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Ein konkretes Modell der reellen Zahlen

Christian Blatter

Christian Blatter hat an der Universitit Basel studiert. Von 1964 bis 2000 war er
zunéchst Assistenzprofessor, spiter ordentlicher Professor fiir Mathematik an der
ETH Zirich.

1 Einfiihrung

(Q: Was ist eine reelle Zahl? A: Alle Zahlen, die Du kennst, wie 7, —51, 108, %, 24137,
3, 7, sind reelle Zahlen. Q: Das sind nur Beispiele. Was ist die allgemeinste reelle Zahl?

A: Ein Punkt auf der Zahlengeraden.

Je nach level of sophistication wird unser Fragesteller auch mit Antworten der folgenden
Art bedient: Eine reelle Zahl ist

ein unendlicher Dezimalbruch,

das Resultat einer Intervallschachtelung,

— ein Schnitt von @, d.h. eine black box, die nach Eingabe einer rationalen Zahl mit
»arosser oder mit ,hichstens™ antwortet,

eine Aquivalenzklasse von Cauchy-Folgen rationaler Zahlen,

ein Pseudo-Homomorphismus von Z (s.u.).

Wihrend man sich am Gymnasium der Idee der reellen Zahl (zum Beispiel bei der Kreis-
berechnung) mit Hilfe von Intervallschachtelungen néhert, ist es in den Grundvorlesun-
gen der Hochschulen tiblich, das System R mit einem Schlag als ordnungsvollstindigen

Das System der reellen Zahlen ist das essenzielle Fundament aller Analysis. Erstaun-
licher Weise ist erst im letzten Drittel des neunzehnten Jahrhunderts eine theoretische
Begriindung — axiomatische Beschreibung plus Konstruktion — dieses Systems als not-
wendig erachtet und durch Dedekind auch geliefert worden. Unterdessen gibt es zahl-
reiche ganz unterschiedliche Konstruktionen der reellen Zahlen. Mit keinem dieser
Ansitze ist das Gesamtsystem billig zu haben: Es braucht jedes Mal einen ziemlichen
Aufwand, bis alle Details tiberpriift sind. Die hier vorgeschlagene Konstruktion ver-
wendet unendliche Dualbriiche als Ausgangsmaterial. Auf diese Weise erscheinen die
reellen Zahlen von Anfang an elementweise in der Form einer ,iiberabzihlbaren Liste™.
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Korper axiomatisch einzufiihren, wobei auf den Beweis, dass es ein derartiges System
tatséichlich gibt, aus Zeitgriinden im allgemeinen verzichtet wird.

Der erste publizierte Beweis stammt bekanntlich von Dedekind 1872 [2]. Die heute ver-
breiteten Lehrbiicher konstruieren R (wenn liberhaupt) ausgehend von @ mit Hilfe von
Dedekindschen Schnitten (siche etwa [9], [11]), oder auch mit Hilfe von Cauchy-Folgen
(siehe etwa [6], [8]). Eine moderne Konstruktion, A’Campo [1] zugeschrieben, arbeitet mit
Fast-Homomorphismen der additiven Gruppe 7Z; das sind Funktionen ¢ : Z — Z, fiir die
die Menge

m~+n)—odm) —¢m)|m,n e

endlich ist. Zwei solche Funktionen ¢ und v werden als dquivalent angesehen, wenn
die Differenz ¢ (n) — r(n) beschriankt bleibt. Die beiden Funktionen sind dann Repri-
sentanten desselben Pseudo-Homomorphismus von Z. Aus der Ferne betrachtet sicht der
Graph eines Fast-Homomorphismus wie eine Pixelgerade aus. Die zu dquivalenten ¢,
gehorigen Pixelgeraden haben dieselbe |, Steigung™, und diese Steigung ist die von der
betreffenden Aquivalenzklasse reprisentierte reelle Zahl. A’Campos Konstruktion ist auch
in [3] wiedergegeben; ein Vorldufer ist der Ansatz von Schonhage [12].

