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Eulersche Knicklast

Philippe Cachot, Markus Meier, Marcel Steiner und Urs Wiist
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Studium und einigen Jahren als Entwicklungsingenieur in Forschung und Industrie,
war er an der Fachhochschule beider Basel als wissenschaftlicher Mitarbeiter titig.

1 Historischer Abriss zur Knickformel

Die Knickformel, die von Euler erstmals 1744 formuliert wurde, ist das Resultat einer
langen Suche nach einer Balkentheorie.

Die Elastizitdtstheorie entwickelte sich tiber einen langen Zeitraum. Sie nahm ihren An-
fang bei Galilei im 17. Jahrhundert und wurde im 19. Jahrhundert von Navier und
Cauchy vollendet. Die Vorstellungen und Begriffe der heutigen Elastizitidtstheorie —
Spannung, Elastizitdtsmodul, Biegelinie, neutrale Faser, Schnittlasten, Biegemomente,
Flachenmomente usw. — entwickelten sich schrittweise und wurden tiber einen langen
Zeitraum eingefiihrt (vgl. [9], [10] und [11]).

Die Elastizitdtstheorie nahm ihren Anfang mit einer Theorie von Galilei (1564—1642)
1638. Seine Fragestellung beschrinkte sich auf das Reissen oder Brechen eines Trag-

Das klassische Problem der Auffindung der Knicklast zylindrischer Stibe unter
Last wurde bereits von Euler untersucht. Seine berithmte Knickformel gehort heute
zum Standardrepertoire der Ingenieurausbildung. Nach einem historischen Abriss zur
Knickformel leiten die Autoren die Differentialgleichung fiir einen beidseitig gelenkig
gelagerten Stab unter axialer Einwirkung einer Last her. Daraus wird fiir verschiedene
Stabgeometrien die Formel fiir die Eulersche Knicklast gewonnen. Aus der numeri-
schen LOsung fiir einen stiickweise konischen Stabe wird sodann auf die technisch
optimale Form des Stabes geschlossen, bei der die Knicklast maximiert wird.
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werkes. In seinen Discorsi betrachtete er einen einseitig eingespannten horizontalen Bal-
ken, der am anderen Ende durch ein Gewicht belastet wurde. Galilei nahm an, dass alle
Lingsfasern die gleiche Zugspannung aufnehmen, und dass sich der Balken um die untere
Kante der Einspannung drehen wiirde. Wenn auch die Annahme der tiber den Balken-
querschnitt konstanten Zugspannung zu einer quantitativ falschen Formel fiihrte, konnte
Galilei doch Aussagen iiber das Verhalten von Balken mit verschiedenen Abmessungen
machen.

Einen wichtigen Beitrag zur Begriffsbildung leistete Robert Hooke (1635-1703) 1678 mit
seinem nach ihm benannten Federgesetz. Er beschrieb die Auslenkung eines Drahtes unter
Zug, einer Spiralteder unter einem Drehmoment oder die Biegung eines Balkens unter Last
als proportional, also linear, zur angreifenden Kraft. Allerdings verwendete Hooke noch
nicht Begriffe wie Spannung oder Elastizitdtsmodul. Er unterschied aber zwischen Druck-,
Zug- und Biegebeanspruchung, wobei er feststellte, dass die Fasern teils verlangert, teils
verkiirzt werden. Indirekt fand er so die neutrale Faser.

Die Ideen von Galilei wurden von Edme Mariotte (1620-1684) 1680 und Gottfried Wil-
helm Leibniz (1646-1716) 1684 unter Berlicksichtigung von elastischen Fasern weiter-
gefiihrt, ohne aber auf das kurz zuvor von Hooke formulierte Gesetz Bezug zu nehmen.
Beide nahmen an, dass die Zugkraft iiber den Balken linear variieren wiirde. Obwohl sie
verbesserte Ansitze wihlten, waren die Resultate falsch. Mariotte stellte Versuche mit
Glas und Holzstidben an und stellte Unstimmigkeiten mit den Formeln von Galilei fest.

Bisher wurden bei den Uberlegungen fiir eine Bruchtheorie nur die Krifte bei der Bal-
kenbiegung betrachtet, nicht aber die Form der Biegelinie. Jakob Bernoulli (1655-1705)
ging einen wesentlichen Schritt weiter, indem er versuchte, die Biegelinie — auch elastische
Linie oder Elastika genannt — eines elastischen Bandes zu berechnen. Er stellte dieses Pro-
blem 1691, teilte gleichzeitig seine Losung als Anagramm mit und vertffentlichte 1694,
nachdem keine Losungen eingegangen waren, die korrekte Losung fiir die Biegekurve.
Bernoulli konnte hier erstmals gekonnt das kraftvolle Instrument der Differentialrechnung
cinsetzen. Seine Beschreibung der Biegelinie erfolgt mit einer geometrischen Konstrukti-
on, die einen getibten Leser auch heute stark fordert. Bernoulli lieferte keinen Beweis fiir
seine Konstruktion.
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Pieter van Musschenbroek (1682—-1761) veroffentlichte 1729 Resultate von systemati-
schen Versuchen zum Knick- resp. Bruchverhalten von Holzstidben unter einer Drucklast.
Er fand die Knicklast £ proportional zu

Hier bedeutet » die Breite und d die Dicke des Stabes. Diese Beziehung gibt die
Abhingigkeit von der Linge korrekt wieder, falsch ist hingegen der Einfluss der Quer-
abmessungen des Stabes.

