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1 Historischer Abriss zur Knickformel
Die Knickformel, die von Euler erstmals 1744 formuliert wurde, ist das Resultat einer
langen Suche nach einer Balkentheorie.

Die Elastizitätstheorie entwickelte sich über einen langen Zeitraum. Sie nahm ihren
Anfang bei Galilei im 17. Jahrhundert und wurde im 19. Jahrhundert von Navier und
Cauchy vollendet. Die Vorstellungen und Begriffe der heutigen Elastizitätstheorie –
Spannung, Elastizitätsmodul, Biegelinie, neutrale Faser, Schnittlasten, Biegemomente,
Flächenmomente usw. – entwickelten sich schrittweise und wurden über einen langen
Zeitraum eingeführt vgl. [9], [10] und [11]).

Die Elastizitätstheorie nahm ihren Anfang mit einer Theorie von Galilei 1564–1642)
1638. Seine Fragestellung beschränkte sich auf das Reissen oder Brechen eines Trag-

Das klassische Problem der Auffindung der Knicklast zylindrischer Stäbe unter
Last wurde bereits von Euler untersucht. Seine berühmte Knickformel gehört heute
zum Standardrepertoire der Ingenieurausbildung. Nach einem historischen Abriss zur
Knickformel leiten die Autoren die Differentialgleichung für einen beidseitig gelenkig
gelagerten Stab unter axialer Einwirkung einer Last her. Daraus wird f ür verschiedene
Stabgeometrien die Formel für die Eulersche Knicklast gewonnen. Aus der numerischen

Lösung für einen stückweise konischen Stabe wird sodann auf die technisch
optimale Form des Stabes geschlossen, bei der die Knicklast maximiert wird.
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werkes. In seinen Discorsi betrachtete er einen einseitig eingespannten horizontalen
Balken, der am anderen Ende durch ein Gewicht belastet wurde. Galilei nahm an, dass alle
Längsfasern die gleiche Zugspannung aufnehmen, und dass sich der Balken um die untere
Kante der Einspannung drehen würde. Wenn auch die Annahme der über den
Balkenquerschnitt konstanten Zugspannung zu einer quantitativ falschen Formel führte, konnte
Galilei doch Aussagen über das Verhalten von Balken mit verschiedenen Abmessungen
machen.

Einen wichtigen Beitrag zur Begriffsbildung leistete Robert Hooke 1635–1703) 1678 mit
seinem nach ihm benannten Federgesetz. Er beschrieb die Auslenkung eines Drahtes unter
Zug, einerSpiralfeder unter einem Drehmoment oder die Biegung eines Balkens unter Last
als proportional, also linear, zur angreifenden Kraft. Allerdings verwendete Hooke noch
nicht Begriffe wie Spannung oder Elastizitätsmodul. Er unterschied aber zwischen Druck-,
Zug- und Biegebeanspruchung, wobei er feststellte, dass die Fasern teils verlängert, teils
verkürzt werden. Indirekt fand er so die neutrale Faser.

Die Ideen von Galilei wurden von Edme Mariotte 1620–1684) 1680 und Gottfried
Wilhelm Leibniz 1646–1716) 1684 unter Berücksichtigung von elastischen Fasern weitergef

ührt, ohne aber auf das kurz zuvor von Hooke formulierte Gesetz Bezug zu nehmen.
Beide nahmen an, dass die Zugkraft über den Balken linear variieren würde. Obwohl sie
verbesserte Ansätze wählten, waren die Resultate falsch. Mariotte stellte Versuche mit
Glas und Holzstäben an und stellte Unstimmigkeiten mit den Formeln von Galilei fest.

Bisher wurden bei den Überlegungen für eine Bruchtheorie nur die Kräfte bei der
Balkenbiegung betrachtet, nicht aber die Form der Biegelinie. Jakob Bernoulli 1655–1705)
ging einen wesentlichen Schritt weiter, indemer versuchte, die Biegelinie – auchelastische
Linie oder Elastika genannt – eines elastischen Bandes zu berechnen. Er stellte dieses
Problem 1691, teilte gleichzeitig seine Lösung als Anagramm mit und veröffentlichte 1694,
nachdem keine Lösungen eingegangen waren, die korrekte Lösung für die Biegekurve.
Bernoulli konnte hier erstmals gekonnt das kraftvolle Instrument der Differentialrechnung
einsetzen. Seine Beschreibung der Biegelinie erfolgt mit einer geometrischen Konstruktion,

die einen geübten Leser auch heute stark fordert. Bernoulli lieferte keinen Beweis für
seine Konstruktion.
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Pieter van Musschenbroek 1682–1761) veröffentlichte 1729 Resultate von systematischen

Versuchen zum Knick- resp. Bruchverhalten von Holzstäben unter einer Drucklast.
Er fand die Knicklast F proportional zu

F
d2b

l2

Hier bedeutet b die Breite und d die Dicke des Stabes. Diese Beziehung gibt die
Abhängigkeit von der Länge korrekt wieder, falsch ist hingegen der Einfluss der
Querabmessungen des Stabes.