Allen Konstruktionen, auch der vorliegenden, ist gemeinsam, dass die Einrichtung der
Rechenoperationen auf der einmal hergestellten Menge R, und daran anschliessend die
Verifikation aller Korperaxiome sowie der beiden Ordnungsaxiome (O+) und (O-) (s.u.),
zusammengenommen einen ansehnlichen Aufwand erfordern.

Der Normalsterbliche nimmt reelle Zahlen in erster Linie als Dezimalbriiche wahr und
ist seit Kindsbeinen im Umgang mit derartigen Briichen vertraut; auch unendliche Dezi-
malbriiche wie 0.16666 . .. oder die unendlich vielen mehr oder weniger zufilligen Stellen
von ;v kann er akzeptieren. In den angefiihrten Lehrbiichern wird darauf hingewiesen (oder
sogar bewiesen, wie in [8] oder [13]), dass jede reelle Zahl eine im Wesentlichen eindeutig
bestimmte unendliche Dezimalbruchentwicklung besitzt. Dies erfolgt aber a posteriori;
die Dezimalbriiche werden nicht direkt zum Aufbau des Systems R herangezogen.

In seinen ,Mathematical discussions™ [4], einer Reihe von mathematikdidaktischen Es-
says, hat Timothy Gowers (Fields-Medaille 1998) vorgeschlagen, die Dezimalbriiche zum
Ausgangspunkt der Konstruktion von R zu nehmen, und auch den weiteren Autbau skiz-
ziert [5]. Die Schwierigkeit bei derartigen Unternehmen besteht darin, operativ mit dem
irritierenden Sachverhalt 0.9999 ... = 1.0000. .. fertigzuwerden. Gowers fiihrt das nicht
im Detail aus. In den Darstellungen [7] und [10] werden Dezimalbriiche mit Neunerenden
als ,,singuldr betrachtet und zunéchst ausgeschlossen. Das kann aber nicht recht befriedi-
gen, da derartige Dezimalbriiche schon bei einfachen Rechnungen wie % + % oder v/2- /2
zwingend auftreten.

Auf den folgenden Seiten bringen wir eine Konstruktion von R mit Hilfe von unendlichen
Dualbriichen, wobei wir uns damit abfinden, dass gewisse reelle Zahlen durch zwei Du-
albriiche reprisentiert werden. Der Wechsel von der Basis 10 zu der Basis 2 (von Go-
wers in einer Nebenbemerkung antizipiert) ist Ermessenssache und wire an sich nicht
notig gewesen. Entscheidend bleibt, dass auf diese Weise die reellen Zahlen von Be-
ginn an elementweise in der Form einer ,,iiberabzihlbaren Liste™ erscheinen und nicht
als Aquivalenzklassen in einem Meer von abstrakten Entitiiten wie Cauchy-Folgen oder
Fast-Homomorphismen.
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2 Endliche Dualbriiche

Wir fiihren die folgenden Bezeichnungen ein:

Z
Dy i= {5

zez] mz0,  Di=|JD:

n>0
die Elemente von ID nennen wir Bindrzahlen. Mit der Abkiirzung
by = & ™ (n>0)

besitzt jedes a € D eine (bis auf iiberfliissige Nullen) wohlbestimmte endliche Dualbruch-

Entwicklung der Form
n

QZZxkthIXO.X1X2...xn (1)
k=0
mit Ziffern
xo=lal €z, x€{0,1} (1=<k=<n);

dabei hdngt n von a ab. Beachte, dass in diesem Zahlenformat die samtlichen Vorkomma-
stellen sowie das Vorzeichen von a in der Anfangsziffer xo abgelegt werden.

Beispiel. ¢ = —9. 1101 bezeichnet den Sachverhalta = —9 + % + % + % = —%.

Wir wollen hier das ,.schriftliche” Rechnen mit Bindrzahlen bzw. endlichen Dualbriichen
nicht weiter hinterfragen. Algebraisch gesehen ist I ein Ring, aber kein Korper, da die
Division von Dualbriichen im allgemeinen nicht aufgeht. Nur durch Potenzen von 2 kann
man unbeschrinkt dividieren. Besonders erfreulich ist, dass die natiirliche Ordnung der
Bindrzahlen mit der lexikographischen Ordnung der zugehorigen Dualbriiche tberein-
stimmt. Genau: Fiir zwei Bindrzahlen @ = Y ;_ g und b = Y p_oviix gilta < b
genau dann, wenn es ein r > 0 gibt mit

Xx=w (k<r), Xr < ¥Vr.

