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Elemente der Mathematik

Bernoullis Gesetz der Großen Zahlen

Erwin Bolthausen

1 Einführung

Obwohl aber seltsamerweise durch einen sonderbaren Naturinstinkt auch jeder Dümmste
ohne irgend eine vorherige Unterweisung weiß, dass je mehr Beobachtungen gemacht
werden, umso weniger die Gefahr besteht, dass man das Ziel verfehlt, ist es doch ganz und
gar nicht Sache einer Laienuntersuchung, dieses genau und geometrisch zu beweisen.“
Aus einem Brief Jakob Bernoullis an GottfriedWilhelm Leibniz, 3. Oktober 1703 [3].
Die Briefstelle bezieht sich auf das Gesetz der großen Zahlen. Bernoulli bringt zum
Ausdruck,

”

dass eine gewisse Vorstellung davon gedankliches Allgemeingut und keineswegs
neu ist. Sehr stolz ist er jedoch darauf, dieses Gesetz erstmals mathematisch präzise mit
genauen Schranken bewiesen zu haben, sowie noch mehr auf die Erkenntnis, dass es die
Basis für eine – wie man heute sagen würde – Schätztheorie abgibt, mit der die
Wahrscheinlichkeitstheorie weit über den Bereich von Spielen hinausangewendetwerden kann.
Das Gesetz wird in Teil IV der Ars conjectandi hergeleitet, welche 1713, acht Jahre nach
Bernoullis Tod, von seinem Neffen Nikolas Bernoulli publiziert wurde. Der Text ist in
Ostwalds Klassikern übersetzt herausgegeben worden [1].

Die Schweizer Mathematiker halten das Gesetz offenbar für den bedeutendsten Beitrag
eines Schweizers zur Mathematik. Jedenfalls wurde ihm die Ehre zuteil, anläßlich
desWeltkongresses der Mathematiker 1994 in Zürich auf einer Briefmarke der Schweizerischen
Post dargestellt zu werden.
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Die Graphik für die arithmetischen Mittel über eine längere Zeit wurde jedoch offensichtlich

nicht durch Zufall erzeugt, denn der Verlauf wechselt gegenüber dem Erwartungswert
praktisch permanent das Vorzeichen, was – wie sich Bernoulli ausdrücken würde – moralisch

”sicher“ nicht auftreten würde. Die Graphik spiegelt eine weitverbreitete Vorstellung
wider, namlich¨ dass in einem Zufallsexperiment, wie dem Werfen einer Munze¨ oder beim
Roulette, eine quasi zielgerichtete Tendenz zum Ausgleich vorhanden ist. Wenn also eine

Munze¨ bis zu einem Zeitpunkt in mehr als der Halfte¨ der Falle¨ auf Kopf“ gefallen ist,”so habe sie die Tendenz, das in Zukunft auszugleichen. Tatsächlich sind mathematische
Laien nicht imstande, eine Folge für das Werfen einer Münze aus dem Kopf zu produzieren,

die halbwegs zufällig ist, einfach weil eine durch menschliche Vorstellung erzeugte
zufallige“¨ Folge eine stark zielgerichtete Tendenz zum Ausgleich besitzt, an der man die”

”Nichtzufälligkeit“ wie im oben dargestelltenVerlauf sofort erkennt. Eine bemerkenswerte
Tatsache ist, dass Bernoullis Gesetz der Zahlen gilt, ohne dass eine derartige Zielgerichtetheit

angenommen werden muss.

Hier ist das Gesetz in moderner Formulierung: Es sei X1, X2, eine Folge von
unkorrelierten Zufallsvariablen, die alle dieselbe Verteilung haben und deren Erwartungswert

µ EXi existiert. Sei ferner SN
N

i=1 Xi Dann gilt für jedes e > 0

lim
N.8

P
SN

N -µ e 0.

