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Differenzierbare Strukturen und die Kervaire-Invariante

Matthias Kreck

1 Einleitung

Der Begriff der Mannigfaltigkeit wurde von Riemann in seinem berühmten Habilitationsvortrag

Über die Hypothesen, welche der Geometrie zu Grunde liegen“ im Jahre 1854”eingeführt. Das war, wenn man in ein heutiges Lehrbuch schaut, kühn und der Zeit weit
voraus. Denn die von uns heute selbstverständlich benutzte Sprache der Mengenlehre gab
es noch gar nicht. Deshalb ist klar, dass es viele Jahre brauchte, bis das Konzept in seinen
verschiedenen Facetten ausgearbeitet war. Für eine sehr gelungene Darstellung verweise
ich auf den Artikel von Erhard Scholz [13]. UnverzichtbarerBestandteil der modernen
Definition von Mannigfaltigkeiten ist neben der CantorschenMengenlehre der Begriff des

topologischen Raumes, der 1914 von Hausdorff eingeführtwurde. Im Jahre 1929 hat van der
Waerden einen Übersichtsvortrag bei der Deutschen Mathematiker-Vereinigung gehalten,
wo er allein fünf verschiedene Definitionen von Mannigfaltigkeiten gibt, von denen eine
den topologischenMannigfaltigkeiten entspricht, eine andere mehr differentialtopologisch
ist und wieder andere mehr kombinatorisch sind. Dies hat natürlich dazu geführt, dass die
Frage nach der Äquivalenz der verschiedenen Strukturen gestellt wurde. Das früheste
Beispiel einer solchen Frage ist die von Kneser formulierte Hauptvermutung, wo es um die
Eindeutigkeit einer kombinatorischen stückweise linearen oder PL) Struktur auf einer
topologischen Mannigfaltigkeit geht.

Damit wir wissen, wovon die Rede ist, möchte ich eine präzise Definition von topologischen,

differenzierbaren und komplexen Mannigfaltigkeiten geben.

Definition. Eine n-dimensionale topologische Mannigfaltigkeit M ist ein topologischer
Hausdorff-Raum mit abzählbarer Basis, der lokal homöomorph zu Rn ist.

Für den, der nicht vertraut mit den technischen Bedingungen ist, sei gesagt, dass bis auf
Homöomorphie jede Mannigfaltigkeit als Untermannigfaltigkeit des RN für genügend
großes N angesehen werden kann. Deshalb kann man eine topologische Mannigfaltigkeit
auch als Teilmenge M eines RN definieren, die lokal homöomorph zu Rn ist.

Eine Familie von lokalen Homöomorphismen Kartenabbildungen) fi : Ui Vi Rn,

so dass die Vereinigung der Ui gleich M ist, nennt man einen Atlas von M, ein aus der
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Schule sehr vertrautes Objekt, wenn wir an den Weltatlas denken, der die Erdoberfläche
durch Teile überdeckt, die Stücke des R2 sind. Man kann nun, da wo es sinnvoll erklärt
ist, das Inverse einer Kartenabbildung mit einer anderen komponieren, und erhält die
Kartenwechsel, das sind Abbildungen von offenen Teilmengen von Rn in den Rn. Wenn diese

alle differenzierbar sind, so erhält man einen differenzierbaren Atlas, wobei man noch
festlegen kann, wie oft die Abbildungen differenzierbar sind. Meist verlangt man, dass sie

beliebig oft differenzierbar sein sollen, was wir hier annehmen wollen.

Nun können wir eine differenzierbare Mannigfaltigkeit definieren, das ist eine topologische

Mannigfaltigkeit zusammen mit einem differenzierbaren Atlas, von dem man noch
annimmt, dass er maximal ist, also nicht durch Hinzunehmen weiterer Karten zu einem
differenzierbaren Atlas vergrößert werden kann. Solch einen maximalen differenzierbaren
Atlas nennt man eine differenzierbare Struktur auf M. In analoger Weise kann man
komplexe Mannigfaltigkeiten definieren, indem man einen komplexen Atlas nimmt, bei dem
die Karten in den Cn gehen und alle Kartenwechsel holomorph sind.