3 Unendliche Dualbriiche

Ein unendlicher Dualbruch ist eine unendliche Folge
X = (Xk)kzo = X0.X1X2X3X4...

mit xo € Z und x; € {0, 1} (k > 1). Die Gesamtheit dieser Folgen bezeichnen wir mit
X. Die Menge X ist von vorneherein lexikographisch geordnet und enthilt die speziellen
Elemente

0.0000...=:0, 1.0000...=:1.

Die zu Grunde liegende Vorstellung ist natiirlich die, dass ein x € X die ,,unendlichstellige
Zahl*

o0

Z)Ck ly = Xo . X1X2X3X4 . ..
k=0
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reprisentiert. Immerhin ldsst sich jede Bindrzahl a resp. jeder endliche Dualbruch (1)
durch Anhingen von unendlich vielen Nullen als Element von X auffassen. Damit er-
scheint I als Teilmenge von X, und zwar unter Erhaltung der Ordnung. In diesem Zu-
sammenhang treffen wir die folgende Vereinbarung: Wenn eine Folge x € X mit lauter
Nullen endet, das hei3t: wenn es ein # gibt mit xx = 0 (k > n), so bezeichnet x auch die
Binédrzahl Zzzo Xk tx , und fir zwei derartige Folgen x, y bezeichnet x + y die Summe der
betreffenden Zahlen, ausgedriickt als ein Element von X; analog fiir das Produkt x - y.

Die Elemente x € I haben die besondere Eigenschaft, dass sie in X einen unmittelbaren
lexikographischen Vorgénger x’ besitzen: Bezeichnet x die ganze Zahl z, so ist

x=2.0000..., X' =@ -1).1111...
Istx € I\ Z, so weist x eine letzte 1 nach dem Komma auf, und man hat

X=Xp.X1...Xs—110000..., x’:xo.xl...xn_IOUll...

Beispiel. x =5.0110000..., x'=5.0101111...

In diesen Fillen ldsst sich kein y € X angeben, das echt zwischen x’ und x liegt. Dies
widerspricht unserer vielfach erhiirteten Gewissheit, dass zwischen je zwei verschiede-
nen Zahlen unendlich viele weitere Zahlen liegen. Der Ausweg aus diesem Dilemma ist
einfach: Wir betrachten x und x’ als zwei verschiedene Darstellungen ein und derselben
reellen Zahl. Abstrakt: Die Menge R der reellen Zahlen ist die Quotientenmenge von X
beziiglich der so definierten Aquivalenz x ~ x/, x € . Da die Sache so iibersichtlich
ist, filhren wir keine eigene Bezeichnung fiir die Aquivalenzklassen ein, sondern arbeiten
weiterhin mit den Folgen x € X selbst und werden die notwendigen Uberpriifungen an
Ort und Stelle vornehmen.

Das Hauptwerkzeug unserer Konstruktion sind die Abrunde-Operatoren
T,: X—-D, (CX), x—Tyx (n=0),

die wie folgt definiert sind:

(Tx), =
0 (k >n).
Man hat die folgenden Rechenregeln:
(a) Tx < x; n<n = Lx<Tyx < Tx+i;
(b) Lx<y vn>=0 = x<y;
(c) |Tnx] < |xo[+1 (= 0);
(d) Tholm= Tmin{n,m} .