Nach Jakob Bernoulli befasste sich Leonhard Euler 1707–1783) mit der Bestimmung der
elastischen Linie eines gebogenen Balkens. Im Zusammenhang mit seinem Meisterstück,
der Variationsrechnung, formulierte er das Problem wie folgt:

Unter allen Kurven derselben Länge, die durch zwei Punkte gehen und in
diesen Punkten von der Lage nach gegebenen Geraden tangiert werden, ist
diejenige zu finden, für welche der Wert des Ausdrucks 1

R2
ds ein Minimum

wird.

Hier bedeutet ds das Bogenelement entlang der Kurve und R den Krümmungsradius der
elastischen Linie. Euler behandelte zahlreiche Fälle, darunter denjenigen, der ihn 1744 zu

seiner berühmten Knickformel führte:Er betrachtete eine Säule, die anders als bei den
bisherigen Überlegungen nur von einer Kraft F in Achsenrichtung belastet wurde. Er stellte
fest, dass eine Verbiegung, also ein Ausknicken, nur möglich war, wenn die Kraft F eine

kritische Grenze überschritt:

F >
p2

l2
Ẽk2

Hier bedeutet l die Länge des Stabes und Ẽk2 eine von der Elastizität und den Abmessungen

der Säule abhängige Konstante. Vor Euler wurde nur der Fall betrachtet, bei dem
die Kraft quer zum Balken wirkte, die Biegung des Balkens ist damit stetig und proportional

zur einwirkenden Kraft. Euler hat für diesen neuen Fall erstmals ein Stabilitätsproblem
erkannt und mathematisch behandelt. Er zeigte, dass das Knickverhalten nur von den
elastischen Eigenschaften und der Form abhängt, nicht aber von den Brucheigenschaften des

verwendeten Materials.

Die Grösse Ẽk2 in der Knickformel von Euler verlangt noch nach einer Erklärung. Euler
bemerkte dazu, dass Ẽk2 erstens von der Natur des Materials abhängt, zweitens der Breite
des Bandes, und drittens zur zweiten Potenz der Dicke des Bandes proportional ist. Die
von Euler verwendete Grösse Ẽ ist nicht der heute verwendete Elastizitätsmodul vgl.
Kap. 2). Die Grösse Ẽk2 wird von Euler als Moment du Ressort bezeichnet. Euler hat sich
hinsichtlich des Einflusses der Querschnittsabmessungen geirrt. Diesen Fehler hat bereits
Giordano Riccatti 1709–1790) 1782 bemerkt. Euler verwendete in seiner Behandlung
einen phänomenologischenAusdruck für die Elastizität, ohne genauer auf die involvierten
Grössen einzugehen. Dies erstaunt, denn Euler hatte sich bereits 1727 in Basel mit den

elastischen Schwingungen eines Stabes beschäftigt. In dieser Arbeit verwendete er eine

Grösse, die dem Elastizitätsmodul entspricht, ohne ihr aber einen Namen zu geben.
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2 Analytische und davon abgeleitete numerische Lösung
Ein schlanker Stab der Länge l werde in Richtung seiner Achse durch die Kraft F belastet.

Die Enden seien je nach Situation verschiedenartig gelagert oder eingemauert. Wir
betrachten nur den Fall, bei dem beide Enden beweglich gelagert sind und der Stab nach
allen Seiten ausbrechen kann vgl. Abb. 1). Wie gross ist die Kraft F, bei der der Stab
ausknickt?

y

x

l

F

Abb. 1 Ein schlanker Stab, der in Richtung

seiner Achse durch die Kraft F belastet

wird. Beide Enden sind beweglich
gelagert, d.h. y(0) y(l) 0.

.l
2

.l2

r

.s

Abb. 2 Durchbiegung eines Stabes mit Durchmesser

2r. Der Krümmungsradius der Mittellinie sei
und die Verlängerung der äusseren Fasern sei l.

Wird ein Stab durch ein Moment M auf Biegung beansprucht, so wirken auf der einen
Seite Zugspannungen verbunden mit einer Verlängerung der Fasern und auf der anderen
Seite Druckspannungen verbunden mit einer Verkürzung der Fasern. In der Mitte befindet
sich dann eine Schicht, die ihre Länge beibehält. Das Verhältnis des Kr ümmungsradius

zur Länge der Mittellinie s ist gleich dem Verhältnis des Radius des Stabes r zur
Längenänderung l, d.h.

s

r
l

1)

vgl. Abb. 2). Das Hookesche Gesetz, [6], besagt weiter, dass

l
s

s
E

2)

wobei s die Biegespannung und E den Elastizitätsmodul beschreibt. Die Biegespannung

lässt sich mit Hilfe des wirkenden Momentes M und des axialen Flächentr¨
agheitsmomentes I des Stabquerschnitts beschreiben:

s
M

I
r. 3)

Aus den Gl. 1) bis 3) folgt unmittelbar, dass für die Krümmung 1 M
EI gilt. Es sei y die