Nach Jakob Bernoulli befasste sich Leonhard Euler (1707-1783) mit der Bestimmung der
elastischen Linie eines gebogenen Balkens. Im Zusammenhang mit seinem Meisterstick,
der Variationsrechnung, formulierte er das Problem wie folgt:

Unter allen Kurven derselben Linge, die durch zwei Punkte gehen und in
diesen Punkten von der Lage nach gegebenen Geraden tangiert werden, ist
diejenige zu finden, fiir welche der Wert des Ausdriucks [ %ds ein Minimum
wird.

Hier bedeutet ds das Bogenelement entlang der Kurve und R den Kriimmungsradius der
clastischen Linie. Euler behandelte zahlreiche Fille, darunter denjenigen, der ihn 1744 zu
seiner beriihmten Knickformel fiihrte: Er betrachtete eine Siule, die anders als bei den bis-
herigen Uberlegungen nur von einer Kraft F in Achsenrichtung belastet wurde. Er stellte
fest, dass eine Verbiegung, also ein Ausknicken, nur moglich war, wenn die Kraft F eine
kritische Grenze iberschritt:

n2~2
F > —Fk~.
l2

Hier bedeutet [ die Lange des Stabes und EKk? eine von der Elastizitit und den Abmes-
sungen der Siule abhidngige Konstante, Vor Euler wurde nur der Fall betrachtet, bei dem
die Kraft quer zum Balken wirkte, die Biegung des Balkens ist damit stetig und proportio-
nal zur einwirkenden Kraft. Euler hat fiir diesen neuen Fall erstmals ein Stabilitdtsproblem
erkannt und mathematisch behandelt. Er zeigte, dass das Knickverhalten nur von den ela-
stischen Eigenschaften und der Form abhéngt, nicht aber von den Brucheigenschaften des
verwendeten Materials.

Die Grosse Ek? in der Knickformel von Euler verlangt noch nach einer Erkldarung. Euler
bemerkte dazu, dass Ek? erstens von der Natur des Materials abhingt, zweitens der Breite
des Bandes, und drittens zur zweiten Potenz der Dicke des Bandes proportional ist. Die
von Euler verwendete Grisse E ist nicht der heute verwendete Elastizititsmodul (vgl.
Kap. 2). Die Grésse Ek® wird von Euler als Moment du Ressort bezeichnet. Euler hat sich
hinsichtlich des Einflusses der Querschnittsabmessungen geirrt. Diesen Fehler hat bereits
Giordano Riccatti (1709-1790) 1782 bemerkt. Euler verwendete in seiner Behandlung
einen phinomenologischen Ausdruck fir die Elastizitit, ohne genauer auf die involvierten
Grossen einzugehen. Dies erstaunt, denn Euler hatte sich bereits 1727 in Basel mit den
elastischen Schwingungen eines Stabes beschiiftigt. In dieser Arbeit verwendete er eine
Grosse, die dem Elastizitdtsmodul entspricht, ohne ihr aber einen Namen zu geben.
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2 Analytische und davon abgeleitete numerische Losung

Ein schlanker Stab der Linge [ werde in Richtung seiner Achse durch die Kraft F bela-
stet. Die Enden seien je nach Situation verschiedenartig gelagert oder eingemauert. Wir
betrachten nur den Fall, bei dem beide Enden beweglich gelagert sind und der Stab nach
allen Seiten ausbrechen kann (vgl. Abb. 1). Wie gross ist die Kraft I, bei der der Stab
ausknickt?

x

Abb. 1 Ein schlanker Stab, der in Rich-  Abb. 2 Durchbiegung eines Stabes mit Durchmes-
tung seiner Achse durch die Kraft I bela-  ser 2r. Der Krimmungsradius der Mittellinie sei p
stet wird. Beide Enden sind beweglich ge-  und die Verlingerung der dusseren Fasern sei Al.
lagert, d.h. y(0) = ¥(I) = 0.

Wird ein Stab durch ein Moment M auf Biegung beansprucht, so wirken auf der einen
Seite Zugspannungen verbunden mit einer Verldngerung der Fasern und auf der anderen
Seite Druckspannungen verbunden mit einer Verkiirzung der Fasern. In der Mitte befindet
sich dann eine Schicht, die ihre Linge beibehilt. Das Verhiltnis des Kriimmungsradius
p zur Linge der Mittellinie As ist gleich dem Verhiltnis des Radius des Stabes r zur
Langenéinderung Al, d.h.