Wir zeigen als erstes, dass sich zwei verschiedene reelle Zahlen nicht beliebig nahe kom-
men konnen, sondern immer durch ein ,bindres Intervall® positiver Linge voneinander
getrennt sind:
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Satz 1. Sind x undy zwei Elemente von X mitx 3y, so gibt es einr € N und Bindrzahlen
u, vel mi
X<u<v<y. (2)

Beweis. Wegen X < yist yop — xo > 1, oder es gibt ein m > 1 mit

Es wird geniigen, den Falla = 0, x,,, =0, vy, = | (m = 0 zugelassen) weiter zu verfolgen.
Wegen x ~ y trifft mindestens eines der beiden folgenden zu:

(I) In der Folge y erscheint nach v, eine erste weitere 1, das heisst, es gibt einr > m
mit
X=...0000 xpq1..., y=...000100...001 ypyq...
m m r

In diesem Fall trennen die Zahlen v := ¢, und v := ¢, + ¢, die beiden Folgen x und
y wie angegeben.

(II) In der Folge x erscheint nach x,, eine erste weitere 0, das heisst, es gibt ein r > m
mit
X:...Ooooll...110Xr+1.A., y:...0001ym+1...
mn ¥ n

In diesem Fall trennen die Zahlenuw := T, x + ¢, = t,, — ¢ und v := ¢y, dic beiden
Folgen x und y wie angegeben. O

4 Folgen von unendlichen Dualbriichen

Eine unendlichstellige reelle Zahl als Resultat einer Rechnung (Addition, Multiplika-
tion, ...) konnen wir nur liber einen ,Grenzprozess™ erhalten. Wir betrachten also Fol-
gen

jx; (j=0), Xk = Xjk »
von unendlichen Dualbriichen. Fine derartige Folge ist monoton wachsend, wenn fiir alle
j = 0gilt: xj41 > x;, und beschrinkt, wenn es ein M € N gibt mit \xj,o < M fir alle
J=0.

Das universelle Instrument zur Erzeugung von bestimmten reellen Zahlen ist der folgende
Satz:

Satz 2.

(e) Es sei (x f)j>0 eine monoton wachsende und beschriinkte Folge in X. Dann gibt es
ein wohlbestimmtes Element s € X und fiir alle n > 0 ein j, mit

Ths = Tu(x;) (J = Jn)-

(f) Dabei giltx; <sfiiralle j = 0.

In Worten: Die auf n Stellen nach dem Komma abgerundeten ,.Zahlen™ x; sind fiir alle
J = ju gleich der auf »n Stellen angegebenen , Limeszahl® s,
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Beweis. (¢) Es kann hochstens ein derartiges s geben. Filir den Existenzbeweis halten wir
n > 0 zunichst fest. Die Folge

= Thx) (=0

ist nach Regel (a) monoton wachsend. Da ihr nur 2M + 1) - 2" mdgliche Werte zur
Verfiigung stehen, muss dieses Wachstum nach endlich vielen Schritten zum Stillstand
kommen. Es gibt also ein j, und ein s, € D, mit

Tn(Xj):Sn (J = Jjn)-
Dieses s, inkorporiert die ersten # Stellen der gesuchten ,Limeszahl“ s: Ist " > #, so gilt
fiir j := max{j,, ju} die Beziechung

Tu(Sp) = Ty o T (Xj) = TH(X;) = sy ;

in Worten: Die einmal berechneten Stellen der Limesfolge s dndern sich bei hoherem Ge-
nauvigkeitsanspruch nicht mehr und konnen als definitive Ziffern von s verwendet werden.
Der unendliche Dualbruch s = (s8¢ )x>0 wird also erklirt durch

Sk =8k (Zk=0).
Dann gilt
Tys = sy = Tp(Xx;) (J = Jjn).
wie behauptet.

(f) Gébe es ein j mit x; > s, so hitte man 7, (x;) > Tj,s fiir ein gewisses n und folglich

Th(xj) = Tu(Xj) > Tps = sy (J =7,

im Widerspruch zur Definition von s,,. [l

Wir bezeichnen das in Satz 2 beschriebene s € X im Weiteren mit lim; . o X ;. Beachte:
Der so definierte Grenzwert ist ,rein digital” erklért; es werden keine Abstinde gemessen,
Wir notieren noch die folgende Rechenregel:

(g) Ist (X;) ;>0 eine Folge der in Satz 2 beschriebenen Art und gilt x; <y fiir alle j, so
Jolgtlim; Lo X; < ¥.