Auslenkung des Stabes an der Stelle x, 0 x l. Dann ist das Biegemoment

M(y) Fy 4)
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im betrachteten Koordinatensystem positiv und somit y < 0. Mit Hilfe der bekannten
Formel für die Krümmung einer differenzierbaren Kurve erhalten wir die Differentialgleichung

der elastischen Linie:

y

1 + y 2
3 +

F
E I

y 0. 5)

Uns interessieren nur kleine Auslenkungen im Vergleich zur Stablänge, damit ist der
Tangenswert des Auslenkwinkels y klein im Vergleich zu 1, und Gl. 5) vereinfacht sich zur
bekannten linearen Differentialgleichung der elastischen Linie:

y +
F
EI

y 0. 6)

Im Folgenden untersuchen wir kreisrunde Stäbe mit verschiedenen Querschnitten vgl.
y

l x
d

Abb. 3 Zylindrischer runderStab mit Durchmesser d.

y

da db

l x

Abb. 4 Konischer runder Stab mit Konizität

k db-da
l

Abb. 3 und 4), die auf beiden Seiten gelenkig eingebaut sind vgl. Abb. 1), d.h., wir
suchen Lösungen der Differentialgleichung 6) unter den Randbedingungen y(0) 0 und
y(l) 0. Genauer interessieren wir uns eigentlich nur für den kleinsten nichttrivialen
Eigenwert dieser Differentialgleichung.

Der zylindrische Stab. Zum Aufwärmen wollen wir die Lösung für den runden
zylindrischen Stab vgl. Abb. 3) repetieren. Das axiale Flachentr¨ agheitsmoment¨ des Stabquerschnittes

ist I 64d4,p die Differentialgleichung 6) wird zu

y +
.2
d4

y 0 mit 2 64F

p E

und hat die allgemeine Lösung

y(x) A sin
d2

x + B cos
d2

x 7)

Aus der Randbedingung y(0) 0 folgt B 0; und aus y(l) 0 folgt d2 l np, wobei
n {0,1,2, .}. Es gibt also für einen zylindrischen Stab nur f ür bestimmte diskrete
Werte resp. Kräfte F, nichttriviale Lösungen. Die kleinste solche Kraft

Fzyl
Knicklast

p2
l2

E I
p3
64

d4

l2
E,

bei der der Stab knickt, ergibt sich für n 1 und wird Eulersche Knicklast genannt.
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Der konische Stab. Wir betrachten einen runden konischen Stab der Lange¨ l mit dem
linear zunehmenden Durchmesser d(x) da + kx, wobei k db-da die Konizitat¨ istl
vgl. Abb. 4). Das axiale Flachentr¨ agheitsmoment¨ des Stabquerschnittes ist demzufolge
I x) p d(x)4. Damit wird die zu losende¨ Differentialgleichung 6) zu64

y +
.2

da + kx)4
y 0 mit 2 64F

p E

Erstaunlicherweise lässt sich die allgemeine Lösung explizit angeben. Sie lautet

y(x) A · da + kx) sin
k(da + kx) + B · da + kx)cos

k(da + kx)
8)

Die Lösung lässt sich auch als Sinusfunktion mit Phasenverschiebung darstellen:

k(da + kx) + fy(x) R · da + kx) sin

wobei R vA2 + B2 und f arctan B
A

aus den Randbedingungen bestimmt werden.

Aus y(0) 0 und y(l) 0 folgt kda + f mp und
kdb + f np, wobei

m, n {0, 1, 2, .}. Wir erhalten m - n)p dadb
l und somit gibt es auch für einen

konischenStab nur für bestimmte diskreteWerte resp.Kräfte F, nichttriviale Lösungen.
Die kleinste solche Kraft m 1 und n 0) ist wiederum die Knicklast

Fkon
Knicklast

p3

64

d2ad2b
l2

E.

Für da db ergibt sich die Eulersche Knicklast des zylindrischen Stabes.

Der stückweise konische Stab. Da der konische Stab explizit berechenbar ist, untersuchen

wir nun einen runden Stab der Länge l, der aus N Konussen der Längen li und der

Konizitaten¨ ki di+1-di
li stetig zusammengesetzt ist vgl. Abb. 5).

Auf jedem Intervall xi xi+1 mit xi i-1

j=1 l j und i {1, N} können wir die
Lösung explizit angeben. Gl. 7) und 8) liefern

yi x)=
Ai sin

d2
i x-xi +Bicos

d2i
x- xi ki 0,

ki di+ki x-xi +Bicosdi +ki x-xi Aisin
ki di+ki x-xi ki 0.

