigkeiien definieren, indem man einen komplexen Atlas nimmt, bei dem
die Karten in den C” gehen und alle Kartenwechsel holomorph sind.

Am meisten wusste man iiber den Vergleich der verschiedenen Strukturen autf Mannigtal-
tigkeiten bei Fldchen, wo man ganz friih erkannte, dass es fiir hoheres Geschlecht sehr viele
komplexe Strukturen gibt (diese fasst man zum Modulraum der komplexen Strukturen zu-
sammen), wihrend es nur eine differenzierbare Struktur gibt — ein Satz, der von Rado [12]
bewiesen wurde. In hoheren Dimensionen war wohl um 1950 nicht viel bekannt. Heinz
Hopf hatte ein grofies Interesse an diesen Fragen, z.B. gab er Hirzebruch die Frage nach
der Konstruktion von einfach zusammenhingenden 4-dimensionalen Mannigfaltigkeiten
mit mehreren komplexen Strukturen, die Hirzebruch in seiner Dissertation [6] mit der
heute Hirzebruch-Flachen benannten Konstruktion von komplexen Flichen beantwortete,
von denen unendlich viele homdomorph sind, also unendlich viele komplexe Strukturen
liefern. Ob es topologische Mannigfaltigkeiten gibt, die iiberhaupt keine differenzierbare
Struktur haben oder gar mehrere, war vollig offen. Fiir 3-dimensionale Mannigfaltigkei-
ten hat Moise in einer Serie von komplizierten Arbeiten in der ersten Hilfte der fiinfziger
Jahre gezeigt, dass es stets eine differenzierbare Struktur gibt und diese eindeutig ist, wo-
bei natuirlich Findeutigkeit heifit, dass je zwei solche differenzierbaren Mannigfaltigkeiten
diffeomorph sind, wenn sie nur homoomorph sind.

2 Differenzierbare Strukturen in hoheren Dimensionen

Im Jahre 1957 verotfentlichte Milnor seine beriihmte Arbeit [10], in der er gewisse 7-
dimensionale Mannigfaltigkeiten konstruiert, die homdomorph zur 7-Sphire $7 sind, aber
nicht diffeomorph, also zeigt, dass die 7-Sphéire mehrere differenzierbare Strukturen hat.
Solche Mannigfaltigkeiten, die homoomorph aber nicht diffeomorph zu einer Sphére sind,
nennt man exotische Sphdren. Dies war der Beginn einer rasanten Entwicklung, die zur
fundamentalen Arbeit [8] von Kervaire und Milnor fiihrte, in welcher gezeigt wurde,
dass die Bestimmung der exotischen Sphiren in Dimension grofier als 4 im wesentlichen
dquivalent zur Berechnung der stabilen Homotopiegruppen von Sphiren ist, also zu ei-
ner ganz anderen Welt. Das ,.im wesentlichen™ soll spéter genauer erldutert werden, denn
das ist dquivalent zur Analyse der Kervaire-Invarianten, auf die wir gleich zu sprechen
kommen werden.
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Nachdem nun klar ist, dass die topologischen und die differenzierbaren Mannigfaltigkeiten
i.a. nicht dasselbe sind, stellt sich die Frage noch dringender, ob jede topologische Man-
nigfaltigkeit eine differenzierbare Struktur hat. Dies wurde in einer 1960 veroffentlichten
Arbeit von Kervaire [7] widerlegt. Uber diese Arbeit soll nun etwas genauer berichtet
werden, weil sie nicht nur eine fundamentale Frage beantwortet, sondern auch der Be-
ginn einer Entwicklung war, die erst in jungster Zeit mit einem spektakulédren Resultat fiir
Aufsehen gesorgt hat, als Hill, Hopkins und Ravenel das Kervaire-Invarianten 1-Problem
bis auf einen noch oftenen Fall geldst haben, wobei es wichtige Teillosungen vorher gab,
insbesondere durch Browder [1].