5 Rechnen mit reellen Zahlen

Wir kommen nun zur Definition der Rechenoperationen. Fir das Rechnen mit reellen
Zahlen miissen wir uns natiirlich auf das etablierte Rechnen mit endlichen Dualbriichen
abstiitzen. Dabei verwenden wir weiterhin 4+ und - fiir die vorhandene Addition und Mul-
tiplikation in I und verwenden & und © fiir die in R neu einzurichtenden Operationen.

Zunichst die Addition. Fir beliebige x, y € X sind die Folgen

j|—>zj, j|—>ij
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monoton wachsend und beschrankt, und dasselbe ist dann auch fiir die Folge

j Tix+Tyy  (jz=0)
der Fall. Mit Hilfe von Satz 2 definieren wir nun

X@y: = jlggo(TjX + 1;y) .
In Worten: Man erhilt n korrekte Stellen der Summe x@y, indem man hinreichend genaue
Approximationen 7;x und 7y in ID addiert und das Resultat auf n Stellen abrundet.
Beispiel. Betrachte zwei Folgen x, y € X, die den folgenden Bedingungen gentigen:

Xo=yo=0, Xx=w=1®(=2" m>=0), xp+y =1 (sonst).

Zur Berechnung von x @ y kann man der Einfachheit halber x =0.1111...und yr =1
(k = 2™) bzw. = 0 (sonst) annehmen. Man erhilt x@y = 1. 1101000100000 . . . mit einer
1 an den Stellen £ = O und &k = 2", m > 0. Fiir n := 2" findet man j, = 2n; das heift
zum Beispiel, dass erst Tz3px 4+ T3y die ersten 16 Stellen von x @ y richtig wiedergibt.

Die so definierte Addition & : X x X — X ist offensichtlich kommutativ, und ¢ wirkt als
Neutralelement. Wie man leicht nachpriift, gilt

(h) XPy=x+y (x,yeD),

das heiBit, die Operation @ ist eine konsistente Erweiterung der in D vorhandenen Addition
auf X.

Um die Assoziativitdt der Operation @ zu beweisen, bendtigen wir die fiir jedes n > 0
geltenden Ungleichungen

(i) Tixey) <Tix+T;y (j=jn; Lix+ Ty <T,x8y).
Beweis. Erstens ist
Lixey =L(Iix+T;y) <Tix+1;y (G = ju),
und zweitens hat man fiir j := max{n, j,} die Abschitzung

Ih(x®y) = Tn(zj+ TjY) > T(hyx + 1,y) = T,x + 1y . O

Damit schlieBen wir nun wie folgt: Zu jedem n > 0 gibt es ein j und ein j’ mit

L(xey) @z) <T,x@y)+ Liz< T;x+Tpy+ Tz
<Tix+Tpy®n <T;(x® (yd2)
=xd(ydz.

Hieraus folgt (x @ y) @z < x P (y & z) nach Regel (b), und aus Symmetriegriinden gilt
dann auch die umgekehrte Ungleichung.
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Das fiir die Addition in geordneten Korpern mafigebende Axiom
(O+) X<y = X+z <y+z
haben wir zunédchst nur in der folgenden schwiicheren I'orm:
() X<y = Xx+z <y+z.
Beweis. Fir alle j gilt nach Satz 2(f) die Ungleichung
zj—l—sz < ij—l— sz <yé$z,
und mit (g) folgt die Behauptung. 0

Um weiter zu kommen, benotigen wir die folgende schlanke Version von Satz 1 sowie
deren Gegenstiick:

(k) Giltx 3y, so gibteseinr c Nmitx Pt <y.
() Fiirallex e Dundallen > 0 gilt x <X ® 1,

Beweis. Nach Satz 1 gibt es ein » € N sowie Zahlen u, v € D, so dass (2) gilt. Hieraus
folgt mit (j) und (h):
XOi =udhiy < vEy.

