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Bernoullis Gesetz der Grofien Zahlen

Erwin Bolthausen

1 Einfiihrung

,,Obwohl aber seltsamerweise durch einen sonderbaren Naturinstinkt auch jeder Dimmste
ohne irgend eine vorherige Unterweisung weil3, dass je mehr Beobachtungen gemacht
werden, umso weniger die Gefahr besteht, dass man das Ziel verfehlt, ist es doch ganz und
gar nicht Sache einer Laienuntersuchung, dieses genau und geometrisch zu beweisen.”
Aus einem Brief Jakob Bernoullis an Gottfried Wilhelm Leibniz, 3. Oktober 1703 [3].

Die Briefstelle bezieht sich auf das Gesetz der grofen Zahlen. Bernoulli bringt zum Aus-
druck, dass eine gewisse Vorstellung davon gedankliches Allgemeingut und keineswegs
neu ist. Sehr stolz ist er jedoch darauf, dieses Gesetz erstmals mathematisch prazise mit
genauen Schranken bewiesen zu haben, sowie noch mehr auf die Erkenntnis, dass es die
Basis fiir eine — wie man heute sagen wiirde — Schitztheorie abgibt, mit der die Wahr-
scheinlichkeitstheorie weit tiber den Bereich von Spielen hinaus angewendet werden kann.
Das Gesetz wird in Teil IV der Ars conjectandi hergeleitet, welche 1713, acht Jahre nach
Bernoullis Tod, von seinem Neffen Nikolas Bernoulli publiziert wurde. Der Text ist in
Ostwalds Klassikern iibersetzt herausgegeben worden [1].

Die Schweizer Mathematiker halten das Gesetz offenbar fiir den bedeutendsten Beitrag ei-
nes Schweizers zur Mathematik, Jedenfalls wurde ihm die Ehre zuteil, anlidflich des Welt-
kongresses der Mathematiker 1994 in Ziirich auf einer Briefmarke der Schweizerischen
Post dargestellt zu werden.
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Bernoullis Gesetz der grofien Zahlen 135

Die Graphik fiir die arithmetischen Mittel tiber eine lingere Zeit wurde jedoch offensicht-
lich nicht durch Zufall erzeugt, denn der Verlauf wechselt gegentiber dem Erwartungswert
praktisch permanent das Vorzeichen, was — wie sich Bernoulli ausdriicken wiirde — ,,mora-
lisch sicher* nicht auftreten wiirde. Die Graphik spiegelt eine weitverbreitete Vorstellung
wider, ndmlich dass in einem Zufallsexperiment, wie dem Werfen einer Miinze oder beim
Roulette, eine quasi zielgerichtete Tendenz zum Ausgleich vorhanden ist. Wenn also eine
Miinze bis zu einem Zeitpunkt in mehr als der Hilfte der Fille auf ,,Kopf* gefallen ist,
so habe sie die Tendenz, das in Zukunft auszugleichen. Tatsdchlich sind mathematische
Laien nicht imstande, eine Folge flir das Werfen einer Miinze aus dem Kopt zu produzie-
ren, die halbwegs zufillig ist, einfach weil eine durch menschliche Vorstellung erzeugte
»zufillige™ Folge eine stark zielgerichtete Tendenz zum Ausgleich besitzt, an der man die
HNichtzufélligkeit™ wie im oben dargestellten Verlauf sofort erkennt. Eine bemerkenswerte
Tatsache ist, dass Bernoullis Gesetz der Zahlen gilt, ohne dass eine derartige Zielgerich-
tetheit angenommen werden muss.

Hier ist das Gesetz in moderner Formulierung: Es sei X1, Xo, ... eine Folge von unkor-
relierten Zufallsvariablen, die alle dieselbe Verteilung haben und deren Erwartungswert
w = EX; existiert. Sei ferner Sy = Zf\;l X;. Dann gilt fiir jedes ¢ > 0

Sw
lim P(|2X —p|=>e)=0.