Kervaire konstruiert eine 10-dimensionale triangulierbare (es gibt einen Homoomorphis-
mus auf ein Polyeder) topologische Mannigfaltigkeit, die keine differenzierbare Struk-
tur hat. Dazu muss man zweierlei machen: Man benétigt eine Konstruktion, sozusagen
einen Kandidaten, und eine Methode um zu zeigen, dass dieser Kandidat keine diffe-
renzierbare Struktur hat. Ich berichte zunichst iiber das zweite. Kervaire macht das so,
dass er gewissen Mannigfaltigkeiten eine Invariante, die man heute Kervaire-Invariante
nennt, mit Werten in Z/2 zuordnet und zeigt, dass diese Invariante fiir seinen Kandida-
ten nicht null ist, aber null wire, wenn der Kandidat eine differenzierbare Struktur hitte,
Das klingt von der Idee her ganz einfach, ist es aber nicht. Die Invariante ist fiir ge-
wisse 10-dimensionale triangulierbare Mannigfaltigkeiten definiert, ndmlich solche, die
4-zusammenhidngend sind, das bedeutet, dass die Fundamentalgruppe und alle Homolo-
giegruppen bis zum Grad 4 einschliefllich verschwinden. Dann betrachtet man die fiinfte
Kohomologiegruppe H>(M; Z/2), deren Dimension in einem gewissen Sinne der Anzahl
der Locher in M entspricht, was natiirlich zu prazisieren wére. Das soll dem mit Homolo-
gie nicht vertrauten Leser nur ein gewisses Gefiihl vermitteln. Durch das cup-Produkt hat
man eine weitere Struktur auf diesem Vektorraum, ndmlich eine nicht entartete Bilinear-
form §, die man Schnittform nennt. Diese ist in unserer Situation langweilig, weil S(x, x)
stets Null ist, was impliziert, dass die Form eine orthogonale Summe von hyperbolischen
Formen ist, d.h. dass beziiglich einer Basis ¢ und f gilt: S(e,¢) = S(f, /) = 0O und
Se, f)=1.

Kervaire reichert die Schnittform an, indem er eine quadratische Verfeinerung ¢ auf S, d.h.
eine Funktion

g: HX(M;Z/2) — Z)2

definiert, so dass gilt:
gx+y) =qx)+4q(y)+ S, y).

Die Definition Kervaires ist zu kompliziert, um sie einer allgemeinen Leserschaft im Rah-
men eines solchen kurzen Artikels zu erkléren. Ich komme aber gleich auf eine Definition
Zu sprechen, die fiir den Fall gegeben werden kann, dass die Mannigfaltigkeit eine diffe-
renzierbare Struktur besitzt (Kervaire will das gerade ausschlieBen, aber er argumentiert
natiirlich indirekt, und so ist der Fall einer angenommenen differenzierbaren Struktur von
grofBem Interesse). Bevor ich das tue, formuliere ich aber die beiden entscheidenden Sétze
seiner Arbeit, Dazu muss ich zunidchst an die Arf-Invariante erinnern (interessanterweise
kommt der Name Arf in Kervaires Arbeit gar nicht vor, wahrscheinlich war das fiir ihn
Folklore). Arf ordnet einer quadratischen Verfeinerung g wie oben eine Invariante in Z,/2
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7u, die man auf verschiedene Weisen erklidren kann, die einfachste ist die ,.demokratische™
Definition: Man lidsst alle Elemente des Z/2-Vektorraums, wo ¢ den Wert 1 hat, die Arme
heben und zéhlt durch. Wenn das die Mehrheitist, so setzt man die Arf-Invariante gleich 1,
sonst 0. Zum Beispiel sei e und f Basis von Z/2 @ Z/2und g(e) = g(f)=qgle+ ) =1
und g(0) = 0; dann ist die Arf-Invariante 1, bei allen anderen Wahlen von ¢ ist sie 0.
Die Arf-Invariante der auf der Mannigfaltigkeit M von Kervaire definierten quadratischen
Form ist die heute so bezeichnete Kervaire-Invariante von M.

K(M).
Hier nun die beiden zentralen Sitze aus Kervaires Arbeit:

Theorem 1 Sei M eine 4-zusammenhiingende kompakte differenzierbare 10-dimensionale
Mannigfaltigkeit ohne Rand. Dann ist

k(M) =0.

Theorem 2 Es gibt 4-zusammenhingende kompakte topologische triangulierbare 10-
dimensionale Mannigfaltigkeiten ohne Rand mit « (M) # 0.