Die globale Lösung erhalten wir durch stetiges und differenzierbares Zusammenkleben
der N Lösungen y1, y2, yN an den Schnittstellen x2, x3, xN im Innern des
Stabes. Wir erhalten ein lineares homogenes Gleichungssystem f ür 2N Integrationskonstanten

A1, B1, AN BN mit der Koeffizientenmatrix K. Aus der Forderung einer
stetigen Lösungskurve ergeben sich N - 1 Gleichungen yi xi+1) yi+1(xi+1) für
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y

x
d1

l1

x1 x2

di-1

li-1

xi-1

di

xi

li
di+1

xi+1

li+1

dN+1

lN

xN xN+1

Abb. 5 Stückweise konischer Stab.

det(
K(

0 2 4 6 8 10
-
1500

-
1000

-
500

0

500

1000

1500

2000

.1

Abb. 6 det( K( des doppelkonischen Stabes
mit l1 l2 225mm, d1 d3 13.19mm
und d2 22.41mm.

i {1, N - 1}, d.h. die Koeffizienten

K2i,2i-1(
sin

d2i
li ki 0

kidi+1
ki 0di+1 sin

K2i,2i
cos

d2i
li ki 0

ki di+1
ki 0di+1 cos

und

K2i,2i+1(
0, ki 0

ki+1di+1
ki 0-di+1 sin

K2i,2i+2( -1, ki 0

-di+1 cos
ki+1di+1

ki 0

im Gleichungssystem. Aus der Differenzierbarkeit ergeben sich zusätzlich N - 1
Gleichungen yi xi+1) y

i+1(xi+1) für i {1, N - 1}, d.h. die Koeffizienten

K2i+1,2i-1(
d2i

cos
d2i

li ki 0

ki sin
ki di+1 - di+1

cos
kidi+1

ki 0

K2i+1,2i -d2
i

sin
d2i

li ki 0

ki di+1 +ki cos
di+1 kidi+1

ki 0sin
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K2i+1,2i+1( -d2 ki 0
i

-ki+ sin + cos1
ki+1di+1 di+1 ki+1di+1

ki 0

K2i+1,2i+2(
0, ki 0

ki+1di+1 --ki+1 cos
di+1 ki+1di+1

ki 0sin

im Gleichungssystem. Die Randbedingung links y1(x1) 0 definiert die Koeffizienten

K11(
0, ki 0

k1d1
ki 0d1 sin

K12(
1, ki 0

k1d1 ki 0d1 cos

und die Randbedingung rechts yN xN+1) 0 definiert die Koeffizienten

K2N,2N-1(
sin

d2N
lN kN 0

kNdN+1
kN 0dN+1 sin

K2N,2N
cos

d2N
lN kN 0

kN dN+1
kN 0dN+1 cos

im Gleichungssystem. Alle anderen Koeffizienten sind null. Das homogene Gleichungssystem

lässt nur nichttriviale Lösungen zu, wenn

det(K( 0. 9)

Dies ist nur für bestimmte diskrete Werte von möglich vgl. Abb. 6). Wiederum suchen
wir, diesmal) numerisch, den kleinsten nichttrivialen Wert .1 für den die Matrix K(
singulär wird. Wir erhalten

FKnicklast
p
64

21 E.

Mit dieser Methode sind wir in der Lage, die Knicklast eines glatten Stabes approximativ
zu berechnen, da jede Form beliebig genau durch einen stückweise konischen Stab
angen ähert werden kann. Weil die Koeffizientenmatrix K Bandstruktur aufweist, eignet sich
dieses Verfahren auch für relativ grosse N.

Der optimale Stab. Es stellt sich natürlich unmittelbar die Frage nach der Form des
optimalen runden Stabes. Das heisst, wennder Stab die Länge l und das Volumen V haben soll,
welche Stabkontur maximiert die Knicklast? Mit unseren Vorarbeiten ist dieses Problem
innerhalb der Familie der runden, stückweise konischen Stäbe mit numerischen Methoden

lösbar. K.Y. Maalawi, [5], untersucht und optimiert mit ähnlichen Methoden stückweise
zylindrische Stäbe.

Aus Symmetriegründen muss die Stabkontur symmetrisch zur Mitte der Stablänge
verlaufen. Die Idee besteht in einer numerischen Maximierung des kleinsten nichttrivialen
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Wertes .1 bei Variation der Durchmesser d1, d2, dN+1 des stückweise konischen Stabes

unter der Nebenbedingung der Konstanz des Stabvolumens

V
p
12

N

j 1

l j d2j +1+ d jd j+1 + d2j

Diese Optimierung kann mit Hilfe geeigneterComputeralgebrasoftware durchgeführtwerden.

In unserem Fall wurde die freie Software R, [8], verwendet. Dabei übernahm die
Funktion optim mit method="Nelder-Mead" vgl. [7]) die Optimierung. Mit einem
symmetrischen doppelkonischen Stab kann die Optimierung gestartet werden.

y

x

Abb. 7 Mathematisch optimaler Stab. An den
beiden Enden des Stabes wird der Radius null.
Somit ist dieser Stab technisch nicht sinnvoll.

y

x
dmin

Abb. 8 Technisch optimaler Stab unter den

Nebenbedingungen di dmin für alle i
{1, N+1} und für einen vorgegebenen
minimalen Durchmesser dmin.