Am meisten wusste man über den Vergleich der verschiedenen Strukturen auf Mannigfaltigkeiten

bei Flächen, wo man ganz früh erkannte, dass es fürhöheresGeschlecht sehr viele
komplexe Strukturen gibt diese fasst man zum Modulraum der komplexen Strukturen
zusammen), während es nur eine differenzierbare Struktur gibt – ein Satz, der von Rado [12]
bewiesen wurde. In höheren Dimensionen war wohl um 1950 nicht viel bekannt. Heinz
Hopf hatte ein großes Interesse an diesen Fragen, z.B. gab er Hirzebruch die Frage nach
der Konstruktion von einfach zusammenhängenden 4-dimensionalen Mannigfaltigkeiten
mit mehreren komplexen Strukturen, die Hirzebruch in seiner Dissertation [6] mit der
heute Hirzebruch-Flächen benannten Konstruktion von komplexen Flächen beantwortete,
von denen unendlich viele homöomorph sind, also unendlich viele komplexe Strukturen
liefern. Ob es topologische Mannigfaltigkeiten gibt, die überhaupt keine differenzierbare
Struktur haben oder gar mehrere, war völlig offen. Für 3-dimensionale Mannigfaltigkeiten

hat Moise in einer Serie von komplizierten Arbeiten in der ersten Hälfte der fünfziger
Jahre gezeigt, dass es stets eine differenzierbare Struktur gibt und diese eindeutig ist, wobei

natürlich Eindeutigkeit heißt, dass je zwei solche differenzierbarenMannigfaltigkeiten
diffeomorph sind, wenn sie nur homöomorph sind.

2 Differenzierbare Strukturen in höheren Dimensionen

Im Jahre 1957 veröffentlichte Milnor seine berühmte Arbeit [10], in der er gewisse 7-
dimensionale Mannigfaltigkeiten konstruiert, die homöomorph zur 7-Sphäre S7 sind, aber
nicht diffeomorph, also zeigt, dass die 7-Sphäre mehrere differenzierbare Strukturen hat.
Solche Mannigfaltigkeiten, die homöomorph aber nicht diffeomorph zu einer Sphäre sind,
nennt man exotische Sphären. Dies war der Beginn einer rasanten Entwicklung, die zur
fundamentalen Arbeit [8] von Kervaire und Milnor f ührte, in welcher gezeigt wurde,
dass die Bestimmung der exotischen Sphären in Dimension größer als 4 im wesentlichen
äquivalent zur Berechnung der stabilen Homotopiegruppen von Sphären ist, also zu
einer ganz anderen Welt. Das im wesentlichen“ soll sp äter genauer erläutert werden, denn”das ist äquivalent zur Analyse der Kervaire-Invarianten, auf die wir gleich zu sprechen

kommen werden.
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Nachdem nun klar ist, dassdie topologischen und die differenzierbarenMannigfaltigkeiten
i.a. nicht dasselbe sind, stellt sich die Frage noch dringender, ob jede topologische
Mannigfaltigkeit eine differenzierbare Struktur hat. Dies wurde in einer 1960 veröffentlichten
Arbeit von Kervaire [7] widerlegt. Über diese Arbeit soll nun etwas genauer berichtet
werden, weil sie nicht nur eine fundamentale Frage beantwortet, sondern auch der
Beginn einer Entwicklung war, die erst in jüngster Zeit mit einem spektakulären Resultat für
Aufsehen gesorgt hat, als Hill, Hopkins und Ravenel das Kervaire-Invarianten 1-Problem
bis auf einen noch offenen Fall gelöst haben, wobei es wichtige Teillösungen vorher gab,
insbesondere durch Browder [1].

Kervaire konstruiert eine 10-dimensionale triangulierbare es gibt einen Homöomorphismus

auf ein Polyeder) topologische Mannigfaltigkeit, die keine differenzierbare Struktur

hat. Dazu muss man zweierlei machen: Man benötigt eine Konstruktion, sozusagen
einen Kandidaten, und eine Methode um zu zeigen, dass dieser Kandidat keine
differenzierbare Struktur hat. Ich berichte zunächst über das zweite. Kervaire macht das so,

dass er gewissen Mannigfaltigkeiten eine Invariante, die man heute Kervaire-Invariante
nennt, mit Werten in Z/2 zuordnet und zeigt, dass diese Invariante für seinen Kandidaten