Zum Beweis von (1) betrachten wir ein festes n > 0. Fir alle hinreichend groen j gilt
Tix=TxX+; =TixX +14,=TixX ®1, <X By,

und hieraus folgt die Behauptung mit (a). U
Damit konnen wir nun (O+) beweisen:
Beweis. Es gibt ein r € N mit x & ¢, <y, und hieraus folgt mit (j):

x®b)PDy, <ydz. (3)
Die Aquivalenz (x @ z) ~ (y & z) wiirde nach (1) die Ungleichungen

YRZz=XBL) Dy (n = 0)

nach sich ziehen, was fiir # > r zu einem Widerspruch mit (3) fiihrt. ]

Nun zu einem heiklen Punkt: Die Binédrzahlen haben ja zwei Reprisentanten in X. Damit
wir @ tatsdchlich als Addition auf R auffassen konnen, miissen wir die Aquivalenz

XDy ~ xDy xeD, yeX)
verifizieren.

Beweis. Mit (j) folgt X’ @y < x @ y. Wiire dabei X’ &y 3 x @y, so giibe es nach (k) und
() ein r, so dass
XBYDl, <XBY<X B, By

fiir alle 7 zutrifft, im Widerspruch zu (j). U
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Beziiglich der Multiplikation kOnnen wir uns ein wenig kiirzer fassen. Wir betrachten zwei
beliebige x, y € X, wobei wir zunéchst x > 0,y > 0 voraussetzen. Dann ist die Folge

J=Tx-Tiy  (j=0)
monoton wachsend und beschrinkt. Satz 2 garantiert daher die Existenz des Produkts
xQy:= lim (T;x-T;y).
J—=c0
Die so definierte Multiplikation © : X.¢ x X.o — X ist offensichtlich kommutativ mit
1 als Neutralelement, und es gilt das Ordnungsaxiom

(O x>0Ay>=0 = x0Oy=>0.

Um die Assoziativitdt der Operation © zu beweisen, bendtigen wir die fiir jedes n = 0
geltenden Ungleichungen

(m) I(xOy) =Tix-Tiy (J = jn); Lix - T,y < To(xQy).
Beweis. Erstens ist
LxOy) =T(Tix-Tjy) <Tjx-T;y  (j = ja),
und zweitens hat man fiir j > max{n, jp,} die Abschitzung

Dn(xQy) = Dn(Tix - Ty) = Ton(Tyx - Tpy) = Tyx - Tyy . O

Damit schlieBen wir nun wie folgt: Zu jedem n > 0 gibt es ein j und ein j' mit

L(x0y)0z) <T;(x0y) - Tjz < Tyx- Ty Tz
< TZ]'/X' ng/(yQZ) < T4j/(X@ (y@Z))
<x0(yoz).

Hieraus folgt (x Q y) © z < x © (y © z) nach Regel (b), und aus Symmetriegriinden gilt
dann auch die umgekehrte Ungleichung.

Den ganz dhnlichen Beweis des Distributivgesetzes

(n) XO(®zn = xXQy) & X0z
iberlassen wir dem Leser.
Wie man leicht nachprift, gilt

XOQy=x-y (x,yeD),

das heif3t, die Operation © ist eine konsistente Erweiterung der in [ vorhandenen Multipli-
kation auf X. Damit wir © tatséchlich als Multiplikation auf R auffassen konnen, miissen
wir die Aquivalenz

X0y ~x0y (xeD, yeX)

verifizieren.
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Beweis. Wie (j) beweist man

(0) 0<x<y = x0Qz=y0Orz,
und hieraus folgt X’ ©y < xOQy. Unnun x' Oy % X Oy auszuschlieBen, nehmen wir
nach (k) an, es gibe ein r € N mit

XOoy®y < x0y. 4)

Es gibt ein N mit T;y < yo +1 =< 2V fiir alle j, und hieraus folgt y < 2. Wihle nun
n > r + N.Mit Hilfe von (1) und (o) ergibt sich dann

X0V (X B, Oy=K0y® L Oy <X OoN® 1, 2Y).

Dies steht wegen 2%V, < 1, im Widerspruch zu (4). O

6 Inverse

Sowohl das additive wie das multiplikative Inverse sind in R eindeutig bestimmt: Gilt
y1 & x1 ~ 0undyy ® xp ~ 0und ist x; ~ xp, so folgt nach dem schon Bewiesenen:

Vi=Y1+0~y18x8y~ViEx1Py2~0+y2=¥2,

und analog schliet man fiir das multiplikative Inverse.