P(· steht für die Wahrscheinlichkeit eines Ereignisses. Bernoulli hat das Gesetz für das

Bernoulli-Experiment bewiesen, d.h. für den Fall, wo die Xi unabhängige {0,1}-wertige
Zufallsvariablen mit p P(Xi 1) sind. In diesem Fall ist µ p. Auf seinen
Beweis werde ich unten eingehen. In der obigen allgemeinen Formulierung stammt es von
Khinchin [2].

In Anfängervorlesungenwird es in der Regel unter der Annahme der Existenz der Varianz
d.h. der L2-Integrierbarkeit der Zufallsvariablen) bewiesen. Dann folgt nämlich nach der

Tschebyscheff-Ungleichung

P
SN

N - µ e
1

e2
var

SN

N
1

e2

1

N2
var SN 1.1)

1

e2

1

N2
N var X1)

var X1)
e2N

Hier wurde verwendet, dass fur¨ unkorrelierte Zufallsvariablen die Varianz einer Summe
gleich der Summe der Varianzen ist, und da angenommen wird, dass die Verteilungen der
Zufallsvariablen alle gleich sind, folgt var(Xi var(X1).

Bernoullis Gesetz nennt man heute auch das schwache Gesetz der großen Zahlen“. Das”starke Gesetz besagt unter stärkeren Annahmen):

P lim
N.8

SN

N µ 1.
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Diese Formulierung setzt voraus, dass eine unendliche Folge der Zufallsvariablen, etwa
für einenMünzwurf, auf einem festenWahrscheinlichkeitsraum definiert ist. Die Existenz
einer derartigen Folge ist erst zu Beginn des 20. Jh. mathematisch präzise bewiesen worden.

Im Gegensatz dazu benötigt das Bernoulli-Gesetz bloß die Wahrscheinlichkeiten für
endliche Folgen. Für das Bernoulli-Experiment der Länge N mit P(Xi 1) p sind
diese durch die sogenannte Binomialverteilung

P(SN k)
N
k

pk 1- p)N-k 0 k N,

gegeben.

1.1) ist für den Bernoulli-Fall übrigens eine sehr schwache Abschätzung. Eine wesentlich

bessere kann für unabhängige Zufallsvariablen Xi die ein exponentielles Moment
besitzen, mit einer exponentiellen Markov-Ungleichung gewonnen werden. Im
binomialverteilten Fall ergibt sich für 1 t > p

P
SN

N
t exp[-NIp(t)] 1.2)

mit der sogenannten Ratenfunktion“”

Ip(t) t log
t
p + 1 - t) log

1 - t
p

Die gleiche Ungleichung gilt für 0 t < p und P(SN /N t). Solche Sätze, die einen
exponentiellenAbfall vonWahrscheinlichkeiten beschreiben, nennt man heute Prinzipien”großer Abweichungen“. Diese wurden in den vergangenen 30 Jahren intensiv untersucht,
natürlich in sehr viel allgemeineren Situationen. Die Abschätzung 1.2) ist, was den
exponentiellen Abfall betrifft, scharf. Sie kann jedoch mit einem Vorfaktor der Größenordnung
N-1/2 noch verbessert werden. Bemerkenswerterweise hat Bernoulli bereits ein derartiges
Prinzip hergeleitet, mit einer Ratenfunktion, die etwa um einen Faktor 2 zu klein ist, aber
die wesentlichen Aspekte korrekt beschreibt.

2 Bernoullis Beweis

Bernoulli führt den Beweis für eine etwas eingeschränkte Situation. Er betrachtet eine Urne

mit t r+s Kugeln, von denenr rot und s schwarz sind.Die Erfolgswahrscheinlichkeit
für das Ziehen einer roten Kugel ist also p r/t. Für e nimmt er 1/t, und er untersucht
N nt Ziehungen mit Zurücklegen) mit n 8. So liefert etwa r 3, s 2 ein
Bernoulli-Experiment mit p 0.6 und e 0.2. Für dasselbe Bernoulli-Experiment kann
er auch Vielfache von 3 bzw. 2 nehmen, was entsprechend kleinereWert für e ergibt. Seine
Einschränkung führt zu etwas einfacheren Rechnungen; ich vermute aber, dass Bernoulli
klar war, dass sie für den Kern seines Beweises belanglos ist.