N—o0o
P (-) steht flir die Wahrscheinlichkeit eines Ereignisses. Bernoulli hat das Gesetz fiir das
Bernoulli-Experiment bewiesen, d.h. fiir den Fall, wo die X; unabhingige {0, 1}-wertige
Zufallsvariablen mit p = P(X; = 1) sind. In diesem Fall ist 4 = p. Auf seinen Be-
weis werde ich unten eingehen. In der obigen allgemeinen Formulierung stammt es von
Khinchin [2].

In Anfdngervorlesungen wird es in der Regel unter der Annahme der Existenz der Varianz
(d.h. der Lr-Integrierbarkeit der Zufallsvariablen) bewiesen. Dann folgt ndmlich nach der
Tschebyscheff-Ungleichung

P(SWN—M 28) Sg%var(%v)
1 1
= ?mvar(SN) (1.1)
_ L Nvarxy = ED
g2 N2 &ZN

Hier wurde verwendet, dass fiir unkorrelierte Zufallsvariablen die Varianz einer Summe
gleich der Summe der Varianzen ist, und da angenommen wird, dass die Verteilungen der
Zufallsvariablen alle gleich sind, folgt var(X;) = var(Xy).

Bernoullis Gesetz nennt man heute auch das ,.schwache Gesetz der grofien Zahlen®. Das
starke Gesetz besagt (unter stdrkeren Annahmen):

5
P(lim —N:u)zl.
N—soo N
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Diese Formulierung setzt voraus, dass eine unendliche Folge der Zufallsvariablen, etwa
fiir einen Miinzwurf, auf einem festen Wahrscheinlichkeitsraum definiert ist. Die Existenz
einer derartigen Folge ist erst zu Beginn des 20. Jh. mathematisch prizise bewiesen wor-
den. Im Gegensatz dazu bendtigt das Bernoulli-Gesetz blof die Wahrscheinlichkeiten fiir
endliche Folgen. Fiir das Bernoulli-Experiment der Linge N mit P(X; = 1) = p sind
diese durch die sogenannte Binomialverteilung

N
P(Sy =k) = (k)p"u —p¥*  0<k<N,

gegeben.

(1.1) ist fiir den Bernoulli-Fall iibrigens eine sehr schwache Abschitzung. Fine wesent-
lich bessere kann fiir unabhidngige Zufallsvariablen X;, die ein exponentielles Moment
besitzen, mit einer exponentiellen Markov-Ungleichung gewonnen werden. Im binomial-
verteilten Fall ergibt sich fiir 1 = ¢ > p

P (SWN > r) < exp[—N1, ()] (1.2)

mit der sogenannten , Ratenfunktion™

t
I,@)y=1tlog—+ (1 —t)log .
g p p

Die gleiche Ungleichung gilt fiir 0 < ¢ < pund P(Sy/N < t). Solche Sitze, die einen
exponentiellen Abfall von Wahrscheinlichkeiten beschreiben, nennt man heute ,,Prinzipien
eroffer Abweichungen®. Diese wurden in den vergangenen 30 Jahren intensiv untersucht,
natlirlich in sehr viel allgemeineren Situationen. Die Abschitzung (1.2) ist, was den expo-
nentiellen Abfall betrifft, scharf. Sie kann jedoch mit einem Vorfaktor der Groenordnung
N~Y2 noch verbessert werden. Bemerkenswerterweise hat Bernoulli bereits ein derartiges
Prinzip hergeleitet, mit einer Ratenfunktion, die etwa um einen Faktor 2 zu klein ist, aber
die wesentlichen Aspekte korrekt beschreibt.

2 Bernoullis Beweis

Bernoulli fithrt den Beweis fiir eine etwas eingeschrinkte Situation. Er betrachtet eine Ur-
nemit/ = r+s Kugeln, von denen r rot und s schwarz sind. Die Erfolgswahrscheinlichkeit
fiir das Ziehen einer roten Kugel ist also p = r/t. Flir £ nimmt er 1/, und er untersucht
N = nt Ziehungen (mit Zuriicklegen) mit # — o0. So liefert etwa r = 3, 5§ = 2 ¢in
Bernoulli-Experiment mit p = 0.6 und ¢ = 0.2. Fiir dasselbe Bernoulli-Experiment kann
er auch Vielfache von 3 bzw. 2 nehmen, was entsprechend kleinere Wert fiir € ergibt. Seine
Einschriankung fihrt zu etwas einfacheren Rechnungen; ich vermute aber, dass Bernoulli
klar war, dass sie fiir den Kern seines Beweises belanglos ist.