0 #
L L
As Al )
(vel. Abb. 2). Das Hookesche Gesetz, [6], besagt weiter, dass
Al o )
As E’

wobei ¢ die Biegespannung und E den Elastizitdtsmodul beschreibt. Die Biegespan-
nung lasst sich mit Hilfe des wirkenden Momentes M und des axialen Flachentrigheits-
momentes I des Stabquerschnitts beschreiben:

M

o= (3)

Aus den Gl. (1) bis (3) folgt unmittelbar, dass fiir die Kriimmung % = % gilt. Es sei v die
Auslenkung des Stabes an der Stelle x, 0 < x < [. Dann ist das Biegemoment

M(y) = Fy (4)
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im betrachteten Koordinatensystem positiv und somit ¥” < 0. Mit Hilfe der bekannten
Formel fiir die Krimmung einer differenzierbaren Kurve erhalten wir die Differentialglei-
chung der elastischen Linie:
y// F
———+ =y =0 (5)
—3
1 + y/2 EI
Uns interessieren nur kleine Auslenkungen im Vergleich zur Stabldnge, damit ist der Tan-
genswert des Auslenkwinkels ¥’ klein im Vergleich zu 1, und GI. (5) vereinfacht sich zur
bekannten linearen Differentialgleichung der elastischen Linie:

v+ iy =0 (6)
El ‘

Im Folgenden untersuchen wir kreisrunde Stibe mit verschiedenen Querschuitten (vgl.
Y Y

Abb. 3 Zylindrischer runder Stab mit Durchmesser 4. Abb. 4 Koniz,gllejamnder Stab mit Konizitat
k=2,

Abb. 3 und 4), die auf beiden Seiten gelenkig eingebaut sind (vgl. Abb. 1), d.h., wir su-

chen Losungen der Differentialgleichung (6) unter den Randbedingungen y(0) = 0 und

v(l) = 0. Genauer interessieren wir uns eigentlich nur fiir den kleinsten nichttrivialen

Figenwert dieser Differentialgleichung.

Der zylindrische Stab. Zum Aufwirmen wollen wir die L.osung fiir den runden zylin-
drischen Stab (vgl. Abb. 3) repetieren. Das axiale Flachentrdgheitsmoment des Stabquer-
schnittes ist I = Z.d*, die Differentialgleichung (6) wird zu

A2 64 F
"F=y=0 mit rM=—
¥ +d4y m 7E

und hat die allgemeine Losung

) A A
y(x) = Asin (Ex) + B cos (d—zx) : (N

Aus der Randbedingung v(0) = 0 folgt B = 0; und aus y(/) = O folgt ;—Zl = nm, wobei
n e {0,1,2,...}. Es gibt also fiir einen zylindrischen Stab nur fiir bestimmte diskrete
Werte A, resp. Krifte F, nichttriviale L.osungen. Die kleinste solche Kraft

zyl 71'2 71'3 d4

Knicklast — l_z = 6_4l_2E

bei der der Stab knickt, ergibt sich fiir # = 1 und wird Eulersche Knicklast genannt.
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Der konische Stab. Wir betrachten einen runden konischen Stab der Lédnge [ mit dem
linear zunchmenden Durchmesser d(x) = d; + kx, wobei k = @ die Konizitdt ist
(vel. Abb. 4). Das axiale Flichentrigheitsmoment des Stabquerschnittes ist demzufolge

1{x)= %d (x)*. Damit wird die zu 16sende Differentialgleichung (6) zu

)\,2

64F
(da + kx)t

—0 mit A= .
y T kE

yll +
Erstaunlicherweise ldsst sich die allgemeine L.osung explizit angeben. Sie lautet

) + B-(dy + kx) cos(;). (8)

v(x)=A-(da+kx) sin( k(d, + kx)

A
k(da + kx)

Die Losung ldsst sich auch als Sinusfunktion mit Phasenverschiebung darstellen:

) A
y(X) = R‘(da -|—kX) Slﬂ(m +¢) .

wobei R = vV A2+ B2 und ¢ = arctan(%) aus den Randbedingungen bestimmt wer-
den. Aus v(0) = 0 und y(I) = 0 folgt ﬁ + ¢ = mm und % + ¢ = nm, wobei
m,n e {0,1,2,...}. Wir erhalten L = (m —n)w d“ldb, und somit gibt es auch fiir einen
konischen Stab nur flir bestimmite diskrete Werte A, resp. Krifte I7, nichttriviale Losungen.

Die kleinste solche Kraft (m = 1 und n = 0) ist wiederum die Knicklast

3 4242
Kop - 7[_ dadb
Knicklast 64 l2

Fiir d; = dp ergibt sich die Eulersche Knicklast des zylindrischen Stabes.

Der stiickweise konische Stab. Da der konische Stab explizit berechenbar ist, untersu-
chen wir nun einen runden Stab der Linge [, der aus N Konussen der Lingen /; und der

Konizititen k; = % stetig zusammengesetzt ist (vgl. Abb. 5).

