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Algebraic numbers of the form P(7)2")
with 7 transcendental

Diego Marques

Diego Marques was awarded a Ph.D. at the Universidade de Brasilia in 2009. Recently
he obtained a professorship in the department of mathematics at the same university.
His field of interest is transcendental number theory.

1 Introduction

When I was a high-school student, I liked writing rational numbers as “combination” of
irrational ones, for instance
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In particular, the last equality above shows us one way of writing the algebraic number
2 as power of two transcendental numbers. In 1934, the mathematicians A.O. Gelfond
[2] and T. Schneider [3] proved the following well-known result: If @ € @ \ {0, 1} and
B e @ \ @, then oP is a transcendental number. This result, named as Gelfond-Schneider
theorem, classifies completely the arithmetic nature of the numbers of the form Afz, for
A1, Ay € @. Returning to our subject, but now using the Gelfond-Schneider theorem, we
also can easily write 2 as T'7, for some 7 transcendental. Actually, all prime numbers and

Im Jahr 1934 16sten A.O. Gelfond und T. Schneider das siebte Hilbertsche Problem, in-
dem sie zeigten, dass flir algebraische Zahlen «, g mit« # 0, 1 und B ¢ Q die Grosse

af also z.B. \/Eﬁ transzendent ist. Eine Art Umkehrung dieses Sachverhalts bedeu-
tet die Fragestellung, unter welchen Bedingungen an zwei transzendente Zahlen o,
die Grosse o T algebraisch ist. Beispielsweise sind die Eulersche Zahl e = 2, 71828. ..
und log(2) transzendent, aber es ist e°2@ = 2 1n der vorliegenden Arbeit zeigt der
Autor, dass es zu zwei beliebigen, nicht-konstanten Polynomen P(X) und Q(X) mit
rationalen Koeffizienten jeweils unendlich viele algebraische Zahlen gibt, die in der
Form P ()2™) mit transzendentem t dargestellt werden konnen.
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all algebraic numbers A > ¢~ /¢, satisfying A” ¢ Q for all n > 1, can be written in this

form; for a more general result see [4, Proposition 1]. Using again the Gelfond-Schneider
theorem and Galois theory, we show that for all non-constant polynomials P(x), Q{x) €
Q[x], there are infinitely many algebraic numbers which can be written in the particular
“complicated” form P(T)Q(T), for some transcendental number T,

2 Main result

Proposition. Fix non-constant polynomials P(x), Q(x) € Q[x]. Then the set of algebraic
numbers of the form P(T)YSD) with T transcendental, is dense in some connected subset
either of R or C.

As we said in Section 1, all algebraic numbers A > ¢~ 1/¢ satisfying A” ¢ Q foralln > 1,
can be written in the form 77, for some T ¢ @. An example of such A is 1 ++/2. But that
is only one case of our proposition, namely when P(x) = Q(x) = x. So for proving our
result we need a stronger condition satisfied by an algebraic number A, and that is exactly
what our next result asserts.

Lemma. Let Q(x) be a polynomial in Q[x] and set F = {Q(x) —d : d € Q}. Then there
exists « € RN Q, such that

" ¢ QRE) forall n>1, (1)
where R denotes the set {x € C: f(x) =0 for some [ € F}.

Proof. Set F = {Fy, I, .. .}, and foreachn > 1,set K, = Q(Rp, ) and [K, : Q] =
fn. Since K, € K41, then &, |t,41, for all # > 1. Therefore, there are integers (Mt )n>1
such that &y = mu_1...m1f1. Note that Kyy1 = Ky(Rp,,,) and deg Fyp1 = deg Q.
It follows that [K;4+1 : K] < (deg Q)!. Because Q C K, € Kj41, we also have that
I”I“ < (deg @)! for all n = 1. On the other hand ”“ = My, S0 the sequence (M )nz1
is bounded. Thus, we ensure the existence of a prlme number p > maxy=1{My. 1, 3}.
Hence p does not divide #,, for n > 1. We pick a real number « that is a root of the
irreducible polynomial F(x) = x# — 4x + 2 and we claim that « ¢ Q(Rr). Indeed, if
this is not the case, then there exists a number s > 1, such that « € Q(Rp..F,) = K;.
Since [Q(«) : Q] = p, we would have that p|t;, however this is impossible. Moreover,
given n > 1, we have the field inclusions @ € Q") € Qo). So [Q") : Q] =1 or
P, but & cannot be written as radicals over Q, since that F(x) is not solvable by radicals
over Q, see [1, p. 189]. Hence Q(«) = Q(«”) and then such « satisfies the condition (1).

]

Without referring to the lemma, we have the following special remarks:

Remark 1 If deg Q(x) = 1, then Q(Rx) = Q. Therefore « = 1 + V2 satisfies our
desired condition (1).

Remark 2 More generally, if deg Q0 < 4, then we take « one of the real roots of the
polynomial F(x) = x° — 4x + 2. We assert that this « satisfies (1). In fact, note that
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all elements of the field Q(R z) are solvable by radicals (over Q), on the other hand the
Galois group of F(x) = 0 over Q is isomorphic to S5 (the symmetric group), see [1,
p. 189]. Hence if " € Q(R.£), it would be expressed as radicals over @, but this cannot
happen.

Now we are able to prove our main result:

Proof of the proposition. Let us suppose that P assumes a positive value. In this case, we
have 0 < P(x) # 1 for some interval (a, ») € R. Therefore, the function f : (a, b) —
R, given by 7(x) := P(x)?%) is well-defined. Since f is a non-constant continuous
function, f((a, b)) is a non-degenerate interval, say (¢, d). Now, take « as in the lemma.
Note that the set {o¢ @ : O € Q \ {0}} is dense in (¢, d). For such an ¢ Q € (¢, d), we have

aQ = P(T)eD (2)

for some T € (a,b). We must prove that T is a transcendental number. Assuming the
contrary, then P(7T) and Q(T) are algebraic numbers. Since P(T) ¢ {0, 1}, then by
the Gelfond-Schneider theorem, we infer that Q(T) = g e Q,s > 0. It follows that
T e RQ(x)—g CRr, 50 P(TY € Q(Rr). By (2), (@wQ) = P(T) ,hence «* € Q(R.r),
but that contradicts the lemma.

For the case that P(x) < 0 for all x € R, we can consider a subinterval (a, ») € R such
that Rp N (a, b) = @, therefore the proof follows by the same argument. But in this case
the image of (a, b) under f is a connected subset of € and our basic dense subset (in C)

isthe set {aQ : Q € Qi) \ {0}}. O]
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