Der Einfachheit halber beschrinke ich mich auf die Darstellung seines Beweises im sym-
metrischen Fall p = 1/2 mit N Zichungen, belasse es jedoch bei einem allgemeinen
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g > 0. Bezeichnet also Sy die Anzahl der Kopfwiirfe in einem symmetrischen Bernoulli-
Experiment, so untersuchen wir flir0 < ¢ < 1/2

p((se %[ we) <2 (s = (o)),

by (k) = P(Sy = k) = (]Z)z—N.

N
Rl s s
2

Wir schreiben

Aus den Quotienten

by(k)  NWk+DIN —k—D!  k+1

- - 2.1)
bk + 1) NIKI(N — k)! N —k

schlieBt Bernoulli, dass by ([45]) = maxg by (k) ist. Der Einfachheit halber nehme ich

an, dass N gerade ist, sodass das Maximum exakt bei N/2 angenommen wird. Nach
dem de Moivreschen Zentralen Grenzwertsatz folgt, dass by (N /2) sich asymptotisch wie
V2 /7 N verhilt, aber Bernoulli wusste das noch nicht. Auch Stirlings Formel wurde erst
ein Vierteljahrhundert spéter entdeckt. Er untersucht nun fiir r > 0

by(N/2+7)  N24r+1N/247r+42 N/2 + 7+ [Ne]

bN(N/2+ [Nel+r)  N/2—r N/2—-r—1  N/2—r—[Ne|l+1
(2.2)

Diese Darstellung impliziert einerseits (mit » = 0)

0 bN(N/2)
11m = o
N—oco by (N/2 + [Ne])

und andererseits, dass die Quotienten auf der linken Seite von (2.2) monoton in r ansteigen.
Somit konvergieren diese gleichmdfig in r gegen oo, Daraus folgt

| T T (N2 4 )
lim Ve = o,
N=ooyico ON(N/2+[Nel+))

und verwendet man nochmals die Monotonie, so ergibt sich

[Ne]—1 .
o  ONIN/2+))
lim [NE—JI_O —o0, | <k (2.3)
N=eoyico  DN(N/24+k[Nel+j)

Da [1/2¢] Intervalle der Form {N/2+k[N¢el, ..., N/2+ (k+1)[Ne] — 1} geniligen, die
Menge {N/2, ..., N} zu liberdecken, folgt

L N2+ )
1m =

= — = X, 2.4)
N=>oo } i ivel BN (N/2 + )

woraus sich
lim P(Sy = N/24+[Ne]) =0
N—oco
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ergibt. Wegen der Symmetrie erhilt man die gleiche Aussage auch fiir die Abweichung
nach unten und mithin

lim P ( —_— = =
N—oo N 2

An dieser Stelle ist Bernoullis Text sehr amiisant. Das Konzept der gleichmiéBigen Konver-
genz war zu dieser Zeit offenbar formal nicht priazise formuliert worden. Bernoulli schreibt
hier (in der Ubersetzung von R. Haussner in Ostwalds Klassikern): ,.Gegen [dieses Argu-
ment] konnte von denen, welche sich nicht mit Unendlichkeitsbetrachtungen befreundet
haben, der folgende Einwurf gemacht werden. . .*. Dann fiihrt er etwas verklausuliert aus,

dass aus )
poo_ VN2
N—oc by(N/2 + [Nel + j)

fiir jedes j, nicht auf (2.3) geschlossen werden kann. Statt nun einfach auf die Monotonie
und daraus auf die GleichmiBigkeit der Konvergenz hinzuweisen, was ihm offensichtlich
vollig klar war, schreibt er: ,.Diesen Bedenken kann ich nicht besser entgegentreten, als
dass ich die Berechnungen fiir einen endlichen Wert von N wirklich durchfiihre.” Mit
anderen Worten: Er leitet eine konkrete Abschidtzung der Quotienten (2.4) her und schreibt:
Ist diese aber gezeigt, so muss der Einwand notwendiger Weise in sich zusammenfallen.”