nicht null ist, aber null wäre, wenn der Kandidat eine differenzierbare Struktur hätte.
Das klingt von der Idee her ganz einfach, ist es aber nicht. Die Invariante ist für
gewisse 10-dimensionale triangulierbare Mannigfaltigkeiten definiert, nämlich solche, die
4-zusammenhängend sind, das bedeutet, dass die Fundamentalgruppe und alle
Homologiegruppen bis zum Grad 4 einschließlich verschwinden. Dann betrachtet man die fünfte
Kohomologiegruppe H5(M; Z/2), deren Dimension in einem gewissen Sinne der Anzahl
der Löcher in M entspricht, was natürlich zu präzisieren wäre. Das soll dem mit Homologie

nicht vertrauten Leser nur ein gewisses Gefühl vermitteln. Durch das cup-Produkt hat
man eine weitere Struktur auf diesem Vektorraum, nämlich eine nicht entartete Bilinearform

S, dieman Schnittform nennt. Diese ist in unserer Situation langweilig, weil S(x, x)
stets Null ist, was impliziert, dass die Form eine orthogonale Summe von hyperbolischen
Formen ist, d.h. dass bezüglich einer Basis e und f gilt: S(e,e) S( f, f 0 und
S(e, f 1.

Kervaire reichert die Schnittforman, indem er eine quadratische Verfeinerung q auf S, d.h.
eine Funktion

q : H5 M; Z/2) Z/2

definiert, so dass gilt:
q(x + y) q(x) + q(y) + S(x, y).

Die Definition Kervaires ist zu kompliziert, um sie einer allgemeinen Leserschaft im Rahmen

eines solchen kurzen Artikels zu erklären. Ich komme aber gleich auf eine Definition
zu sprechen, die f ür den Fall gegeben werden kann, dass die Mannigfaltigkeit eine
differenzierbare Struktur besitzt Kervaire will das gerade ausschließen, aber er argumentiert
natürlich indirekt, und so ist der Fall einer angenommenen differenzierbaren Struktur von
großem Interesse). Bevor ich das tue, formuliere ich aber die beiden entscheidenden Sätze
seiner Arbeit. Dazu muss ich zunächst an die Arf-Invariante erinnern interessanterweise
kommt der Name Arf in Kervaires Arbeit gar nicht vor, wahrscheinlich war das für ihn
Folklore). Arf ordnet einer quadratischen Verfeinerung q wie oben eine Invariante in Z/2
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zu, die man auf verschiedeneWeisen erklären kann, die einfachste ist die demokratische“”Definition: Man lässt alle Elemente des Z/2-Vektorraums, wo q denWert 1 hat, die Arme
heben und zählt durch. Wenn das dieMehrheit ist, so setzt man die Arf- Invariantegleich 1,

sonst 0. Zum Beispiel sei e und f Basis von Z/2 Z/2 und q(e) q( f q(e+ f 1
und q(0) 0; dann ist die Arf-Invariante 1, bei allen anderen Wahlen von q ist sie 0.

Die Arf-Invariante der auf der Mannigfaltigkeit M von Kervaire definierten quadratischen
Form ist die heute so bezeichnete Kervaire- Invariante von M:

M).

Hier nun die beiden zentralen Sätze aus Kervaires Arbeit:

Theorem 1 Sei M eine 4-zusammenhängende kompakte differenzierbare 10-dimensionale
Mannigfaltigkeit ohne Rand. Dann ist

M) 0.

Theorem 2 Es gibt 4-zusammenhängende kompakte topologische triangulierbare 10-
dimensionale Mannigfaltigkeiten ohne Rand mit M) 0.

3 Die Kervaire-Invariante im differenzierbaren Fall
Wir definieren die quadratische Verfeinerung nun im Falle, wo die Mannigfaltigkeit M
differenzierbar ist. In diesem Fall zeigt Kervaire, dass das stabile Tangentialbündel von M
trivial ist, d.h. dass die Summe des Tangentialbündels mit einem trivialen 1-dimensionalen
Bündel isomorph zum Produktbündel ist. Das werden wir bei der Definition benutzen.
Diese Definition, die in der Arbeit von Kervaire und Milnor steht, kann man für alle
differenzierbaren Mannigfaltigkeiten der Dimension 4k + 2 zugrundelegen, wobei k ungleich
0, 1, oder 3 sein muss, was, wie man bei diesen Zahlen schon vermuten kann, mit der
im Artikel von Mislin [11] behandelten Hopf-Invariante zusammenhängt. Sei also M eine