Der Einfachheit halber beschränke ich mich auf die Darstellung seines Beweises im
symmetrischen Fall p 1/2 mit N Ziehungen, belasse es jedoch bei einem allgemeinen
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e > 0. Bezeichnet also SN die Anzahl der Kopfwürfe in einem symmetrischen Bernoulli-
Experiment, so untersuchen wir für 0 < e < 1/2

P SN -
N
2

Ne 2P SN
1

2 + e N

Wir schreiben

bN k) := P(SN k)
N

k
2-N

Aus den Quotienten

bN k)
bN k + 1)

N!(k + 1)!(N - k- 1)!
N!k!(N - k)!

k + 1

N - k
2.1)

schließt Bernoulli, dass bN N2 maxk bN k) ist. Der Einfachheit halber nehme ich
an, dass N gerade ist, sodass das Maximum exakt bei N/2 angenommen wird. Nach
dem de Moivreschen Zentralen Grenzwertsatz folgt, dass bN N/2) sich asymptotisch wiev2/vpN verhält, aber Bernoulli wusste das noch nicht. Auch Stirlings Formel wurde erst

ein Vierteljahrhundert später entdeckt. Er untersucht nun für r 0

bN N/2 + r
bN N/2 + Ne + r

N/2 + r + 1

N/2- r
N/2 + r + 2

N/2- r - 1 · · · · ·
N/2 + r + Ne

N/2- r - Ne + 1
2.2)

Diese Darstellung impliziert einerseits mit r 0)

lim
N.8

bN N/2)
bN N/2 + Ne =8

und andererseits, dass die Quotienten auf der linken Seite von 2.2) monoton inr ansteigen.
Somit konvergieren diese gleichmäßig in r gegen8. Daraus folgt

lim
N.8

Ne -1

j=0 bN N/2 + j
Ne -1

j=0 bN N/2 + Ne + j =8,
und verwendet man nochmals die Monotonie, so ergibt sich

lim
N.8

Ne -1

j=0 bN N/2 + j
Ne -1

j=0 bN N/2 + k Ne + j =8, 1 k. 2.3)

Da 1/2e Intervalle der Form {N/2+ k Ne N/2+(k +1) Ne -1} genügen, die
Menge {N/2, N} zu überdecken, folgt

lim
N.8

Ne -1

j=0 bN N/2 + j
Nj Ne bN N/2 + j =8, 2.4)

woraus sich
lim

N.8
P(SN N/2 + Ne 0
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ergibt. Wegen der Symmetrie erhält man die gleiche Aussage auch für die Abweichung
nach unten und mithin

lim
N.8

P
SN

N -
1

2
e 0. 2.5)

An dieser Stelle ist Bernoullis Text sehr amüsant. Das Konzeptder gleichm äßigen Konvergenz

war zu dieser Zeit offenbar formal nicht präzise formuliertworden. Bernoulli schreibt
hier in der Übersetzung von R. Haussner in Ostwalds Klassikern): Gegen [dieses
Argument]

”
könnte von denen, welche sich nicht mit Unendlichkeitsbetrachtungen befreundet

haben, der folgende Einwurf gemacht werden. .“. Dann führt er etwas verklausuliert aus,
dass aus

lim
N.8

bN N/2 + j
bN N/2 + Ne + j =8

fur¨ jedes j nicht auf 2.3) geschlossen werden kann. Statt nun einfach auf die Monotonie
und daraus auf die Gleichmaßigkeit¨ der Konvergenz hinzuweisen, was ihm offensichtlich
vollig¨ klar war, schreibt er: Diesen Bedenken kann ich nicht besser entgegentreten, als”dass ich die Berechnungen für einen endlichen Wert von N wirklich durchführe.“ Mit
anderenWorten: Er leiteteine konkreteAbschätzung der Quotienten 2.4)her und schreibt:

”Ist diese aber gezeigt, so muss der Einwand notwendigerWeise in sich zusammenfallen.“

Die Abschätzung, die er durchführt, ist sehr interessant, denn sie führt auf exponentielle
Konvergenz in 2.5), d.h. auf eine Abschätzung vom Typus 1.2). Bevor ich Bernoullis
Herleitung vorstelle, sollen die wesentlichen Aspekte von 1.2) kurz diskutiert werden. Im
symmetrischen Fall ist

I1/2(t) t log2t + 1- t) log[2(1- t)],
und 1.2) impliziert für e > 0:

P
SN

N -
1

2
e 2 exp -NI1/2

1

2 + e

Zwei Fakten sind bemerkenswert: Erstens fallen die Wahrscheinlichkeiten für festes

e > 0 exponentiell in N ab, denn I1/2(t) ist 0 für t 1/2. Das ist quasi good news“.”Andererseits hat man für kleine e folgende Rate des exponentiellen Abfalls:

I1/2
1

2 + e ~ 2e2

Wenn man also nach einer festen Schranke für die Wahrscheinlichkeiten der
Abweichungen trachtet, z.B. 1/1000, so muss N proportional zum Inversen des Quadrates von
e gewählt werden. Das liegt nicht daran, dass die Ungleichung ungenau wäre, sondern an

der Tatsache, dass die Standardabweichung von SN /N nur mit 1/vN gegen 0 fällt.

Die Ungleichung hängt eng mit dem de Moivreschen Satz zusammen: Da sie für jedes e
und N gilt, können wir e x/vN einsetzen, x > 0. In diesem Fall ist

I1/2
1

2 +
x

vN

2x2

N + O(N-2
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woraus sich

P
SN

N -
1

2

x
vN

2(1 + O(N-1

exp[-2x2]

in Übereinstimmung mit dem de Moivreschen Gesetz ergibt, denn var(Xi ist 1/4. Allerdings

ist der Vorfaktor zu groß.

Bernoulli leitet eine Abschätzung her, welche diese wesentlichen Fakten schon widerspiegelt.

Allerdings ist seine Rate um etwa einen Faktor 2 kleiner als die optimale.

Hier ist sein Argument, das ausschließlich auf der Auswertung der Quotienten 2.1)
basiert. In dem Ausdruck auf der rechten Seite von 2.2) mit r 0 strebt der erste Faktor
für N .8 gegen 1 und der letzte Faktor gegen 1 + 2e)/(1- 2e). Betrachtet man nun
irgendeine reelle Zahl mit

1 < <
1 + 2e

1- 2e
2.6)

so ist die Anzahl der Faktoren, die übersteigen, proportional zu N. Da alle Faktoren
mindestens 1 sind, lässt sich so das Produktnach untenabschätzen. Bernoulli macht diesen
einen Schnitt und schätzt also die Faktoren links vom Schnitt durch 1 und rechts davon
durch ab. Durch diesen einen Schnitt erhält er eine Abschätzung des Ausdrucks nach
unten, die exponentiell in N wächst, mit einer Rate des exponentiellen Wachstums, die
vom gewählten und von e abhängt. Natürlich hätte er auch zwei, drei oder mehr Schnitte
machen können und hätte damit seine Abschätzung verbessert. Das ist so naheliegend,
dass Bernoulli es gesehen haben muss, aber als nicht des Aufwands wert erachtet hat.