Die optimale Form vgl. Abb. 7) überrascht uns wenig, denn schon die antiken Säulen
sind bauchig. Leider ist diese mathematisch optimale Lösung technisch nicht sinnvoll, da

der Durchmesser an den beiden Enden gegen null geht. Dies hätte bei einer technischen
Realisierung zur Folge, dass die Druckspannung sDruck an diesen Stellen des Stabes die
Streckgrenze s0.2 des Werkstoffes überschreitet. Hierbei träte Quetschen im Bereich der
Stirnseiten ein. Dadurch würde der Werkstoff zu fliessen beginnen und plastische
Deformation wäre die Folge davon. Um dies zu verhindern, müssen wir für den technisch
optimalen Knickstab einen Mindestdurchmesser dmin für die Stabenden definieren. Dieser
resultiert aus der Bedingung, dass die Druckspannung sDruck unter Berücksichtigung
eines Sicherheitsfaktors von S 1.5 die Streckgrenze s0.2 desverwendetenStabwerkstoffes
nicht überschreiten darf, d.h.

sDruck
FKnicklast

A

4FKnicklast

pd2min

s0.2

S
10)

Es folgt

dmin
4S FKnicklast

p s0.2

Somit sind wir gezwungen, die Optimierung unter den zusätzlichen Nebenbedingungen
di dmin für alle i {1, N + 1} durchzuführen vgl. Abb. 8).

Die Frage, ob die mathematisch optimale Form durch eine explizite Funktion beschrieben
werden kann, beantwortet J.B. Keller, [4]. Er leitet die parametrische Form

c( l
p - 12 sin(2.)

4

3p

V

l
sin( mit [0, p]
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für die obere Hälfte der mathematisch optimalen Stabkontur explizit her. Damit erhält er
den ersten nichttrivialen Eigenwert

.1
8

v3

V
l2

des Stabes. Die daraus berechnete Knicklast Fmath.opt
Knicklast p3

V2
l4

E gibt uns ein absolutes
Maximum, das aber technisch nicht realisierbar ist. Unsere numerisch gefundene Lösung
vgl. Abb. 7) stimmt innerhalb der Rechengenauigkeitmit der exakten Lösung ausgezeichnet

überein.

In der Literatur finden sich zahlreiche weitere numerische Untersuchungen mit Hilfe der
Methode der finiten Elemente vgl. [3] und die Referenzen darin). Wird zusätzlich die
Forderung eines kreisrunden Stabquerschnittes zugunsten eines konvexen Querschnittes
abgeschwächt, dann ist ein Querschnitt mit einem gleichseitigen Dreieck optimal vgl. [4]).

3 Finite Elemente Lösung

Finite Elemente Simulationen FEM) werden in der Industrie zur Untersuchung von
kritischen Bauteilen und Baugruppen eingesetzt. Je nach Medium sind unterschiedliche

Berechnungsmethoden erforderlich. In den Gebieten der Strukturmechanik, der
Strömungsmechanik oder bei thermischen Untersuchungen sind diese Methoden weit
verbreitet. Bei Simulationen mit finiten Elementen sind zwei Grundsätze zu beachten. Das

mathematischeModell ist so zu wählen, dass die erwünschte Antwort innerhalb der
geforderten Rechengenauigkeit liegt und diese in möglichst kurzer Zeit mit minimalem
Kostenaufwand erreicht wird. Die Einflussnahme erfolgt im Wesentlichen über die Netzdichte,
die Elementart und den gewählten Berechnungsalgorithmus.

Das Eigenwertproblem. Bei dieser Analyseform besteht das Ziel in der Ermittlung
verschiedener möglicher Lastzustände. Das Verfahren eignet sich sowohl bei stationären als

auch bei dynamischen Berechnungen. Meistens stellt sich dabei folgende Frage vgl. [2]):
Gibt es neben der stationären Lösung des Systems eine weitere Lösung, in die das System

übergehen kann, wenn es in seiner Gleichgewichtslage geringfügig gestört wird?

Bei Knickstäben handelt es sich um ein Eigenwertproblem,da sich das Bauteil unter Druck
zuerst ausbeult bevor es sich deformiert. Eigenwertprobleme sind häufig bei Stab- und
Blechkonstruktionen anzutreffen. Knickprobleme unterteilen sich in Knicken erster und
zweiter Ordnung vgl. [2]). In dieser Arbeit betrachten wir das Knicken erster Ordnung.

Der Elementtyp. Zur Modellierung der Objekte stehen drei verschiedene Elementgruppen

zur Verfügung. Deren Einsatz ist dem entsprechenden Objekt und Problem anzupassen.

Dabei wird zwischen Stab-, Flächen- und Volumenelementen unterschieden. Der
Berechnungsaufwand steigt mit zunehmender räumlicher Dimension. Innerhalb dieser
Elementgruppen sind verschiedene Elementtypen angesiedelt, die sich durch Form und
mathematische Ordnung unterscheiden. Elemente erster Ordnung besitzen in jedem Eckpunkt
einen Berechnungsknoten. Elemente zweiter Ordnung haben zusätzliche Knoten zwischen
den Eckknoten. Es gilt der Grundsatz: Je mehr Knoten ein Element besitzt, desto flexibler
verhält es sich in der Berechnung. Lineare Elemente besitzen somit die Tendenz, Bauteile
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zu versteifen und somit Spannungs- und Deformationsverläufe ungenügend abzubilden.
Sie werden in der Industrie jedoch häufig für schnelle, grobe Abschätzungen eingesetzt.