2k-zusammenhängende 4k + 2)-dimensionale differenzierbare Mannigfaltigkeit mit
trivialem stabilem Tangentialbündel. Dann ist nach dem Satz von Hurewicz die zu der
Kohomologieklasse x Hk+1(M; Z/2) Poincaré-duale Klasse durch eine Sphäre repr

äsentierbar, die man nach Whitney als Einbettung wählen kann. Nun betrachten wir das

Normalenbündel dieser Sphäre. Für dieses Bündel gibt es genau zwei Möglichkeiten das

benutzt, dass das stabile Tangentialbündel trivial ist), entweder es ist isomorph zum
Tangentialbündel der Sphäre, welches erst kurz vorher als nicht trivial nachgewiesen wurde,
oder es ist das triviale Bündel. Dass der erste Fall vorkommen kann, sieht man sehr schön
am Beispiel, wo M Sk+1

× Sk+1 ist und die Sphäre Sk+1 als Diagonale eingebettet ist,
und im zweiten Fall, wenn man die Einbettung eines Faktors nimmt. Im ersten Fall setzt
man q(x) 1 und im zweiten q(x) 0. Durch vergleichsweise einfache Überlegungen
zeigen Kervaire und Milnor, dass diese Definition nicht von den Wahlen abhängt und die
Gleichung

q(x + y) q(x) + q(y) + S(x, y)

gilt.
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Nun stellt sich die Frage, warum Theorem 1 gilt. Wir wollen das gleich in einen
allgemeineren Kontext stellen. Wir haben die Kervaire-Invariante f ür 2k-zusammenhängende
Mannigfaltigkeiten M der Dimension 4k + 2 mit trivialem stabilem Tangentialbündel
definiert. Wenn man eine solche Mannigfaltigkeit hat, die nicht hoch zusammenhängend ist,
dafür aber mit einer expliziten Trivialisierung ausgestattet ist, so kann man die Invariante
auch noch definieren. Das kannman auf verschiedeneWeise machen. Eine benutzt die
fundamentale Eigenschaft der Kervaire-Invariante, dass sie verschwindet, wenn M Rand einer
kompakten Mannigfaltigkeit mit trivialem stabilem Tangentialbündel ist, und somit eine

Bordismusinvariante für Mannigfaltigkeiten mit trivialem stabilem Tangentialbündel ist.
Nun zeigen Kervaire und Milnor, dass jede kompakte Mannigfaltigkeit mit ausgestatteter
Trivialisierung des stabilen Tangentialbündelsbordant zu einer hoch-zusammenhängenden
ist, wobei der Bordismus eine Trivialisierung des stabilen Tangentialbündels trägt, der die
gegebene Trivialisierung fortsetzt. Dann definiert man die Arf-Invariante als die der
hochzusammenhängend gemachten Mannigfaltigkeit. Auf diese Weise erhält man einen
Homomorphismus von der Bordismusgruppe fr

4k+2 der mit einer Trivialisierung des stabilen
Tangentialbündels ausgestatteten kompakten Mannigfaltigkeiten der Dimension 4k + 2
nach Z/2:

:
fr
4k+2 Z/2.

Der Beweis von Theorem 1 geht nun so, dass Kervaire Kenntnisse über die Gruppe fr
10

ausnutzt, die implizieren, dass jedes Element dieser Gruppe einen Repräsentanten hat,
dessen Homologie außer in Dimension 0 und 10 verschwindet. Dann hat die Kervaire-
Invariante natürlich keine andere Chance als 0 zu sein.

4 Die Konstruktion einer topologischen Mannigfaltigkeit
mit Kervaire-Invariante nicht Null

Kervaire benutzt eine Konstruktion von Milnor, die Milnor, wenn ich mich recht erinnere,

Hirzebruch zuschreibt und die man heute Plumbing nennt. Dazu betrachtet man z.B.
zwei Kopien des Scheibenbündels des Tangentialbündels der5-Sphäre S5 und wählt kleine
Scheiben aus und über diesen eine Trivialisierung, die man in die Scheibenbündel einbettet.