Bernoulli wählt 1+ 2e. Für festes e ist das nicht ganz die optimaleWahl; es ist jedoch
asymptotisch optimal für e 0. Ich führe die Rechnungen ohne Berücksichtigung der
kleinen irrelevanten) Rundungsfehler durch: Der Schnitt ist also bei dem Faktor auf der
rechten Seite von 2.2), der bis auf eine Rundung) gleich 1 + 2e ist. Es geht also um
das j mit

N/2 + j
N/2- j + 1 ˜ 1 + 2e, d.h. j ˜

eN
2(1 + e)

Das Produkt hat daher

eN - j ˜ e-
e

2(1 + e)
N

e + 2e2

2(1 + e)
N

Faktoren, die mindestens 1 + 2e sind. Somit erhalten wir

bN N/2)
bN N/2 + Ne

exp
e + 2e2

2(1 + e)
log(1 + 2e)N

mit einem zusätzlichen Faktor für die rechte Seite infolge der Rundungen, der aber für
kleine e und N .8 bei 1 liegt. Mit den schon oben diskutierten Monotonieeigenschaften
erhält man

P
SN

N -
1

2
e

1

e
exp -

e + 2e2

2(1 + e)
log(1 + 2e)N 2.7)
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Bernoullis Ratenfunktion“ ist also
”

e + 2e2

2(1 + e)
log(1 + 2e),

was sich für kleine e wie e2 verhält. Sie ist also um rund einen Faktor 2 kleiner als die
korrekte Ratenfunktion. Interessant ist jedoch, dass Bernoulli sowohl den exponentiellen
Abfall in N wie auch die quadratische Abhängigkeit der Ratenfunktion von e für e ~ 0
erhält.

Zum Vergleich sind unten rot) diese Ratenfunktion und blau) die korrekte Ratenfunktion
I1/2(1/2 + e) eingezeichnet.

0.0 0.1 0.2 0.3 0.4 0.5

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Die Rechnungen, die hier im Hinblick auf die moderne Sichtweise der großen Abweichungen

durchgeführt wurden, sind bei Bernoulli jedoch etwas versteckt. Aus seinem Text ist
nicht ersichtlich, dass ihm die quadratische Abhängigkeit in e aufgefallen ist. In der Tat

wird diese durch seine Wahl e 1/(r + s) etwas verschleiert. Auf den exponentiellen
Abfall in N ist er jedoch sehr stolz, und betont dies auch sehr ausdrücklich.
Am Schluss seiner Untersuchung rechnet er ein Beispiel durch. Er nimmt p 0.6, also
nicht symmetrisch, e 1/50 und will eine Wahrscheinlichkeit von unter 1/1000 für die
Abweichung erhalten. Nach seiner Abschätzung benötigt man dafür 25550 Repetitionen.
Die korrekte Anzahl ist etwa 6 520. Die Ratenfunktion ist zwar nur um einen Faktor 2
zu klein, jedoch macht der schlechte Vorfaktor in 2.7) seine Abschätzung noch etwas

schwächer.

Stephen Stigler hat in seinem Buch [4] angedeutet, dass der für die Praxis natürlich sehr
große Wert von über 25000 Bernoulli möglicherweise enttäuscht habe und er deshalb zu

Lebzeiten von einer Veröffentlichung abgesehen hat. Auch der korrekteWert ist noch sehr

groß. Der Grund liegt einfach in der sehr kleinen Wahl von e in seinem Beispiel und dem
Fluktuationsverhalten des Bernoulli-Experiments, das Bernoulli vielleicht nicht klar
geworden ist, obwohl es, wie oben ausgeführt, sich implizite in seinen Rechnungen verbirgt.

Ob Bernoulli mit seiner Abschätzung etwas unzufrieden“ war, lässt sich heute natürlich”nicht mehr feststellen. Der einzige Hinweis dafür liegt in der Nichtpublikation der Ars
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conjectandi zu seinen Lebzeiten. Nach Lektüre seines Textes sehe ich jedoch dafür keinen
Anhaltspunkt. Er hätte leicht eine bessere Abschätzung erhalten können, indem er zus¨
atzliche Schnitte – wie oben ausgeführt – in der Abschätzung des Produktes 2.2) eingeführt
hatte.¨ Offensichtlich sah er dafur¨ keine Notwendigkeit.