3 Die Kervaire-Invariante im differenzierbaren Fall

Wir definieren die quadratische Verfeinerung nun im Falle, wo die Mannigfaltigkeit M
differenzierbar ist. In diesem Fall zeigt Kervaire, dass das stabile Tangentialblindel von M
trivial ist, d.h. dass die Summe des Tangentialbiindels mit einem trivialen 1-dimensionalen
Biindel isomorph zum Produktbiindel ist. Das werden wir bei der Definition benutzen.
Diese Definition, die in der Arbeit von Kervaire und Milnor steht, kann man fiir alle diffe-
renzierbaren Mannigfaltigkeiten der Dimension 4k + 2 zugrundelegen, wobei &k ungleich
0, 1, oder 3 sein muss, was, wie man bei diesen Zahlen schon vermuten kann, mit der
im Artikel von Mislin [11] behandelten Hopf-Invariante zusammenhingt. Sei also M ei-
ne 2k-zusammenhingende (4k + 2)-dimensionale differenzierbare Mannigfaltigkeit mit
trivialem stabilem Tangentialbiindel. Dann ist nach dem Satz von Hurewicz die zu der
Kohomologieklasse x € H*T1(M; Z/2) Poincaré-duale Klasse durch eine Sphire re-
prasentierbar, die man nach Whitney als Finbettung wéhlen kann. Nun betrachten wir das
Normalenbiindel dieser Sphire. Fiir dieses Biindel gibt es genau zwei Moglichkeiten (das
benutzt, dass das stabile Tangentialbtindel trivial ist), entweder es ist isomorph zum Tan-
gentialblindel der Sphire, welches erst kurz vorher als nicht trivial nachgewiesen wurde,
oder es ist das triviale Biindel. Dass der erste Fall vorkommen kann, sicht man sehr schon
am Beispiel, wo M = S¥T1 x §8+1 ist und die Sphire S¥t! als Diagonale eingebettet ist,
und im zweiten Fall, wenn man die Einbettung eines Faktors nimmt. Im ersten Fall setzt
man ¢g(x) = 1 und im zweiten g(x) = 0. Durch vergleichsweise einfache Uberlegungen
zeigen Kervaire und Milnor, dass diese Definition nicht von den Wahlen abhingt und die
Gleichung

qx+y)=qx)+qy)+Sx,y)
gilt.
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Nun stellt sich die Frage, warum Theorem 1 gilt. Wir wollen das gleich in einen allge-
meineren Kontext stellen. Wir haben die Kervaire-Invariante fiir 2k-zusammenhéingende
Mannigfaltigkeiten M der Dimension 4k + 2 mit trivialem stabilem Tangentialbiindel de-
finiert. Wenn man eine solche Mannigfaltigkeit hat, die nicht hoch zusammenhéingend ist,
dafiir aber mit einer expliziten Trivialisierung ausgestattet ist, so kann man die Invariante
auch noch definieren. Das kann man auf verschiedene Weise machen. Eine benutzt die fun-
damentale Figenschaft der Kervaire-Invariante, dass sie verschwindet, wenn M Rand einer
kompakten Mannigtaltigkeit mit trivialem stabilem Tangentialbiindel ist, und somit eine
Bordismusinvariante tlir Mannigfaltigkeiten mit trivialem stabilem Tangentialbiindel ist.
Nun zeigen Kervaire und Milnor, dass jede kompakte Mannigfaltigkeit mit ausgestatteter
Trivialisierung des stabilen Tangentialbiindels bordant zu einer hoch-zusammenhédngenden
ist, wobei der Bordismus eine ‘Irivialisierung des stabilen Tangentialbiindels tragt, der die
gegebene Trivialisierung fortsetzt. Dann definiert man die Arf-Invariante als die der hoch-
zusammenhingend gemachten Mannigfaltigkeit. Auf diese Weise erhiilt man einen Ho-
momorphismus von der Bordismusgruppe szf{k 1, der mit einer Trivialisierung des stabilen
Tangentialbiindels ausgestatteten kompakten Mannigfaltigkeiten der Dimension 4k + 2
nach Z/2:
K Q2 — Z/2.

Der Beweis von Theorem 1 geht nun so, dass Kervaire Kenntnisse tiber die Gruppe SZ?O
ausnutzt, die implizieren, dass jedes Element dieser Gruppe einen Reprisentanten hat,
dessen Homologie aufier in Dimension 0 und 10 verschwindet. Dann hat die Kervaire-
Invariante natiirlich keine andere Chance als 0 zu sein.