Sn 1‘

> g) = 0. (2.5)

Die Abschitzung, die er durchfiihrt, ist sehr interessant, denn sie fiihrt auf exponentielle
Konvergenz in (2.5), d.h. auf eine Abschitzung vom Typus (1.2). Bevor ich Bernoullis
Herleitung vorstelle, sollen die wesentlichen Aspekte von (1.2) kurz diskutiert werden. Im
symmetrischen Fall ist

Lipp(t) = tlog 2t + (1 — 1) log[2(1 — 1)1,
und (1.2) impliziert fiir ¢ > 0:

1
P( ZS) fZeXp[—Nh/Q (5+8)i|

Zwei Fakten sind bemerkenswert: Erstens fallen die Wahrscheinlichkeiten fiir festes
£ > 0 exponentiell in N ab, denn I,,(¢) ist # 0 fiir £ # 1/2. Das ist quasi ,,good news™.
Andererseits hat man fiir kleine e folgende Rate des exponentiellen Abfalls:

1 2
]1/2 5—'_8 ~ 2ge°.

Wenn man also nach einer festen Schranke fiir die Wahrscheinlichkeiten der Abwei-
chungen trachtet, z.B. 1/1 000, so muss N proportional zum Inversen des Quadrates von
& gewdhlt werden. Das liegt nicht daran, dass die Ungleichung ungenau wire, sondern an
der Tatsache, dass die Standardabweichung von Sy /N nur mit 1//N gegen 0 fillt.

Die Ungleichung hingt eng mit dem de Moivreschen Satz zusammen: Da sie fiir jedes e
und N gilt, konnen wir ¢ = x/+/ N einsetzen, x > 0. In diesem Fall ist

1 x 2x2
I (— + —) =+ O(N7?,

2 UN) N

Sn 1

N 2
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woraus sich

A o 3

> — ) <2(1+ ON""))exp[—2x7]
VN )

in Ubereinstimmung mit dem de Moivreschen Gesetz ergibt, denn var(X;) ist 1/4. Aller-

dings ist der Vorfaktor zu grof.

Bernoulli leitet eine Abschitzung her, welche diese wesentlichen Fakten schon widerspie-
gelt. Allerdings ist seine Rate um etwa einen Faktor 2 kleiner als die optimale.

Hier ist sein Argument, das ausschlieBlich auf der Auswertung der Quotienten (2.1) ba-
siert. In dem Ausdruck auf der rechten Seite von (2.2) mit r = 0O strebt der erste Faktor
fiir N — oo gegen 1 und der letzte Faktor gegen (1 4 2¢)/(1 — 2¢). Betrachtet man nun
irgendeine reelle Zahl A mit

(2.6)

so ist die Anzahl der Faktoren, die A Ulbersteigen, proportional zu N. Da alle Faktoren
mindestens 1 sind, ldsst sich so das Produkt nach unten abschitzen. Bernoulli macht diesen
einen Schnitt und schitzt also die Faktoren links vom Schnitt durch 1 und rechts davon
durch A ab. Durch diesen einen Schnitt erhilt er eine Abschitzung des Ausdrucks nach
unten, die exponentiell in N wichst, mit einer Rate des exponentiellen Wachstums, die
vom gewidhlten A und von & abhédngt. Natiirlich hitte er auch zwei, drei oder mehr Schnitte
machen konnen und hitte damit seine Abschitzung verbessert. Das ist so naheliegend,
dass Bernoulli es gesehen haben muss, aber als nicht des Aufwands wert erachtet hat.