3 Bernoulli als Begrunder¨ der Statistik
Der Grund fur¨ die verzogerte¨ Publikation der Ars conjectandi wird im eingangs zitierten
Brief an Leibniz angefuhrt.¨ Bernoulli schreibt, dass ihm infolge seiner angeschlagenen
Gesundheit das Schreiben schwer falle, dass er aber den großten¨ Teil des Buches vollendet
habe, fahrt¨ dann aber fort: Es fehlt noch der wichtigste Teil, in welchem ich zeige, wie”sich die Grundlagen der Mutmaßungskunst aufs Bürgerliche, Sittliche und Wirtschaftliche

anwenden lassen.“ Bernoulli führt dann kurz aus, worum es geht, nämlich unbekannte
Wahrscheinlichkeiten über Stichproben zu approximieren. Als Beispiel nennt er
dieWahrscheinlichkeit, mit der ein Greis von 60 Jahren einen Jüngling von 20 Jahren überlebt. Er
schreibt: Von daher begann ich zu überlegen, ob vielleicht das, was uns a priori nicht
bekannt

”
ist, uns wenigstens a posteriori bekannt werden könnte aus dem Ausgang in großer

Zahl beobachteter ähnlicher Beispiele.“

Was er im Sinne hat, ist offenbar eine wissenschaftlich fundierte Durchdringung weiter
Bereiche des öffentlichen Lebens mit Hilfe statistischer Methoden. Wie bekannt, haben
die Grundlagen dafür zu großen Kontroversen noch im 20. Jh. geführt. Bernoulli schwebt
eine frequentistische Interpretation vor: UnbekannteWahrscheinlichkeiten werden mit
einer Vielzahl wiederholter Messungen statistisch bestimmt, wobei sich die wahre
Wahrscheinlichkeit im Limes unendlich vieler Beobachtungen ergibt. Er vergleicht das mit der
Berechnung der Kreiszahl p über stets feinere Approximationen.

Leibniz scheint von den Ideen zunächst nicht sehr angetan gewesen zu sein und äußert
gegenüber Bernoulli Vorbehalte. Im Wesentlichen sieht er die Schwierigkeit, für etwas
so Komplexes wie Krankheiten Wahrscheinlichkeiten, wie für das Ziehen von Steinchen
aus einer Urne, festzulegen. Er sieht auch das Problem, dass anders als bei Urnenproblemen

die zeitliche Konstanz der Situation nicht garantiert werden kann. Seine Vorbehalte
erinnern zum Teil an Einwände gegen die frequentistische Interpretation vonWahrscheinlichkeiten,

z.B. durch de Finetti im 20. Jahrhundert.

Bernoulli geht in seinem Text kurz auf die Einwände [. ], welche einige Gelehrte
erhoben

”haben“ ein. Er nennt keine Namen, aber es bezieht sich wohl hauptsächlich auf
Leibniz. Bernoullis Diskussion zu diesen statistischen Fragen ist sehr kurz, und es ist
naheliegend, dass er diese Aspekte breiter darstellen wollte, dass ihm jedoch die Zeit dafür
gefehlt hat.

Einige Stellen in seinem Text lassen darauf schließen, dass er eine Art Konfidenzintervalle
im Auge hatte, denn er schreibt, dass eine genaue Bestimmung der Wahrscheinlichkeiten
unmöglich sei und man sich mit Approximationen begnügen müsse. Im Gegensatz zu

der Situation mit der Zahl p können für die Erfolgswahrscheinlichkeiten p im Bernoulli-
Experiment selbstverständlich keine Intervalle gefunden werden, in denen p sicher liegt.
Das ist Bernoulli bewusst gewesen. Andererseits gibt es keinen Hinweis darauf, dass er
Konfidenzintervalle begrifflich ganz klar konzipiert hat. In der modernen Statistik erfolgt
das über die Testtheorie.
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4 Spätere Entwicklungen

Das Gesetz der großen Zahlen ist eine der ganz großen Leistungen der Mathematik der
Neuzeit. Genauso wichtig wie das rein mathematische Resultat ist der Gedanke Bernoullis,

mit seiner Hilfe den Anwendungsbereich der Wahrscheinlichkeitstheorie auf Bereiche
außerhalb von Glücksspielen auszudehnen.