Auf jedem Intervall [x;, X;41] mit x; = 23;11 l[jund i € {1,..., N} konnen wir die
Losung explizit angeben. Gl. (7) und (8) liefern

Aisin(d—)fz(x—xi))+Bicos(;—2(x—xi)), ki =0,

1

yi(x)=
(di+ki(x—xl‘)) (AiSiﬂ (m)-ﬁ-lﬁCOS (m)), kl‘ #O

Die globale Losung erhalten wir durch stetiges und differenzierbares Zusammenkleben

der N Losungen vi, v2, ..., vy an den Schaittstellen xz, x3, ..., xn im Innern des Sta-
bes. Wir erhalten ein lineares homogenes Gleichungssystem fiir 2N Integrationskon-
stanten Ay, By, ..., Ay, By mit der Koeffizientenmatrix K. Aus der Forderung einer

stetigen Losungskurve ergeben sich N — 1 Gleichungen v;(xi41) = Vig1{(Xi+1) flr
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Abb. 5 Stiickweise konischer Stab. Abb. 6 det(K(A)) des doppelkonischen Stabes
mitly =5 = 225 mm, d1 = d3z = 13.19 mm
und dr = 22.41 mm.

iel{l,...,N — 1}, d.h. die Koeffizienten

Siﬂ(;—zlf) , ki=0
K2i2i_1(A) = ; i
di+1 Sin(kl_;lfﬂ) , ki #£0
cos(%li) , k=0
Kyi0i(h) = 1 i
di+1003(kid):+l), ki #0
und
0, k=0
21721-’-1( ) _dl+1 Sln(kiJrl):iiJrl) , kl # O
-1, k=0
Kji2i40(h) =

—di+1 cos(m) , ki =0

im Gleichungssystem. Aus der Differenzierbarkeit ergeben sich zusitzlich N — 1 Glei-

chungen y;(xi11) = v/, (xi+1) firi € {1,..., N — 1}, d.h. die Koeffizienten
A A
Koiy1pi-1(0) = di ) )
ki Slﬂ(m) — m COS(W) 5 ki % 0
A oaiof &
—2 sm(—Zli), ki =0
KuyipiMy =1 & fi X .
k; Cos(m) + Ay sm(m) , ki £0
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K ) Ki =0
2i41,2i4+1(A) = ! ) i n %

—kit Sm(m) tag Cos(m) » ki 0

0, ki=20

Koig1.2i42(0) = % Ao A
i1 co5(gtry) - gty sin(ts ) kA0

im Gleichungssystem. Die Randbedingung links vy (x1) = 0 definiert die Koeffizienten

0, ki=0
K = (2
dq Sm(m), ki #0
1, ki=0
Ki2(2) = A
dq cos(m) , ki #£0
und die Randbedingung rechts vy (xy+1) = 0 definiert die Koeffizienten
Sin(d%ljv , ky =0
Konon-1(X) = 1 N
v sin (g )+ kv # 0
cos(d%l;v , kv =0
Konaon () = N
dn41 cO8 m) ky # 0

im Gleichungssystem. Alle anderen Koeffizienten sind null. Das homogene Gleichungs-
system ldsst nur nichttriviale L.osungen zu, wenn

det(K (1)) = 0. (9)

Dies ist nur fiir bestimmte diskrete Werte von A moglich (vgl. Abb. 6). Wiederum suchen
wir, (diesmal) numerisch, den kleinsten nichttrivialen Wert A fiir den die Matrix K (L)
singuldr wird. Wir erhalten .
7
Fxanicklast = 64A-1E-

Mit dieser Methode sind wir in der Lage, die Knicklast eines glatten Stabes approximativ
zu berechnen, da jede Form beliebig genau durch einen stiickweise konischen Stab an-
gendhert werden kann. Weil die Koeffizientenmatrix K Bandstruktur aufweist, eignet sich
dieses Verfahren auch fiir relativ grosse V.

Der optimale Stab. Es stellt sich natiirlich unmittelbar die Frage nach der Form des opti-
malen runden Stabes. Das heisst, wenn der Stab die LiAnge [ und das Volumen V haben soll,
welche Stabkontur maximiert die Knicklast? Mit unseren Vorarbeiten ist dieses Problem
innerhalb der Familie der runden, stiickweise konischen Stibe mit numerischen Methoden
losbar. K.Y. Maalawi, [5], untersucht und optimiert mit dhnlichen Methoden stiickweise
zylindrische Stibe.

Aus Symmetriegriinden muss die Stabkontur symmetrisch zur Mitte der Stablinge ver-
laufen. Die Idee besteht in einer numerischen Maximierung des kleinsten nichttrivialen
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Wertes A1 bei Variation der Durchmesser dy, do, .. ., dy41 des stickweise konischen Sta-
bes unter der Nebenbedingung der Konstanz des Stabvolumens

N
& 2 ?)
V=23 (@2 + djdjn + 2y
j=1

Diese Optimierung kann mit Hilfe geeigneter Computeralgebrasoftware durchgefiihrt wer-
den. In unserem Fall wurde die freie Software R, [8], verwendet. Dabei libernahm die
Funktion opt im mit method="Nelder-Mead" (vgl. [7]) die Optimierung. Mit einem
symmetrischen doppelkonischen Stab kann die Optimierung gestartet werden.

Y Y

Abb. 7 Mathematisch optimaler Stab. An den  Abb. 8 Technisch optimaler Stab unter den

beiden Enden des Stabes wird der Radius null.  Nebenbedingungen d; > dpyp fur alle § €

Somit ist dieser Stab technisch nicht sinnvoll. {1,..., N+1} und flr einen vorgegebenen mi-
nimalen Durchmesser dpyiy.