Abb. 9 Brickelement, aussen. Abb. 10 Prismaelement, innen. Abb. 11 FE-Netz am Stabende.

Der gesamte Stab setzt sich aus einer Elementschale und einem Elementzylinder zusammen

vgl. Abb. 11). Der äussere Ring besteht aus Brickelementen vgl. Abb. 9) und der
innere Zylinder aus Prismen vgl. Abb. 10).

Die Randbedingungen. Die Kraft setzt auf der Staboberseite am zentrischen Knoten an

vgl. Abb. 11). Die Festhaltungen sind jeweils an den zentrischen Knoten an der Ober- und
Unterseite des Stabes angebracht.Die Translationen an der Oberseite des Stabes sind in
xund y-Richtung und an der Unterseite in x-, y- und z-Richtung festgehalten; zudem ist die
z-Rotation festgehalten. So entsteht beidseitig ein gelenkiges Lager, das die Rotationen in
der xy-Ebene überträgt.

Die Netzvalidierung. Die Genauigkeit der Lösung bei FEM-Untersuchungen hängt sehr

stark vom einbeschriebenen Netz ab. Durch das Netz wird die Geometrie des Objekts
angenähert. Die Schwierigkeit besteht darin, ein möglichst grobes Netz in das Modell zu
legen, das dennoch den Qualitätsanforderungen entspricht. Bei kritischen Problemen sind
mehrere Berechnungen mit unterschiedlichen Netzdichten durchzuführen. Dabei ändert
sich ab einer gewissen Netzdichte das Resultat auch bei zunehmend feinerer Vernetzung
nicht mehr.

Die Berechnungsmodelle. Wir betrachten fünf Stabtypen: Doppelkonus verjüngt,
Konus, Zylinder, Doppelkonus verdickt und technisch optimaler Stab vgl. Abb. 12). Alle
Stäbe besitzen jeweils dasselbe topologische Netz. Zur Vernetzung verwenden wir ein
rotationssymmetrischesNetz mit zwei Unterteilungen senkrecht zum Radius, 20 Unterteilungen

in radialer und 450 Unterteilungen in axialer Richtung. Total entspricht dies 18000
Elementen.

Den optimalen Stab betrachten wir genauer: Das Netz in axialer Richtung widerspiegelt
exakt die analytisch berechnete Geometrie für den optimalen Stab. Diese setzt sich aus

konischen Kegelstümpfen mit einer Höhe von einem Millimeter zusammen. Diese feine
Unterteilung wäre eigentlich nicht nötig, sie ist aber zur besseren Vergleichbarkeit
zwischen der analytischen und der finiten Elemente Berechnung entsprechend der Schrittweite

des numerischen Modells übernommen worden. Die Lösung wird iterativ angenähert.
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Aus diesem Grund variieren die Rechenzeiten der einzelnen Stäbe. Die Simulationen wurden

auf einerWorkstation mit Hilfe der Software ADINA vgl. [1]) berechnet. Die daraus
resultierenden Knicklasten sind in Tab. 1 zum Vergleich mit der analytischen Rechnung
und dem Experiment aufgeführt.

4 Experimente

Die Wahl desWerkstoffes. Entscheidend für die Wahl des Werkstoffes waren die
Bearbeitbarkeit – es galt Probleme bei der Herstellung zu vermeiden – und die Grösse des

Elastizitätsmoduls, da dieser direkt linear die Knicklast beeinflusst vgl. Kap. 2). Den
Berechnungen liegt die Annahme einer reibungsfreien, gelenkigen Lagerung zu Grunde,

demzufolge kann die Einspannung kein Moment übernehmen. Um dies in den
Versuchen möglichst zu realisieren, müssen die Kräfte auf die Gelenklager klein gehalten
werden, da damit auch die Reibung minimal ausfällt. Die gewählte Aluminium-Legierung
Anticorodal-112, warm ausgeh ärtet T6, EN AW-6082 AlSi1MgMn) bietet eine optimale

Lösung, ihre Eigenschaften erfüllen alle Anforderungen. Mit diesem in der Technik oft
verwendetenWerkstoff ergeben sich Knicklasten, die gegenüber Stahl um den Faktor drei
kleiner sind.

