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Elemente der Mathematik

Ein konkretes Modell der reellen Zahlen

Christian Blatter

Christian Blatter hat an der Universität Basel studiert. Von 1964 bis 2000 war er

zunächst Assistenzprofessor, später ordentlicher Professor für Mathematik an der
ETH Zürich.

1 Einführung
Q: Was ist eine reelle Zahl? A: Alle Zahlen, die Du kennst, wie 7, -51, 106, 59 2.4137,
v3, p, sind reelle Zahlen. Q: Das sind nur Beispiele. Was ist die allgemeinste reelle Zahl?
A: Ein Punkt auf der Zahlengeraden.

Je nach level of sophistication wird unser Fragesteller auch mit Antworten der folgenden
Art bedient: Eine reelle Zahl ist

– ein unendlicher Dezimalbruch,

– das Resultat einer Intervallschachtelung,

– ein Schnitt von Q, d.h. eine black box, die nach Eingabe einer rationalen Zahl mit
grosser“¨ oder mit hochstens“¨ antwortet,” ”

– eine Äquivalenzklasse von Cauchy-Folgen rationaler Zahlen,

– ein Pseudo-Homomorphismus von Z s.u.).

Während man sich am Gymnasium der Idee der reellen Zahl zum Beispiel bei der
Kreisberechnung) mit Hilfe von Intervallschachtelungen nähert, ist es in den Grundvorlesungen

der Hochschulen üblich, das System R mit einem Schlag als ordnungsvollständigen

Das System der reellen Zahlen ist das essenzielle Fundament aller Analysis. Erstaunlicher

Weise ist erst im letzten Drittel des neunzehnten Jahrhunderts eine theoretische
Begründung – axiomatische Beschreibung plus Konstruktion – dieses Systems als
notwendig erachtet und durch Dedekind auch geliefert worden. Unterdessen gibt es
zahlreiche ganz unterschiedliche Konstruktionen der reellen Zahlen. Mit keinem dieser
Ansätze ist das Gesamtsystem billig zu haben: Es braucht jedes Mal einen ziemlichen
Aufwand, bis alle Details überpr üft sind. Die hier vorgeschlagene Konstruktion
verwendet unendliche Dualbrüche als Ausgangsmaterial. Auf diese Weise erscheinen die
reellen Zahlen von Anfang an elementweise in der Form einer überabzählbarenListe“.”
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Körper axiomatisch einzuführen, wobei auf den Beweis, dass es ein derartiges System
tatsächlich gibt, aus Zeitgründen im allgemeinen verzichtet wird.
Der erste publizierte Beweis stammt bekanntlich von Dedekind 1872 [2]. Die heute
verbreiteten Lehrbücher konstruieren R wenn überhaupt) ausgehend von Q mit Hilfe von
Dedekindschen Schnitten siehe etwa [9], [11]), oder auch mit Hilfe von Cauchy-Folgen
siehe etwa [6], [8]).Eine moderneKonstruktion,A’Campo [1] zugeschrieben, arbeitet mit

Fast-Homomorphismen der additiven Gruppe Z; das sind Funktionen f : Z Z, für die
die Menge

{f(m + n)- f(m) - f(n) | m,n Z}
endlich ist. Zwei solche Funktionen f und werden als äquivalent angesehen, wenn
die Differenz f(n) - n) beschränkt bleibt. Die beiden Funktionen sind dann Repr ¨
asentanten desselben Pseudo-Homomorphismus von Z. Aus der Ferne betrachtet sieht der
Graph eines Fast-Homomorphismus wie eine Pixelgerade aus. Die zu äquivalenten f,
geh örigen Pixelgeraden haben dieselbe Steigung“, und diese Steigung ist die von der

”betreffenden Äquivalenzklasserepräsentierte reelle Zahl. A’Campos Konstruktion ist auch
in [3] wiedergegeben; ein Vorläufer ist der Ansatz von Schönhage [12].
Allen Konstruktionen, auch der vorliegenden, ist gemeinsam, dass die Einrichtung der
Rechenoperationen auf der einmal hergestellten Menge R, und daran anschliessend die
Verifikation aller Körperaxiome sowie der beiden Ordnungsaxiome O+) und O· s.u.),
zusammengenommen einen ansehnlichen Aufwand erfordern.