Die optimale Form (vgl. Abb. 7) iiberrascht uns wenig, denn schon die antiken Sdulen
sind bauchig. Leider ist diese mathematisch optimale Losung technisch nicht sinnvoll, da
der Durchmesser an den beiden Enden gegen null geht. Dies hitte bei einer technischen
Realisierung zur Folge, dass die Druckspannung opruck an diesen Stellen des Stabes die
Streckgrenze op o des Werkstoffes tiberschreitet. Hierbei triite Quetschen im Bereich der
Stirnseiten ein. Dadurch wiirde der Werkstoff zu fliessen beginnen und plastische De-
formation waire die Folge davon. Um dies zu verhindern, miissen wir fiir den technisch
optimalen Knickstab einen Mindestdurchmesser dpip fiir die Stabenden definieren. Dieser
resultiert aus der Bedingung, dass die Druckspannung opmcek unter Bertlicksichtigung ei-
nes Sicherheitstaktors von § = 1.5 die Streckgrenze a2 des verwendeten Stabwerkstoffes
nicht tiberschreiten dart, d.h.

Finicklast _ 4 Fknicklast _ 00.2
A 7d? - 5

min

4S5 Fknicklast
dmin — -_— .
T a2

Somit sind wir gezwungen, die Optimierung unter den zusitzlichen Nebenbedingungen
di = dpin firallei € {1,..., N + 1} durchzufithren (vgl. Abb. 8).

Die Frage, ob die mathematisch optimale Form durch eine explizite Funktion beschrieben
werden kann, beantwortet J.B. Keller, [4]. Er leitet die parametrische Form

c(®) = (% (19 _ %sin(2z§‘)) , 1/3in¥sin(ﬁ)) mit ¥ € [0, 7]

(10)

ODruck =

Es folgt
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fiir die obere Hilfte der mathematisch optimalen Stabkontur explizit her. Damit erhélt er
den ersten nichttrivialen Eigenwert

5 8§V
| = BE
des Stabes. Die daraus berechnete Knicklast Fﬁ?&fﬁ = %‘l’—fE gibt uns ein absolutes
Maximum, das aber technisch nicht realisierbar ist. Unsere numerisch getundene L.osung
(vgl. Abb. 7) stimmt innerhalb der Rechengenauigkeit mit der exakten L.osung ausgezeich-
net iiberein.

In der Literatur finden sich zahlreiche weitere numerische Untersuchungen mit Hilfe der
Methode der finiten Elemente (vgl. [3] und die Referenzen darin). Wird zusétzlich die For-
derung eines kreisrunden Stabquerschnittes zugunsten eines konvexen Querschnittes ab-
geschwicht, dann ist ein Querschnitt mit einem gleichseitigen Dreieck optimal (vgl. [4]).

3 Finite Elemente Losung

Finite Elemente Simulationen (FEM) werden in der Industrie zur Untersuchung von
kritischen Bauteilen und Baugruppen eingesetzt. Je nach Medium sind unterschied-
liche Berechnungsmethoden erforderlich. In den Gebieten der Strukturmechanik, der
Stromungsmechanik oder bei thermischen Untersuchungen sind diese Methoden weit ver-
breitet. Bei Simulationen mit finiten Elementen sind zwei Grundsitze zu beachten. Das
mathematische Modell ist so zu wihlen, dass die erwiinschte Antwort innerhalb der gefor-
derten Rechengenauigkeit liegt und diese in moglichst kurzer Zeit mit minimalem Kosten-
aufwand erreicht wird. Die Einflussnahme erfolgt im Wesentlichen iiber die Netzdichte,
die Elementart und den gewédhlten Berechnungsalgorithmus.

Das Eigenwertproblem. Bei dieser Analyseform besteht das Ziel in der Ermittlung ver-
schiedener moglicher Lastzustdnde. Das Verfahren eignet sich sowohl bei stationédren als
auch bei dynamischen Berechnungen. Meistens stellt sich dabei folgende Frage (vgl. [2]):
Gibi es neben der stationdren Losung des Systems eine weitere Losung, in die das Sysiem
libergehen kann, wenn es in seiner Gleichgewichislage geringfiigig gestort wird?

Bei Knickstiaben handelt es sich um ein Eigenwertproblem, da sich das Bauteil unter Druck
zuerst ausbeult bevor es sich deformiert. Eigenwertprobleme sind hiufig bei Stab- und
Blechkonstruktionen anzutreften. Knickprobleme unterteilen sich in Knicken erster und
zweiter Ordnung (vel. [2]). In dieser Arbeit betrachten wir das Knicken erster Ordnung.

Der Elementtyp. Zur Modellierung der Objekte stehen drei verschiedene Elementgrup-
pen zur Verfiigung. Deren Finsatz ist dem entsprechenden Objekt und Problem anzupas-
sen. Dabei wird zwischen Stab-, Fldchen- und Volumenelementen unterschieden. Der Be-
rechnungsaufwand steigt mit zunehmender rdumlicher Dimension. Innerhalb dieser Ele-
mentgruppen sind verschiedene Elementtypen angesiedelt, die sich durch Form und ma-
thematische Ordnung unterscheiden. Elemente erster Ordnung besitzen in jedem Eckpunkt
einen Berechnungsknoten. Elemente zweiter Ordnung haben zusitzliche Knoten zwischen
den Eckknoten. Es gilt der Grundsatz: Je mehr Knoten ¢in Element besitzt, desto flexibler
verhilt es sich in der Berechnung. Lineare Elemente besitzen somit die Tendenz, Bauteile
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zu versteifen und somit Spannungs- und Deformationsverldufe ungentigend abzubilden.
Sie werden in der Industrie jedoch hiufig fiir schnelle, grobe Abschitzungen eingesetzt.