Bernoulli wihlt A = 1+ 2¢. Fiir festes ¢ ist das nicht ganz die optimale Wahl; es ist jedoch
asymptotisch optimal fiir & — 0. Ich fiihre die Rechnungen ohne Berticksichtigung der
kleinen (irrelevanten) Rundungsfehler durch: Der Schnitt ist also bei dem Faktor auf der
rechten Seite von (2.2), der (bis auf eine Rundung) gleich L = 1 + 2¢ ist. Es geht also um
das j mit

N/2+j N
#%1—#25, dh. j~ 2(18—_'_)
3

Das Produkt hat daher

e &+ 262
- \N=1=
2(1 + &) 2(1L +¢)

Faktoren, die mindestens 1 + 2¢ sind. Somit erhalten wir

bv(N/D) oxp [ £+ 262

sN—j%(e

bn(N/2 + [Ne]) — 2(1 + &) log{1 +2€)N]

mit einem zusitzlichen Faktor fiir die rechte Seite infolge der Rundungen, der aber fiir
kleine e und N — o0 bei 1 liegt. Mit den schon oben diskutierten Monotonieeigenschaften
erhilt man

el = gy —ﬂlog(l—l—%)N 2.7)
I 2(1 + &) A '
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Bernoullis ,,Ratenfunktion® ist also
e+ 262
2(1+ &)
was sich fiir kleine ¢ wie &2 verhilt. Sie ist also um rund einen Faktor 2 kleiner als die
korrekte Ratenfunktion. Interessant ist jedoch, dass Bernoulli sowohl den exponentiellen

Abfall in N wie auch die quadratische Abhingigkeit der Ratenfunktion von ¢ fiir ¢ ~ 0
erhalt.

Zum Vergleich sind unten (rot) diese Ratenfunktion und (blau) die korrekte Ratenfunktion
I1/2(1/2 + &) eingezeichnet.

log(1l 4 2e¢),

1.0T
09T
08T
0.7 71
06T
05T
0.4 '-'
0.3 ‘-'
0.2 '-'

01T

0.0 - - ' - '
0.0 0.1 0.2 0.3 0.4 05

Die Rechnungen, die hier im Hinblick auf die moderne Sichtweise der groBen Abweichun-
gen durchgefiihrt wurden, sind bei Bernoulli jedoch etwas versteckt. Aus seinem Text ist
nicht ersichtlich, dass ihm die quadratische Abhiingigkeit in ¢ aufgefallen ist. In der Tat
wird diese durch seine Wahl ¢ = 1/(r 4+ §) etwas verschleiert. Auf den exponentiellen
Abfall in N ist er jedoch sehr stolz, und betont dies auch sehr ausdriicklich.

Am Schluss seiner Untersuchung rechnet er ein Beispiel durch. Er nimmt p = 0.6, also
nicht symmetrisch, & = 1/50 und will eine Wahrscheinlichkeit von unter 1/1000 fiir die
Abweichung erhalten. Nach seiner Abschidtzung bendtigt man dafiir 25 550 Repetitionen.
Die korrekte Anzahl ist etwa 6 520. Die Ratenfunktion ist zwar nur um einen Faktor 2
zu klein, jedoch macht der schlechte Vorfaktor in (2.7) seine Abschitzung noch etwas
schwiécher.

Stephen Stigler hat in seinem Buch [4] angedeutet, dass der fiir die Praxis natlirlich sehr
erofle Wert von tiber 25 000 Bernoulli moglicherweise enttduscht habe und er deshalb zu
Lebzeiten von einer Verdffentlichung abgesehen hat. Auch der korrekte Wert ist noch sehr
groB3. Der Grund liegt einfach in der sehr kleinen Wahl von ¢ in seinem Beispiel und dem
Fluktuationsverhalten des Bernoulli-Experiments, das Bernoulli vielleicht nicht klar ge-
worden ist, obwohl es, wie oben ausgefiihrt, sich implizite in seinen Rechnungen verbirgt.
Ob Bernoulli mit seiner Abschidtzung etwas ,,unzufrieden” war, ldsst sich heute natiirlich
nicht mehr feststellen. Der einzige Hinweis dafiir liegt in der Nichtpublikation der Ars
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conjectandi zu seinen Lebzeiten. Nach Lektiire seines Textes sehe ich jedoch dafiir keinen
Anhaltspunkt. Er hitte leicht eine bessere Abschitzung erhalten kbnnen, indem er zusétz-
liche Schnitte — wie oben ausgefiihrt — in der Abschiitzung des Produktes (2.2) eingefihrt
hitte. Offensichtlich sah er dafiir keine Notwendigkeit.