Das additive Inverse eines beliebigen Dualbruchs X = xp.x1x2x3... € X ldsst sich
explizit angeben: Definiert man die Folgey = yo. v1 ¥2 v3... € X durch

voi=—xo—1, Vei=1—x k=1),

$0 gibt es bei der Addition von x und y wegen xx + v¢ = 1 (k = 1) keine Stelleniibertriige;
folglich erhélt man ohne Weiteres

Xx+y=—1.1111... ~0.

Hiernach ist y das additive Inverse von x und darf mit —x bezeichnet werden. Es gelten
die Regeln —(—x) ~xund —(x P y) ~ (—x)  (—y).

Das multiplikative Inverse erhalten wir mit Hilfe des in der Schule gelernten Divisions-
algorithmus, wobei wir allerdings unendlichstellige Divisoren vorsehen miissen. Es sei
also ein a > 0 gegeben, dessen Kehrwert konstruiert werden soll. Die Zahl a kann nicht
beliebig klein sein: Es gibt ein m € N mit T,a > i, fiir alle n > m. Betrachte jetzt die
Mengen

Oni=1xeDy | (La+u)-x<1} (@=m).

Fiir alle x € @y, gilt 4 - X < (Tya + 1) - X < 1 und folglich x < 2™, Wegen I, € Dy
und
Thrra+ tp1 < Tha+ typ1 + ity = Tha + 1y

hat man die Inklusionen Q,, C Qn+1 (n > m). Die Folge

N qp = max(Qy) € Dy (n=m)
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ist daher monoton wachsend und nach oben beschrinkt durch 2. Nach Satz 2 existiert
somit der Grenzwert lim, . ~ q, =: q. Wir behaupten: Dieser Grenzwert ist der gesuchte
Kehrwert von a, das heisst, es giltq ©a ~ 1.

Beweis. Betrachte ein festes n > 0. Nach (m) gibtes ein j und ein/ > j mit
hiiqoa) <Tjq-Tja=Tjq - Tja<Tiqq-Tha=q;-Tra<1.

Da dies fiir jedes n zutrifft, folgtq ©a < 1.

Es gibt ein N mit 2" +aqp+2 < 28 Um nun q®a § 1 auszuschlieBen, nehmen wir nach
(k) an, es gibe ein r € N mit
(qOa)di <1. (5)

Nach Konstruktion von qy gilt aber fiir jedes n > m die Abschitzung

l < (qn + ) (Tha4 ) = 1,9, - Tha + Ln(qn + Tha+ )
< Twq-Tha+2, < (qoa)@ 2"y, .

Dies steht fiir n > r + N im Widerspruch zu (5). [

Damit verbleibt als einzige Restanz die Ausdehnung der Multiplikation auf Faktoren x <
0,y < 0. Gestlitzt auf die Regel

x50 & (x>0

definieren wir

0 x~0vy~0),
o —((=x)Oy) xZ0Ay=>0),
~(x0 (-y) x=0Ay30),
(—x) O (-y) xZ0AYS0).

Wie man sich leicht iiberlegt, sind damit Kommutativitit, Assoziativitit sowie die Regel
(—x) Oy ~ —x0y)

auf ganz R sichergestellt, ebenso die Distributivitit (n), mit ~ an Stelle des Gleichheits-
zeichens, falls y und z dasselbe Vorzeichen haben oder eine der beteiligten Variablen ~ 0
ist. Damit verbleibt der Fall x > 0,y > 0, z ,)<o 0. Istdabeiy @ z ~ 0, also z ~ (—y), so
ist einerseits x © (y @ z) ~ 0 und anderseits auch

XOY®XOD =0y & (-x0y)~0.
Isty &z > 0, so hat man

XOY®z) ~xO(y 2o dxO(—2)dxOz
~XO(y®2z8 (—2)+x0z~ x0OY) & (x02),

und analog schlieBt man im Fally &z 5 0.
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7 Vollstandigkeit