{&vw

Abb. 9 Brickelement, aussen. Abb. 10 Prismaelement, innen. Abb. 11 FE-Netz am Stabende.

Der gesamte Stab setzt sich aus einer Elementschale und einem Elementzylinder zusam-
men (vgl. Abb. 11). Der dussere Ring besteht aus Brickelementen (vgl. Abb. 9) und der
innere Zylinder aus Prismen (vgl. Abb. 10).

Die Randbedingungen. Die Kraft setzt auf der Staboberseite am zentrischen Knoten an
(vel. Abb. 11). Die Festhaltungen sind jeweils an den zentrischen Knoten an der Ober- und
Unterseite des Stabes angebracht. Die Translationen an der Oberseite des Stabes sind in x-
und y-Richtung und an der Unterseite in x-, v- und z-Richtung festgehalten; zudem ist die
z-Rotation festgehalten. So entsteht beidseitig ein gelenkiges Lager, das die Rotationen in
der x v-Ebene tibertrigt.

Die Netzvalidierung. Die Genauigkeit der Losung bei FEM-Untersuchungen hidngt sehr
stark vom einbeschriebenen Netz ab. Durch das Netz wird die Geometrie des Objekts
angendhert. Die Schwierigkeit besteht darin, ein moglichst grobes Netz in das Modell zu
legen, das dennoch den Qualititsanforderungen entspricht. Bei kritischen Problemen sind
mehrere Berechnungen mit unterschiedlichen Netzdichten durchzufiihren. Dabei dndert
sich ab einer gewissen Netzdichte das Resultat auch bei zunehmend feinerer Vernetzung
nicht mehr.

Die Berechnungsmodelle. Wir betrachten fiinf Stabtypen: Doppelkonus verjiingt, Ko-
nus, Zylinder, Doppelkonus verdickt und technisch optimaler Stab (vgl. Abb. 12). Alle
Stidbe besitzen jeweils dasselbe topologische Netz. Zur Vernetzung verwenden wir ein
rotationssymmetrisches Netz mit zwei Unterteilungen senkrecht zum Radius, 20 Untertei-
lungen in radialer und 450 Unterteilungen in axialer Richtung. Total entspricht dies 18 000
Elementen.

Den optimalen Stab betrachten wir genauer: Das Netz in axialer Richtung widerspiegelt
exakt die analytisch berechnete Geometrie fiir den optimalen Stab. Diese setzt sich aus
konischen Kegelstiimpfen mit einer Hohe von einem Millimeter zusammen. Diese feine
Unterteilung ware eigentlich nicht nétig, sie ist aber zur besseren Vergleichbarkeit zwi-
schen der analytischen und der finiten Elemente Berechnung entsprechend der Schrittwei-
te des numerischen Modells iibernommen worden. Die Losung wird iterativ angenihert.
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Aus diesem Grund variieren die Rechenzeiten der einzelnen Stibe. Die Simulationen wur-
den auf einer Workstation mit Hilfe der Software ADINA (vgl. [1]) berechnet. Die daraus
resultierenden Knicklasten sind in Tab. 1 zum Vergleich mit der analytischen Rechnung
und dem Experiment aufgefiihrt.

4 Experimente

Die Wahl des Werkstoffes. Entscheidend fiir die Wahl des Werkstoffes waren die Bear-
beitbarkeit — es galt Probleme bei der Herstellung zu vermeiden — und die Grosse des
Elastizitdtsmoduls, da dieser direkt linear die Knicklast beeinflusst (vgl. Kap. 2). Den
Berechnungen liegt die Annahme einer reibungsfreien, gelenkigen Lagerung zu Grun-
de, demzufolge kann die Einspannung kein Moment tibernehmen. Um dies in den Ver-
suchen moglichst zu realisieren, miissen die Krifte auf die Gelenklager klein gehalten
werden, da damit auch die Reibung minimal ausfillt. Die gewidhlte Aluminium-Legierung
(Anticorodal-112, warm ausgehirtet T6, EN AW-6082 AlSilMgMn) bietet eine optimale
Losung, ihre Eigenschaften erfiillen alle Anforderungen. Mit diesem in der Technik oft
verwendeten Werkstoff ergeben sich Knicklasten, die gegentiber Stahl um den Faktor drei
kleiner sind.