Die Herstellung der Knickstäbe. Die Fertigung der Stäbe erfolgte aus einem Halbzeug,
dabei wurden die Rohlinge aus einem stranggepressten Rundstab mit einem Durchmesser

von 25mm zugeschnitten. Anschliessend folgte die spanende Bearbeitung auf einer
CNC-Drehmaschine mit zwei synchron laufenden Spindeln. Dies erlaubte ein beidseitiges

Einspannen der Stabenden, was die Steifigkeit erhöhte. Damit gelang es Knickstäbe
zu produzieren, die eine grosse Formtreue, sehr gerade Achsen und eine optimale Oberfl

ächenbeschaffenheit aufweisen. Für die Experimente wurden Stäbe mit den in Abb. 12
gezeigten Geometrien hergestellt. Damit besitzen alle Stäbe dasselbe theoretische Volumen

von 114 511mm3 resp. die gleiche theoretische Masse von 309.2g, und ihre Länge
ist identisch, was für den direkten Vergleich erforderlich ist.

Die Zugversuche zur Ermittelung der exakten Werkstoffkennwerte. Da die Angaben

von Rohmaterial-Lieferanten bezüglich derWerkstoffeigenschaften immer nur Richtoder

Mindestwerte darstellen, wurde es vorgezogen, die effektiven Kennwerte mittels
eigenen Zugversuchenselbst zu ermitteln. Aus vier Norm-Zugprobenergaben die folgenden
Mittelwerte der mechanischenWerkstoffkennwerte:

Elastizitätsmodul E 71 290N/mm2

Streckgrenze Rp0.2) s0.2 372N/mm2,

Zugfestigkeit Rm) sZ 390N/mm2,
Bruchdehnung A5) eBruch 10.4%.

Im Spannungs-Dehnungs-Diagramm vgl. Abb. 13) ist der Elastizitätsmodul als Steigung
der Hookeschen Gerade zu erkennen. In der Auswertung jedes Zugversuches wurde er
durch eine lineare Regression der Spannung im Bereich von 30 bis 260N/mm2 ermittelt.

Die Einspannung der Stäbe, die Zugmaschine und das Gelenklager. Allen Berechnungen

in diesem Artikel liegt der zweite Eulersche Fall mit gelenkig gelagerten
Stabenden zu Grunde. Die Einspannstellen sind somit reibungsfreie Gelenke, die keinMoment
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Abb. 12 Geometrien der Knickstäbe: Doppelkonus verjüngt, Konus, Zylinder, Doppelkonus ver¬
dickt und technisch optimaler Stab v.l.n.r.); Angaben in mm.

Abb. 13 Spannungs-Dehnungs-Diagramm der vier Zugproben.

aufnehmen können. Es gibt zwei wichtige Gründe, weshalb gerade diese Einspannart
untersucht wurde. Zum einen, weil damit die Knicklasten am kleinsten ausfallen und zum
anderen, da diese technisch am einfachsten zu realisieren ist. Alle Knickversucheund auch
die Bestimmung der Werkstoffkennwerte wurden auf einer Zugmaschine vom Typ Zwick
ZL 100 durchgeführt. Die Knickversuche erforderten jedoch spezielle Vorrichtungen für
die Positionierung der Stabenden. Diese sogenanntenGelenklagerwurden eigens dazu
hergestellt vgl. Abb. 14 und 15). Dabei gewährte der Einsatz spezieller Kugellager eineminimale

Reibung. Weitere konstruktiveAusführungen sorgten für eine gute Übereinstimmung
zwischen mathematischem und experimentellemModell.
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Abb. 14 Schnittzeichnung des

Gelenklagers.
Abb. 15 Gelenklager mit Knick¬

stab unter Last.
Abb. 16 Knickstab in Zugma¬

schine unter Last.

Die Ausführung der Knickversuche. Für die Knickversuche wurden die Stäbe
zwischen zwei Gelenklagern eingespannt. Dazu wurde ein Lager oben am ruhenden Joch der
Prüfmaschine befestigt und das andere auf der verschiebbaren Traverse vgl. Abb. 16).
Das Hochfahren der Traverse staucht die Stäbe, sie erfahren dadurch eine axiale Druckbelastung.

Die Knickversuche erfolgten unter Regelung des Fahrweges, womit die Traverse
stets mit einer konstanten Geschwindigkeit gefahren wurde. Dies ermöglichte eine
genaue Untersuchung des Knickvorganges, da der Kraftanstieg stets kontinuierlich erfolgte.
Bei allen untersuchten Knickstäben liegt die maximale Biegespannung beim Ausknicken
unterhalb der Streckgrenze des verwendeten Stabwerkstoffes. Das Knicken findet demzufolge

eindeutig im elastischen Bereich des Materials statt. Demnach handelt es sich hier
um ein Stabilitäts- und nicht um ein Festigkeitsproblem. Der Vorgang des Ausknickens ist
in Abb. 17 auf verschiedeneWeise dargestellt.

Abb. 17 Belastungsdiagramme deszylindrischen Stabes mit der Druckkraft in Funktion der radialen und axialen
Auslenkung, sowie der Querauslenkung in Funktion der Zeit.

Da die seitliche Auslenkung zuerst langsam und dann kurz vor Erreichen der maximalen
Last plötzlich sehr rasch erfolgt, ist die exakteBestimmungder Knicklastmit Unsicherheiten

verbunden. Bei der Auswertung der Messungen wurde die Knicklast durch das
Kraftmaximum festgelegt, welches diese gemäss den Beobachtungen mit grosser Genauigkeit
repräsentiert. Wenn vor Erreichen der maximalen Kraft eine Entlastung des ausgelenkten
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Stabes erfolgt, kehrt dieser sofort wieder in seine Ausgangslage zurück. Dabei bleibt seine

Achse gerade und er zeigt keine Anzeichen einer plastischen Deformation.