Man kann sich das am Falle der 1-Sphäre gut vorstellen, wo das Scheibenbündel des

Tangentialbündels der Zylinder über S1 ist, also ein Band, in welchem man ein Quadrat
eingebettet hat, so dass der Rest wieder ein Quadrat ist man schneidet das Band an zwei
Stellen senkrecht zur Seele auf und erhält so die zwei Quadrate). Dies liefert Einbettungen
von D5 × D5 in die beiden Kopien der Scheibenbündel, die man mittels der Vertauschung
der beiden Faktoren verklebt. Das Ergebnis kann man sich im Falle von S1 leicht vorstellen:

Man betrachtet im Torus die beiden Kreise, die sich in genau einem Punkt schneiden,
und verdickt sie ein wenig. In diesem Fall ist der Rand der so entstandenen Mannigfaltigkeit

W deren Ecken man nach einem Standardverfahren glättet) eine Sphäre. Das ist
in höheren Dimensionen nicht so, aber es ist immer eine Mannigfaltigkeit, die homotopie

äquivalent zur Sphäre ist, falls n ungerade ist. Dies nennt man eine Kervaire-Sphäre
2n-1
K der Dimension 2n- 1. Es stellt sich die Frage, ob diese Sphären diffeomorph oder

homöomorph zur Sphäre S2n-1 sind. Die zweite Frage wurde von Milnor direkt positiv
beantwortet. Dass das so ist, ist inzwischen ein Spezialfall der höherdimensionalen Poincar

é-Vermutung, die für differenzierbare Mannigfaltigkeiten von Smale bewiesen wurde
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[14]. Ob die Mannigfaltigkeit auch diffeomorph zur Sphäre ist, wurde von Kervaire
sozusagen als Nebenproduktnegativentschieden. Wäre der Rand von W, also 9

K diffeomorph
zu S9, dann könnten wir eine glatte Mannigfaltigkeit ohne Rand erhalten, indem wir die
10-dimensionale Scheibe D10 einkleben. Diese hätte die Kervaire-Invariante 1, was ein
Widerspruch zum obigen Satz wäre. Die Kervaire-Invariante ist hier nämlich ganz leicht
auszurechnen, weil die Seelen der beiden Scheibenbündel als Normalenbündel das
Tangentialbündel der S5 haben, also die quadratische Verfeinerung für die Poincaré-dualen
Klassen den Wert 1 annimmt. Dann folgt aus der Additionsformel für die quadratische
Form, dass auch das dritte nicht-triviale Element in der Kohomologie auf 1 abgebildet
wird, was impliziert, dass die Kervaire-Invariante 1 ist. Wir fassen dieses wichtige Ergebnis

zusammen:

Theorem 3: Die Kervaire-Sphäre 9
K ist nicht diffeomorph zu S9, aber homöomorph,

liefert also eine exotische Struktur auf S9.

Nun ist es aber nicht schwer, die gesuchte topologische Mannigfaltigkeit M ohne differenzierbare

Struktur zu konstruieren. Wir machen genau dasselbe, aber eben nicht differenzierbar,

d.h. wir wählen uns einen Homöomorphismus von dem Rand von W auf S9 und
kleben die Scheibe D10 ein. Das Ergebnis ist nun eine topologische Mannigfaltigkeit, die
fast überall differenzierbar ist, nämlich nur nicht im Nullpunkt der eingeklebten Scheibe.
Mit den gleichen Überlegungenwie oben folgt deshalb, dass die Kervaire-Invariantedieser
topologischenMannigfaltigkeit 1 ist, womit die Beweisidee von Theorem 2 beendet ist.

5 Die weitere Entwicklung

Wie oben erklärt, kann man die Kervaire-Invariante für differenzierbare Mannigfaltigkeiten

mit stabiler Rahmung des Tangentialbündels in allen Dimensionen 4k + 2 erklären.