Wie vital das Gesetz in der Mathematik nach wie vor ist, erkennt man an vielen neuen
Entwicklungen, die auf dessen Grundgedanken aufbauen. Ich will auf einige Beispiele aus

der Wahrscheinlichkeitstheorie kurz eingehen.

Das Gesetz ist ein Spezialfall eines sehr allgemeinen Maßkonzentrations-Phänomens, das

in den letzten Jahrzehnten von vielen Mathematikern intensiv und tiefgehend untersucht
wurde, z.B. von Talagrand. Ich erläutere es kurz für den einfachsten Fall des
symmetrischen Bernoulli-Experiments der Länge N. Ist AN das Ereignis, dass höchstens N/2
Kopfwürfe auftreten, so hat dieses Ereignis aus Symmetriegründen eine Wahrscheinlichkeit

1/2, exakt 1/2, wenn N ungerade ist. Bernoullis Gesetz lässt sich wie folgt formulieren:

Seie > 0. Eine Sequenz vonKopf-Zahl-Würfen,diemehr als N/2+eN Kopfwürfe
enthält, wird dadurch charakterisiert, dass es keine Sequenz in AN gibt, die sich von ihr an

weniger als eN Stellen unterscheidet. Bernoulli weist nach, dass die Wahrscheinlichkeit
dafür exponentiell in N gegen 0 fällt. Interessant ist das Faktum, dass eine entsprechende
Aussage für völlig beliebige Folgen AN von Ereignissen mit infN P(AN) > 0 gilt.
Anders ausgedrückt: Haben Ereignisse AN makroskopisch große Wahrscheinlichkeiten für
N 8, so haben eN-Umgebungen bezüglich des Hamming-Abstandes Wahrscheinlichkeiten,

die exponentiell nahe bei 1 liegen. Solche Maßkonzentrations-Sätze sind für
sehr allgemeine Situationen bewiesen worden und haben viele Anwendungen gefunden,
z.B. fur¨ den Nachweis von self-averaging“ in der Theorie ungeordneterMedien.”
Ein anderes weites und sehr aktives Feld ist natürlich die Ergodentheorie. Birkhoffs
berühmter Ergodensatz besagt, dass für eine beliebige stationäre Folge X1, X2, von
integrierbaren Zufallsgrößen die Folge der arithmetischen Mittel SN/N fast sicher – und
als Konzequenz auch im schwächeren“ Sinn von Bernoulli – konvergiert, allerdings”im allgemeinen nicht mit Bernoullis exponentiellen Abschätzungen für Abweichungen.
Stationarität bedeutet, dass X1, X2, dieselbe Verteilung wie X2, X3, hat. Diese
Bedingung ist für das Bernoulli-Experiment erfüllt. Birkhoffs Ergodensatz war der
Ausgangspunkt für eine rasante Entwicklung. Ich erwähne nur die Verallgemeinerung durch
Kingmans subadditiven Ergodensatz, der aus der modernen Wahrscheinlichkeitstheorie
nicht wegzudenken ist.

Die präzise Beschreibung des exponentiellen Abfalls für Abweichungen hat eine lange
Geschichte in der Wahrscheinlichkeitstheorie. Von großer Bedeutung sind die Sätze von
Cramér über Summen von unabhängigen Zufallsvektoren und von Sanov über empirische
Maße. Seit Mitte der 70er Jahre des letzten Jahrhunderts hat die Theorie durch Arbeiten
von M.D. Donsker und S.R.S. Varadhan eine enorme Erweiterung erfahren, vor allem
mit sehr allgemeinen Resultaten vom Sanovschen Typus f ür stochastische Prozesse und
deren konzeptionelle Verknüpfung mit Variationsproblemen. Varadhan wurde 2007 unter
anderem für diese Beiträge mit dem Abel-Preis ausgezeichnet.
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Institut für Mathematik
Winterthurerstrasse 190
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