Die Herstellung der Knickstibe. Die Fertigung der Stébe erfolgte aus einem Halbzeug,
dabei wurden die Rohlinge aus einem stranggepressten Rundstab mit einem Durchmes-
ser von 25 mm zugeschnitten. Anschliessend folgte die spanende Bearbeitung auf einer
CNC-Drehmaschine mit zwei synchron laufenden Spindeln. Dies erlaubte ein beidseiti-
ges Einspannen der Stabenden, was die Steifigkeit erhohte. Damit gelang es Knickstibe
zu produzieren, die eine grosse Formireue, sehr gerade Achsen und eine optimale Ober-
flachenbeschaffenheit aufweisen. Fiir die Experimente wurden Stidbe mit den in Abb. 12
gezeigten Geometrien hergestellt. Damit besitzen alle Stibe dasselbe theoretische Volu-
men von 114 511 mm? resp. die gleiche theoretische Masse von 309.2 g, und ihre Linge
ist identisch, was fiir den direkten Vergleich erforderlich ist.

Die Zugversuche zur Ermittelung der exakten Werkstoffkennwerte. Da die Anga-
ben von Rohmaterial-Lieferanten beztiglich der Werkstoffeigenschaften immer nur Richt-
oder Mindestwerte darstellen, wurde es vorgezogen, die effektiven Kennwerte mittels ei-
genen Zugversuchen selbst zu ermitteln. Aus vier Norm-Zugproben ergaben die folgenden
Mittelwerte der mechanischen Werkstoftkennwerte:

Elastizitdtsmodul E = 71290N/mm? ,
Streckgrenze (Rp0.2) 692 = 372 N/mm?,
Zugfestigkeit (Rm) o7 = 390N/mm?,
Bruchdehnung (A5) ERruch = 10.4%.

Im Spannungs-Dehnungs-Diagramm (vgl. Abb. 13) ist der Elastizitdtsmodul als Steigung
der Hookeschen Gerade zu erkennen. In der Auswertung jedes Zugversuches wurde er
durch eine lineare Regression der Spannung im Bereich von 30 bis 260 N/mm? ermittelt,

Die Einspannung der Stabe, die Zugmaschine und das Gelenklager. Allen Berech-
nungen in diesem Artikel liegt der zweite Eulersche Fall mit gelenkig gelagerten Stab-
enden zu Grunde. Die Einspannstellen sind somit reibungsfreie Gelenke, die kein Moment
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Abb. 12 Geometrien der Knickstibe: Doppelkonus verjiingt, Konus, Zylinder, Doppelkonus ver-
dickt und technisch optimaler Stab (v.l.n.r.); Angaben in mm.
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Abb. 13 Spannungs-Dehnungs-Diagramm der vier Zugproben.

aufnehmen konnen. Es gibt zwei wichtige Griinde, weshalb gerade diese Einspannart un-
tersucht wurde. Zum einen, weil damit die Knicklasten am kleinsten ausfallen und zum
anderen, da diese technisch am einfachsten zu realisieren ist. Alle Knickversuche und auch
die Bestimmung der Werkstoffkennwerte wurden auf einer Zugmaschine vom Typ Zwick
Z1. 100 durchgetiihrt. Die Knickversuche erforderten jedoch spezielle Vorrichtungen fiir
die Positionierung der Stabenden. Diese sogenannten Gelenklager wurden eigens dazu her-
gestellt (vel. Abb. 14 und 15). Dabei gewihrte der Einsatz spezieller Kugellager eine mini-
male Reibung. Weitere konstruktive Ausfiihrungen sorgten fiir eine gute Ubereinstimmung

zwischen mathematischem und experimentellem Modell.
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Abb. 14 Schnittzeichnung des Abb. 15 Gelenklager mit Knick- Abb. 16 Knickstab in Zugma-
Gelenklagers. stab unter Last. schine unter Last.

Die Ausfiihrung der Knickversuche. Fir die Knickversuche wurden die Stibe zwi-
schen zwei Gelenklagern eingespannt. Dazu wurde ein Lager oben am ruhenden Joch der
Priifmaschine befestigt und das andere auf der verschiebbaren Traverse (vgl. Abb. 16).
Das Hochfahren der Traverse staucht die Stibe, sie erfahren dadurch eine axiale Druckbe-
lastung. Die Knickversuche erfolgten unter Regelung des Fahrweges, womit die Traverse
stets mit einer konstanten Geschwindigkeit gefahren wurde. Dies ermoglichte eine ge-
naue Untersuchung des Knickvorganges, da der Kraftanstieg stets kontinuierlich erfolgte.
Bei allen untersuchten Knickstdben liegt die maximale Biegespannung beim Ausknicken
unterhalb der Streckgrenze des verwendeten Stabwerkstotfes. Das Knicken findet demzu-
folge eindeutig im elastischen Bereich des Materials statt. Demnach handelt es sich hier
um ein Stabilitdts- und nicht um ein Festigkeitsproblem. Der Vorgang des Ausknickens ist
in Abb. 17 auf verschiedene Weise dargestellt.
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Abb. 17 Belastungsdiagramme des zylindrischen Stabes mit der Druckkraft in Funktion der radialen und axialen
Auslenkung, sowie der Querauslenkung in Funktion der Zeit.