3 Bernoulli als Begriinder der Statistik

Der Grund fiir die verzogerte Publikation der Ars conjectandi wird im eingangs zitierten
Brief an Leibniz angefiihrt. Bernoulli schreibt, dass ihm infolge seiner angeschlagenen
Gesundheit das Schreiben schwer falle, dass er aber den groBiten Teil des Buches vollendet
habe, fahrt dann aber fort: ,,Es fehlt noch der wichtigste Teil, in welchem ich zeige, wie
sich die Grundlagen der MutmaBungskunst aufs Biirgerliche, Sittliche und Wirtschaftli-
che anwenden lassen.” Bernoulli fiihrt dann kurz aus, worum es geht, ndmlich unbekannte
Wahrscheinlichkeiten iiber Stichproben zu approximieren. Als Beispiel nennt er die Wahr-
scheinlichkeit, mit der ein Greis von 60 Jahren einen Jingling von 20 Jahren iiberlebt. Er
schreibt: ,,Von daher begann ich zu tiberlegen, ob vielleicht das, was uns a priori nicht be-
kannt ist, uns wenigstens a posteriori bekannt werden konnte aus dem Ausgang in grofier
Zahl beobachteter dhnlicher Beispiele.”

Was er im Sinne hat, ist offenbar eine wissenschaftlich fundierte Durchdringung weiter
Bereiche des offentlichen Iebens mit Hilfe statistischer Methoden. Wie bekannt, haben
die Grundlagen dafiir zu groen Kontroversen noch im 20. Jh. gefiihrt. Bernoulli schwebt
eine frequentistische Interpretation vor: Unbekannte Wahrscheinlichkeiten werden mit ei-
ner Vielzahl wiederholter Messungen statistisch bestimmt, wobei sich die wahre Wahr-
scheinlichkeit im Limes unendlich vieler Beobachtungen ergibt. Er vergleicht das mit der
Berechnung der Kreiszahl 7 iiber stets feinere Approximationen.

Leibniz scheint von den Ideen zunachst nicht sehr angetan gewesen zu sein und dufert
gegeniiber Bernoulli Vorbehalte. Im Wesentlichen sieht er die Schwierigkeit, fiir etwas
so Komplexes wie Krankheiten Wahrscheinlichkeiten, wie fiir das Ziehen von Steinchen
aus einer Urne, festzulegen. Er sieht auch das Problem, dass anders als bei Urnenproble-
men die zeitliche Konstanz der Situation nicht garantiert werden kann. Seine Vorbehalte
erinnern zum Teil an Einwinde gegen die frequentistische Interpretation von Wahrschein-
lichkeiten, z.B. durch de Finetti im 20. Jahrhundert.

Bernoulli geht in seinem Text kurz auf die ,Einwinde [...], welche einige Gelehrte er-
hoben haben™ ein. Er nennt keine Namen, aber es bezieht sich wohl hauptsidchlich auf
Leibniz. Bernoullis Diskussion zu diesen statistischen Fragen ist sehr kurz, und es ist na-
heliegend, dass er diese Aspekie breiter darstellen wollte, dass ihm jedoch die Zeit dafiir
gefehlt hat.

Einige Stellen in seinem Text lassen darauf schlieen, dass er eine Art Konfidenzintervalle
im Auge hatte, denn er schreibt, dass eine genaue Bestimmung der Wahrscheinlichkeiten
unmdoglich sei und man sich mit Approximationen begniligen miisse. Im Gegensatz zu
der Situation mit der Zahl = konnen fir die Erfolgswahrscheinlichkeiten p im Bernoulli-
Experiment selbstverstdndlich keine Intervalle gefunden werden, in denen p sicher liegt.
Das ist Bernoulli bewusst gewesen. Andererseits gibt es keinen Hinweis darauf, dass er
Konfidenzintervalle begrifflich ganz klar konzipiert hat. In der modernen Statistik erfolgt
das tiber die Testtheorie.
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4 Spatere Entwicklungen

Das Gesetz der grofien Zahlen ist eine der ganz grofen Leistungen der Mathematik der
Neuzeit. Genauso wichtig wie das rein mathematische Resultat ist der Gedanke Bernoul-
lis, mit seiner Hilfe den Anwendungsbereich der Wahrscheinlichkeitstheorie auf Bereiche
auBerhalb von Gliicksspielen auszudehnen.