Der Fall k 0 war übrigens lange vor Kervaire von Pontryagin betrachtet worden. In
Verallgemeinerung dessen, was Kervaire gemacht hat, kann man sich fragen, für welche
k es Mannigfaltigkeiten mit Kervaire-Invariante 1 gibt. Das ist von der Natur her eine

ähnliche Frage wie die, ob es Abbildungen f : S4k-1 S2k gibt, deren Hopf-Invariante
ungerade ist. Wie oben angedeutet, gibt es eine gewisse Beziehung, die sich aber allein
auf eine gewisse Definitionsmöglichkeit der quadratischen Verfeinerung bezieht. Wie im
Falle der Hopf-Invariante und mit dem gleichen Input) kann man ganz leicht solche
Mannigfaltigkeiten für k 0,1 und 3 angeben. Die Spekulation, dass es sich um ein ähnliches
Phänomen handeln könnte, wurde durch einen tiefliegenden Satz von Browder genährt:

Theorem 4 Browder [1]) Wenn es eine kompakte differenzierbare Mannigfaltigkeit der
Dimension n 4k + 2 mit einer Trivialisierung des stabilen Tangentialbündels gibt, so

dass die Kervaire-Invariante 1 ist, so ist n von der Form 2m - 2.

Für die nächsten Fälle, nämlich n 30 und n 62, wurden tatsächlich solche
Mannigfaltigkeiten mit Kervaire-Invariante 1 gefunden, oder besser für die Dimension 62 die
Existenz nachgewiesen. Die meisten Topologen haben geglaubt zumindest ich), dass das

der Anfang einer Serie ist, wir also irgendwann für alle n 2m - 2 die Existenz einer
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solchen Mannigfaltigkeit nachweisen können. Vor einem Jahr haben Hopkins, Hill und
Ravenel aber bewiesen:

Theorem 5 Hopkins, Hill, Ravenel [5]) Für n > 126 gibt es keine kompakte differenzierbare

n-dimensionale Mannigfaltigkeit mit einer Trivialisierung des stabilen Tangentialb

ündels, deren Kervaire-Invariante 1 ist.

Wie schon im Falle der Dimension 10 hat das Anwendungen auf exotische Sphären,

nämlich dass alle Kervaire-Sphären in der entsprechenden Dimension n - 1 nicht diffeomorph

zur Standardsphäre sind, also eine exotische Struktur liefern. Natürlich kann man
den Satz benutzen, um Kervaires Konstruktion von Mannigfaltigkeiten ohne differenzierbare

Struktur auf diese Dimensionen n zu verallgemeinern. Kervaire war also so clever,
sich in eine win-win“ Situation zu bringen, wo seine Methoden entweder eine exotische

”Struktur liefern oder eine nicht glättbare Mannigfaltigkeit.

Ich möchte die Gelegenheit benutzen, eine Frage anzusprechen, die angesichts so vieler

exotischer Strukturen selbst auf den einfachsten kompakten Mannigfaltigkeiten wie
Sphären natürlich erscheint. Wie sieht es mit kompakten Mannigfaltigkeiten aus, die eine

eindeutige differenzierbare Struktur haben? Bis zur Dimension 3 ist das für alle
Mannigfaltigkeiten der Fall. Ich habe bewiesen, dass es in allen Dimensionen n größerals 4 solche
Mannigfaltigkeiten gibt[9]. Angesichts derKomplexität voneinfachen Mannigfaltigkeiten
wie Sphären überrascht vielleicht nicht, dass ich keine Konstruktion solcher Mannigfaltigkeiten

kenne. Wir haben hier eine reine Existenzaussage, wobei die Mannigfaltigkeiten in
gewissem Sinne so kompliziert wie möglich sind.

Die Dimension 4 verhält sich, was exotische Strukturen betrifft, völlig anders als andere

Dimensionen. So hat z.B. Rn für n 4 genau eine differenzierbare Struktur im nicht
kompakten Fall tritt dieses Phänomen also im allereinfachsten Fall auf), während Freedman

unter Verwendung seiner Methoden [3] und der Resultate von Donaldson [2] exotische

Strukturen auf R4 nachgewiesen hat [4]. Inzwischen hat Taubes sogar gezeigt, dass

es ein ganzes Kontinuum von differenzierbaren Strukturen auf R4 gibt! Auch für
kompakte 4-Mannigfaltigkeiten gibt es, verglichen mit den anderen Dimensionen, v öllig neue
Phänomene. In allen anderen Dimensionen ist die Anzahl exotischer Strukturen endlich,
während es viele kompakte 4-Mannigfaltigkeiten mit unendlich vielen differenzierbaren
Strukturen gibt. Aber der Fall, bei dem Kervaire in höheren Dimensionen so bahnbrechende

Resultate erzielt hat, ist völlig offen, nämlich:

Problem: Gibt es auf S4 eine exotische Struktur?
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