Der Verlauf der Biegespannung. Es bezeichnen d(x) den Durchmesser und y(x) die
Biegelinie in Funktion des Abstandes x auf der Stabachse. Dann ist die Biegespannung
durch

sB(x)
1

2
y x) d(x)E

gegeben. Der genaue Wert der Biegespannung lässt sich jedoch nur ermitteln, wenn die
Auslenkung entlang der Stabachse bekannt ist. Die Berechnung der Biegelinie beinhaltet
immer einen unbekannten, konstanten Amplitudenfaktor vgl. Kap. 2). Dieser könnte
experimentell, durch Messen der Auslenkung an einer definierten Stelle des Stabes, bestimmt
werden. Davon wurde aber in den Versuchen abgesehen. Der Verlauf der Biegespannung
kann jedoch ohne grossen Aufwand ermittelt werden, er ist für die verschiedenen
Stabgeometrien in Abb. 18 dargestellt.

Abb. 18 Verlauf der Biegespannungen der Knickstäbe. Die exakten Amplituden sind unbekannt.

Der optimale Knickstab zeichnet sich dadurch aus, dass die Biegespannung entlang seiner

Achse an konstant ist. Damit ist er auf der gesamten Länge gleich beansprucht, und
die Festigkeit des Werkstoffes kann voll ausgenutzt werden. Dies wird jedoch nur vom
mathematisch optimalen Stab erf üllt, der aber technisch nicht sinnvoll ist vgl. Gl. 10)).

5 Resultate und Diskussion

In Tab. 1 sind die einzelnen Knicklasten, die mit den verschiedenen Methoden ermittelt

wurden, aufgeführt. Für die Experimente wurden pro Stabtyp zwei Exemplare
hergestellt und zur Kontrolle der Fertigungsqualität deren Massen bestimmt. Mit den beiden
Exemplaren wurden dann die Knicklasten aufder Zugmaschine bestimmt. Die FEM-
Rechnungen und die analytischen Rechnungen lieferten je Stabtyp genau eine Knicklast.
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Stabtyp Stabmasse Knicklasten
Experiment FEM- analytische

Rechnung Rechnung

Doppelkonus 310.2 g 9446N 9 517N 9 500N
verjüngt 309.4 g 9330N

Konus 311.1 g 14931N 14 925N 14 911N
310.9 g 14868N

Zylinder 309.1 g 17938N 17 922N 17 905N
310.9 g 18022N

Doppelkonus 310.7 g 22557N 22 274N 22 277N
verdickt 314.2 g 22528N

Stab technisch 309.4 g 23078N 22 882N 22 945N
optimal 309.9 g 23048N

Tab. 1 Experimentell bestimmte und berechnete Knicklasten FKnicklast der einzelnen Stäbe.

Diskussion der Resultate. Die Mittelwerte der experimentell ermittelten Knicklasten
weichen nur wenig von den analytisch resultierenden Werten ab. Die Differenzen liegen
im Bereich von -1.2% bis +1.2% und sind damit auffallend klein. Erwartungsgemäss

gering hingegen sind die Unterschiede von -0.2% bis +0.3% zwischen den FEM- und
den analytischen Ergebnissen.

Die nach der Ermittlung der Werkstoffkennwerte ausgeführten Knickversuche zeigten,
dass das Ausknicken der Stäbe deutlich am oberen Ende des elastischen Bereiches erfolgt.
Wenn nun dieser Umstand bei der Bestimmung des Elastizitätsmoduls durch Heraufsetzen

der oberen Regressionsgrenze auf 300 bis 340N/mm2 berücksichtigt wird, resultieren
daraus durchwegs kleinere Elastizitätsmodule. Diese liegen in der Grösse von 69 568 bis
70 711N/mm2, was einer Reduktion von 0.8 bis 2.4% gegenüber dem verwendetenWert
entspricht. Da der Elastizitätsmodul direkt proportional in die Berechnung der Knicklast
eingeht vgl. Kap. 2), müssten die rechnerisch ermittelten Knicklasten damit auch in dieser
Grössenordnung kleiner ausfallen.

Die verdickten Doppelkonusse wurden nachträglich auf einer konventionellen Drehmaschine

angefertigt. Deshalb ist die Streuung ihrer Massen grösser als bei allen anderen
Stäben, die mit der Zweispindel CNC-Drehmaschine hergestellt wurden. Eventuell stammen

die Rohlinge dieser Stäbe auch aus einer anderen Werkstoffcharge mit einem leicht
grösseren Elastizitätsmodul, was wiederum eine leicht erhöhte Knicklast zur Folge hätte

und damit den grössten Unterschied bei den Resultaten erklären würde vgl. Tab. 1).
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