Wie vital das Gesetz in der Mathematik nach wie vor ist, erkennt man an vielen neuen
Entwicklungen, die auf dessen Grundgedanken aufbauen. Ich will auf einige Beispiele aus
der Wahrscheinlichkeitstheorie kurz eingehen.

Das Gesetz ist ein Spezialfall eines sehr allgemeinen Malkonzentrations-Phinomens, das
in den letzten Jahrzehnten von vielen Mathematikern intensiv und tiefgehend untersucht
wurde, z.B. von Talagrand. Ich erldutere es kurz fiir den einfachsten Fall des symme-
trischen Bernoulli-Experiments der Liange N. Ist Ay das Ereignis, dass hochstens N /2
Kopfwiirfe auftreten, so hat dieses Ereignis aus Symmetriegriinden eine Wahrscheinlich-
keit > 1/2, exakt 1/2, wenn N ungerade ist. Bernoullis Gesetz l4sst sich wie folgt formu-
lieren: Seie > 0. Eine Sequenz von Kopf-Zahl-Wiirfen, die mehr als N /24-¢ N Kopfwiirfe
enthalt, wird dadurch charakterisiert, dass es keine Sequenz in Ay gibt, die sich von ihr an
weniger als e N Stellen unterscheidet. Bernoulli weist nach, dass die Wahrscheinlichkeit
dafiir exponentiell in N gegen O fallt. Interessant ist das Faktum, dass eine entsprechende
Aussage fiir vollig beliebige Folgen Ay von Ereignissen mit infy P(Ay) > 0 gilt. An-
ders ausgedriickt: Haben Ereignisse Ay makroskopisch groBe Wahrscheinlichkeiten fiir
N — o¢, s0 haben e N-Umgebungen beziiglich des Hamming-Abstandes Wahrschein-
lichkeiten, die exponentiell nahe bei 1 liegen. Solche Makonzentrations-Sitze sind fiir
sehr allgemeine Situationen bewiesen worden und haben viele Anwendungen gefunden,
z.B. fiir den Nachweis von ,self-averaging™ in der Theorie ungeordneter Medien.

Fin anderes weites und sehr aktives Feld ist natiirlich die Ergodentheorie. Birkhoffs
bertihmter Ergodensatz besagt, dass fiir eine beliebige stationédre Folge Xy, X», ... von
integrierbaren ZufallsgroBen die Folge der arithmetischen Mittel Sy /N fast sicher — und
als Konzequenz auch im ,schwiécheren Sinn von Bernoulli — konvergiert, allerdings
im allgemeinen nicht mit Bernoullis exponentiellen Abschidtzungen fiir Abweichungen.
Stationaritat bedeutet, dass (X1, X5, ...) dieselbe Verteilung wie (X;, X3, ...} hat. Diese
Bedingung ist fiir das Bernoulli-Experiment erfiillt. Birkhoffs Ergodensatz war der Aus-
gangspunkt fiir eine rasante Entwicklung. Ich erwihne nur die Verallgemeinerung durch
Kingmans subadditiven Ergodensatz, der aus der modernen Wahrscheinlichkeitstheorie
nicht wegzudenken ist.

Die prizise Beschreibung des exponentiellen Abfalls fiir Abweichungen hat eine lange
Geschichte in der Wahrscheinlichkeitstheorie. Von grofer Bedeutung sind die Sitze von
Cramér liber Summen von unabhingigen Zufallsvektoren und von Sanov liber empirische
MabBe. Seit Mitte der 70er Jahre des letzten Jahrhunderts hat die Theorie durch Arbeiten
von M.D. Donsker und S.R.S. Varadhan eine enorme FErweiterung erfahren, vor allem
mit sehr allgemeinen Resultaten vom Sanovschen Typus fiir stochastische Prozesse und
deren konzeptionelle Verknlipfung mit Variationsproblemen. Varadhan wurde 2007 unter
anderem fiir diese Beitrdge mit dem Abel-Preis ausgezeichnet.
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