Damit ist das System R in allen Punkten als geordneter Korper etabliert; folglich gelten
in R sowohl sdmtliche ,Regeln der Algebra® wie die ,,Regeln {iber das Rechnen mit Un-
gleichungen®. Ab sofort heben wir daher die speziellen Notationen der vorangehenden
Abschnitte wieder auf: Die reellen Zahlen erscheinen im Weiteren nicht mehr als unend-
liche Folgen x; sondern wir betrachten sie als abstrakte Individuen x, zwischen denen
gewisse Bindungen bestehen. Auf die Operationszeichen @ und © konnen wir fiirderhin
verzichten, und an Stelle von x 5 y schreiben wir ganz einfach x < y.

Beispiel. In R gibt es die Zahl V2. Zum Beweis argumentieren wir dhnlich wie bei der
Konstruktion des Kehrwerts. Betrachte die Mengen

Qpri={xeD, [x>0,x-x<2} (@>0).
Fir alle x € @y gilt x < 2,und fiir allen > 0 ist Q, C Qn41. Die Folge
1> p = max(Qy) € Iy (n >0)

ist daher monoton wachsend und beschrinkt, besitzt also nach Satz 2 einen Grenzwert
g € X, und man verifiziert leicht, dass ¢ - ¢ = 2 ist.

Damit wir nicht fiir jede Zahl, die wir gerne hitten, ein derartiges Kunststiick vorfiihren
missen, bendtigen wir ein allgemeines Prinzip, das unter leicht zu verifizierenden Bedin-
gungen die Existenz des angepeilten Objektes, zum Beispiel der n-ten Wurzel aus einer
beliebigen reellen Zahl ¢ > 0, garantiert. Dieses Prinzip ist natlrlich die Existenz des
Supremums, eine unmittelbare Konsequenz des folgenden Satzes:

Satz 3. Die Gesamtheit der reellen Zahlen sei auf irgend eine Weise in eine Untermenge
A und eine Obermenge B zerlegt, d.h., es sei

R=AUB, A#0, B#9, a<b YaeA YbeB.
Dann gibt es eine wohlbestimmie Zahl s € R mit

X<§ =>xeA, XxX>5 = xeB xeR). (7)

Die Zahl s selbst gehort entweder der Untermenge oder der Obermenge an; jedenfalls
erzeugt s den Schnitt (A, B) von R. Der in Satz 3 beschricbene Sachverhalt wird als
Ordnungsvollstindigkeit der Menge R bezeichnet.

Beweis. Es kann hochstens ein derartiges s geben. — Die Menge @, := D, N A ist nach
oben beschridnkt durch jegliches b € B; ferner gilt O, C Qn41 fiir alle # > 0. Hiernach
ist

i > Sy = max(Qy) (n=0)

eine monoton wachsende und beschrinkte Folge von reellen Zahlen. Nach Satz 2 existiert
damit der Grenzwert lim,,_. ~ 5, =: § € R, und wir behaupten, dass s die Eigenschaft (7)
besitzt.
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Betrachte ein beliebiges x < 5. Widre x € B, so hitte man s, < x fir alle #n und folglich
nach (g) auch s < x, was sich mit x < s nicht vertrigt.

Betrachte jetzt ein x > s. Nach Satz 1 gibteseinr € Nund ein v € D, mits < v < x.
Wire v € A, so hiitte man v < 5, < §. Folglich ist v € B und damit auch x € B. J

8 Schluss

Wir brechen hier unsere Konstruktion ab und schlieBen mit der folgenden Feststellung:
Satz 4. Die Menge R der reellen Zahlen ist iiberabzihlbar.

Beweis. Die Menge M := {0, 1}N C X der Null-Eins-Folgen ist nach Cantor iiberabzihl-
bar. Gemil dem Vorangehenden stellt

¢ M—>[0,2], X — Xp.X1X2X3...

eine surjektive Abbildung von M auf das reelle Intervall [0, 2 | dar, wobei jede Zahl & €
[0, 2] hochstens zwei Urbilder besitzt. Wire das Intervall [ O, 2 | abzihlbar, miisste sich
demnach auch M abzidhlen lassen, was nicht der Fall ist. O
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