4 Die Konstruktion einer topologischen Mannigfaltigkeit
mit Kervaire-Invariante nicht Null

Kervaire benutzt eine Konstruktion von Milnor, die Milnor, wenn ich mich recht erinne-
re, Hirzebruch zuschreibt und die man heute Plumbing nennt. Dazu betrachtet man z.B.
zwei Kopien des Scheibenbiindels des Tangentialbiindels der 5-Sphire S° und wihlt kleine
Scheiben aus und liber diesen eine Trivialisierung, die man in die Scheibenbiindel einbet-
tet. Man kann sich das am Falle der 1-Sphire gut vorstellen, wo das Scheibenbiindel des
Tangentialbiindels der Zylinder iiber § 1 ist, also ein Band, in welchem man ein Quadrat
eingebettet hat, so dass der Rest wieder ein Quadrat ist (man schneidet das Band an zwei
Stellen senkrecht zur Seele auf und erhdlt so die zwei Quadrate). Dies liefert Einbettungen
von D x D? in die beiden Kopien der Scheibenbiindel, die man mittels der Vertauschung
der beiden Faktoren verklebt. Das Ergebnis kann man sich im Falle von S' leicht vorstel-
len: Man betrachtet im Torus die beiden Kreise, die sich in genau einem Punkt schneiden,
und verdickt sie ein wenig. In diesem Fall ist der Rand der so entstandenen Mannigfal-
tigkeit W (deren Ecken man nach einem Standardverfahren glitiet) eine Sphire. Das ist
in hoheren Dimensionen nicht so, aber es ist immer eine Mannigfaltigkeit, die homoto-
piedquivalent zur Sphire ist, falls # ungerade ist. Dies nennt man eine Kervaire-Sphdire
E%{”_l der Dimension 2zn — 1. Es stellt sich die Frage, ob diese Sphiren diffeomorph oder
homdomorph zur Sphire S7~! sind. Die zweite Frage wurde von Milnor direkt positiv
beantwortet. Dass das so ist, ist inzwischen ein Spezialfall der héherdimensionalen Poin-
caré-Vermutung, die fiir differenzierbare Mannigfaltigkeiten von Smale bewiesen wurde
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[14]. Ob die Mannigfaltigkeit auch diffeomorph zur Sphire ist, wurde von Kervaire sozu-
sagen als Nebenprodukt negativ entschieden. Wire der Rand von W, also E5 diffeomorph
zu Y, dann kinnten wir eine glatte Mannigfaltigkeit ohne Rand erhalten, indem wir die
10-dimensionale Scheibe D0 einkleben. Diese hitte die Kervaire-Invariante 1, was ein
Widerspruch zum obigen Satz wire. Die Kervaire-Invariante ist hier ndmlich ganz leicht
auszurechnen, weil die Seelen der beiden Scheibenbiindel als Normalenbiindel das Tan-
gentialblindel der S haben, also die quadratische Verfeinerung fiir die Poincaré-dualen
Klassen den Wert 1 annimmt. Dann folgt aus der Additionsformel fiir die quadratische
Form, dass auch das dritte nicht-triviale Element in der Kohomologie auf 1 abgebildet
wird, was impliziert, dass die Kervaire-Invariante 1 ist. Wir fassen dieses wichtige Ergeb-
nis zusammen:

Theorem 3: Die Kervaire-Sphiire E?{ ist nicht diffeomorph zu S°, aber homoomorph,
liefert also eine exotische Struktur auf S°.

Nun ist es aber nicht schwer, die gesuchte topologische Mannigfaltigkeit M ohne differen-
zierbare Struktur zu konstruieren. Wir machen genau dasselbe, aber eben nicht differen-
zierbar, d.h. wir wihlen uns einen Homoomorphismus von dem Rand von W auf $? und
kleben die Scheibe D'° ein. Das Ergebnis ist nun eine topologische Mannigfaltigkeit, die
fast iiberall differenzierbar ist, ndmlich nur nicht im Nullpunkt der eingeklebten Scheibe.
Mit den gleichen Uberlegungen wie oben folgt deshalb, dass die Kervaire-Invariante dieser
topologischen Mannigfaltigkeit 1 ist, womit die Beweisidee von Theorem 2 beendet ist.

S Die weitere Entwicklung

Wie oben erklidrt, kann man die Kervaire-Invariante fiir differenzierbare Mannigfaltigkei-
ten mit stabiler Rahmung des Tangentialbiindels in allen Dimensionen 4k 4 2 erkliren.
Der Fall £k = 0 war Ubrigens lange vor Kervaire von Pontryagin betrachtet worden. In
Verallgemeinerung dessen, was Kervaire gemacht hat, kann man sich fragen, fiir welche
k es Mannigfaltigkeiten mit Kervaire-Invariante 1 gibt. Das ist von der Natur her eine
shnliche Frage wie die, ob es Abbildungen f : S*~1 — §% oibt, deren Hopf-Invariante
ungerade ist. Wie oben angedeutet, gibt es eine gewisse Beziehung, die sich aber allein
auf eine gewisse Definitionsmoglichkeit der quadratischen Verfeinerung bezieht. Wie im
Falle der Hopf-Invariante (und mit dem gleichen Input) kann man ganz leicht solche Man-
nigfaltigkeiten fiir k = 0, 1 und 3 angeben. Die Spekulation, dass es sich um ein dhnliches
Phdnomen handeln konnte, wurde durch einen tiefliegenden Satz von Browder genidhrt:

Theorem 4 (Browder [1]) Wenn es eine kompakte differenzierbare Mannigfaltigkeit der
Dimension n = 4k + 2 mit einer Trivialisierung des stabilen Tangentialbiindels gibt, so
dass die Kervaire-Invariante 1 ist, so ist n von der Form 2™ — 2.

Fiir die néchsten Fille, nimlich # = 30 und n = 62, wurden tatsdchlich solche Man-
nigfaltigkeiten mit Kervaire-Invariante 1 gefunden, oder besser fiir die Dimension 62 die
Existenz nachgewiesen. Die meisten Topologen haben geglaubt (zumindest ich), dass das
der Anfang einer Serie ist, wir also irgendwann fiir alle n = 2™ — 2 die¢ Existenz einer
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solchen Mannigfaltigkeit nachweisen konnen. Vor einem Jahr haben Hopkins, Hill und
Ravenel aber bewiesen:

Theorem 5 (Hopkins, Hill, Ravenel [S]) Frir n > 126 gibt es keine kompakie differen-
zierbare n-dimensionale Mannigfaltigkeit miit einer Trivialisierung des stabilen Tangenti-
albiindels, deren Kervaire-Invariante 1 ist.

Wie schon im Falle der Dimension 10 hat das Anwendungen auf exotische Sphiren,
nimlich dass alle Kervaire-Sphéiren in der entsprechenden Dimension # — 1 nicht diffeo-
morph zur Standardsphire sind, also eine exotische Struktur liefern. Natiirlich kann man
den Satz benutzen, um Kervaires Konstruktion von Mannigfaltigkeiten ohne differenzier-
bare Struktur auf diese Dimensionen # zu verallgemeinern, Kervaire war also so clever,
sich in eine ,,win-win“ Situation zu bringen, wo seine Methoden entweder eine exotische
Struktur liefern oder eine nicht glittbare Mannigfaltigkeit.

Ich mochte die Gelegenheit benutzen, eine Frage anzusprechen, die angesichts so vie-
ler exotischer Strukturen selbst auf den einfachsten kompakten Mannigfaltigkeiten wie
Sphiren natiirlich erscheint. Wie sieht es mit kompakten Mannigfaltigkeiten aus, die eine
eindeutige differenzierbare Struktur haben? Bis zur Dimension 3 ist das fiir alle Mannig-
faltigkeiten der Fall. Ich habe bewiesen, dass es in allen Dimensionen n grof3er als 4 solche
Mannigfaltigkeiten gibt [9]. Angesichts der Komplexitdt von einfachen Mannigfaltigkeiten
wie Sphéren tiberrascht vielleicht nicht, dass ich keine Konstruktion solcher Mannigfaltig-
keiten kenne. Wir haben hier eine reine Existenzaussage, wobei die Mannigfaltigkeiten in
gewissem Sinne so kompliziert wie moglich sind.

Die Dimension 4 verhilt sich, was exotische Strukturen betrifft, vollig anders als andere
Dimensionen. So hat z.B. R” fiir n # 4 genau eine differenzierbare Struktur (im nicht
kompakten Fall tritt dieses Phanomen also im allereinfachsten Fall auf), wihrend Freed-
man unter Verwendung seiner Methoden [3] und der Resultate von Donaldson [2] exoti-
sche Strukturen auf R* nachgewiesen hat [4]. Inzwischen hat Taubes sogar gezeigt, dass
es ein ganzes Kontinuum von differenzierbaren Strukturen auf R* gibt! Auch fiir kom-
pakte 4-Mannigfaltigkeiten gibt es, verglichen mit den anderen Dimensionen, vollig neue
Phanomene. In allen anderen Dimensionen ist die Anzahl exotischer Strukturen endlich,
wahrend es viele kompakte 4-Mannigfaltigkeiten mit unendlich vielen differenzierbaren
Strukturen gibt. Aber der Fall, bei dem Kervaire in hoheren Dimensionen so bahnbrechen-
de Resultate erzielt hat, ist vollig offen, ndmlich:

Problem: Gibt es auf S* eine exotische Struktur?
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