Da die seitliche Auslenkung zuerst langsam und dann kurz vor Erreichen der maximalen
Last plotzlich sehr rasch erfolgt, ist die exakte Bestimmung der Knicklast mit Unsicherhei-
ten verbunden. Bei der Auswertung der Messungen wurde die Knicklast durch das Kraft-
maximum festgelegt, welches diese gemiss den Beobachtungen mit grosser Genauigkeit
reprasentiert. Wenn vor Erreichen der maximalen Kraft eine Entlastung des ausgelenkten
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Stabes erfolgt, kehrt dieser sofort wieder in seine Ausgangslage zuriick. Dabei bleibt seine
Achse gerade und er zeigt keine Anzeichen einer plastischen Deformation.

Der Verlauf der Biegespannung. Es bezeichnen d(x) den Durchmesser und v(x) die
Biegelinie in Funktion des Abstandes x auf der Stabachse. Dann ist die Biegespannung
durch

1
op(Xx) = Ey”(x)a'(x)E

gegeben, Der genaue Wert der Biegespannung ldsst sich jedoch nur ermitteln, wenn die
Auslenkung entlang der Stabachse bekannt ist. Die Berechnung der Biegelinie beinhaltet
immer einen unbekannten, konstanten Amplitudenfaktor (vgl. Kap. 2). Dieser konnte ex-
perimentell, durch Messen der Auslenkung an einer definierten Stelle des Stabes, bestimmt
werden. Davon wurde aber in den Versuchen abgesehen. Der Verlauf der Biegespannung
kann jedoch ohne grossen Aufwand ermittelt werden, er ist fiir die verschiedenen Stab-
geometrien in Abb, 18 dargestellt.
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Abb. 18 Verlauf der Biegespannungen der Knickstidbe. Die exakten Amplituden sind unbekannt.

Der optimale Knickstab zeichnet sich dadurch aus, dass die Biegespannung entlang sei-
ner Achse an konstant ist. Damit ist er auf der gesamten Linge gleich beansprucht, und
die Festigkeit des Werkstoffes kann voll ausgenutzt werden. Dies wird jedoch nur vom
mathematisch optimalen Stab erfiillt, der aber technisch nicht sinnvoll ist (vgl. Gl. (10)).

5 Resultate und Diskussion

In Tab. 1 sind die einzelnen Knicklasten, die mit den verschiedenen Methoden ermit-
telt wurden, aufgefiihrt. Fiir die Experimente wurden pro Stabtyp zwei Exemplare her-
gestellt und zur Kontrolle der Fertigungsqualitdt deren Massen bestimmt. Mit den beiden
Exemplaren wurden dann die Knicklasten auf der Zugmaschine bestimmt. Die FEM-Rech-
nungen und die analytischen Rechnungen lieferten je Stabtyp genau eine Knicklast.
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Stabtyp Stabmasse Knicklasten
Experiment FEM- | analytische
Rechnung | Rechnung

Doppelkonus 310.2¢g 9446N 9517N 9500N

verjingt 309.4 ¢ 9330N

Konus 311.1¢ 14931N | 14925N 14911 N
310.9¢ 14 868 N

Zylinder 309.1¢ 17938N | 17922N 17905N
310.9¢ 18022 N

Doppelkonus 310.7¢g 22557TN | 22274N 2227TN

verdickt 3142 ¢ 22 528N

Stab technisch 309.4 ¢ 23078N | 22882N 22945 N

optimal 309.9¢ 23048N

Tab. 1 Experimentell bestimmte und berechnete Knicklasten Fipickiast der einzelnen Stébe.

Diskussion der Resultate. Diec Mittelwerte der experimentell ermittelten Knicklasten
weichen nur wenig von den analytisch resultierenden Werten ab. Die Differenzen liegen
im Bereich von —1.2% bis +1.2% und sind damit auffallend klein. Erwartungsgemass
gering hingegen sind die Unterschiede von —0.2% bis +0.3% zwischen den FEM- und
den analytischen Ergebnissen.

Die nach der Ermittlung der Werkstoftkennwerte ausgefiihrten Knickversuche zeigten,
dass das Ausknicken der Stibe deutlich am oberen Ende des elastischen Bereiches erfolgt.
Wenn nun dieser Umstand bei der Bestimmung des Elastizititsmoduls durch Heraufset-
zen der oberen Regressionsgrenze auf 300 bis 340 N/mm? berticksichtigt wird, resultieren
daraus durchwegs kleinere Elastizitdtsmodule. Diese liegen in der Grosse von 69 568 bis
70711 N/mm?, was einer Reduktion von 0.8 bis 2.4% gegeniiber dem verwendeten Wert
entspricht. Da der Elastizitdtsmodul direkt proportional in die Berechnung der Knicklast
eingeht (vel. Kap. 2), miissten die rechnerisch ermittelten Knicklasten damit auch in dieser
Grossenordnung kleiner ausfallen,

Die verdickten Doppelkonusse wurden nachtraglich auf einer konventionellen Drehma-
schine angefertigt. Deshalb ist die Streuung ihrer Massen grosser als bei allen anderen
Stiben, die mit der Zweispindel CNC-Drehmaschine hergestellt wurden. Eventuell stam-
men die Rohlinge dieser Stibe auch aus einer anderen Werkstoffcharge mit einem leicht
grosseren Elastizitdtsmodul, was wiederum eine leicht erhohte Knicklast zur Folge hitte
und damit den grossten Unterschied bei den Resultaten erkldren wiirde (vgl. Tab. 1).
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