Der Normalsterbliche nimmt reelle Zahlen in erster Linie als Dezimalbr üche wahr und
ist seit Kindsbeinen im Umgang mit derartigen Brüchen vertraut; auch unendliche
Dezimalbrüche wie 0.16666 oder die unendlich vielen mehr oder wenigerzufälligen Stellen
von p kann er akzeptieren.In den angefuhrten¨ Lehrbuchernwird¨ darauf hingewiesen oder
sogar bewiesen, wie in [8] oder [13]), dass jede reelle Zahl eine imWesentlichen eindeutig
bestimmte unendliche Dezimalbruchentwicklung besitzt. Dies erfolgt aber a posteriori;
die Dezimalbruche¨ werden nicht direkt zum Aufbau des Systems R herangezogen.

In seinen Mathematical discussions“ [4], einer Reihe von mathematikdidaktischen
Essays,

”hat Timothy Gowers Fields-Medaille 1998) vorgeschlagen, die Dezimalbrüche zum
Ausgangspunkt der Konstruktion von R zu nehmen, und auch den weiteren Aufbau skizziert

[5]. Die Schwierigkeit bei derartigen Unternehmen besteht darin, operativ mit dem
irritierenden Sachverhalt 0.9999 1.0000 fertigzuwerden. Gowers f ührt das nicht
im Detail aus. In den Darstellungen [7] und [10] werden Dezimalbrüche mit Neunerenden
als singulär“ betrachtet und zunächst ausgeschlossen. Das kann aber nicht recht befriedigen,

da derartige Dezimalbrüche schon bei einfachen Rechnungen wie 13
”

+ 23 oderv2·v2
zwingend auftreten.

Auf den folgenden Seiten bringen wir eine Konstruktion von R mit Hilfe von unendlichen
Dualbrüchen, wobei wir uns damit abfinden, dass gewisse reelle Zahlen durch zwei
Dualbrüche repräsentiert werden. Der Wechsel von der Basis 10 zu der Basis 2 von
Gowers in einer Nebenbemerkung antizipiert) ist Ermessenssache und wäre an sich nicht
nötig gewesen. Entscheidend bleibt, dass auf diese Weise die reellen Zahlen von
Beginn an elementweise in der Form einer überabzählbaren Liste“ erscheinen und nicht”als Äquivalenzklassen in einem Meer von abstrakten Entitäten wie Cauchy-Folgen oder
Fast-Homomorphismen.
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2 Endliche Dualbrüche

Wir führen die folgenden Bezeichnungen ein:

Dn :=
z

2n
z Z n 0) D :=

n=0

Dn ;

die Elemente von D nennen wir Binärzahlen. Mit der Abkürzung

.n := 2-n n 0)

besitzt jedes a D eine bis auf überflüssige Nullen) wohlbestimmte endliche Dualbruch-
Entwicklung der Form

a
n

k=0

xk .k =: x0 x1 x2 xn 1)

mit Ziffern
x0 a Z xk {0, 1} 1 k n) ;

dabei hängt n von a ab. Beachte, dass in diesem Zahlenformat die sämtlichen Vorkommastellen

sowie das Vorzeichen von a in der Anfangsziffer x0 abgelegt werden.

Beispiel. a -9 1101 bezeichnet den Sachverhalt a -9 + 12 + 14 +
1

16 - 131
16

Wir wollen hier das schriftliche“ Rechnen mit Binärzahlen bzw. endlichen Dualbrüchen”nicht weiter hinterfragen. Algebraisch gesehen ist D ein Ring, aber kein Körper, da die
Division von Dualbrüchen im allgemeinen nicht aufgeht. Nur durch Potenzen von 2 kann
man unbeschränkt dividieren. Besonders erfreulich ist, dass die natürliche Ordnung der
Binärzahlen mit der lexikographischen Ordnung der zugehörigen Dualbrüche übereinstimmt.

Genau: Für zwei Binärzahlen a nk

0 xk .k und b nk
0 yk .k gilt a < b

genau dann, wenn es ein r 0 gibt mit

xk yk k < r) xr < yr

3 Unendliche Dualbrüche

Ein unendlicher Dualbruch ist eine unendliche Folge

x xk
k=0 =: x0 x1 x2 x3 x4

mit x0 Z und xk {0, 1} k 1). Die Gesamtheit dieser Folgen bezeichnen wir mit
X. Die Menge X ist von vorneherein lexikographisch geordnet und enthält die speziellen
Elemente

0 0000 =: 0 1 0000 =: 1

Die zu Grunde liegende Vorstellung ist natürlich die, dass ein x X die unendlichstellige”Zahl“
8

k=0

xk .k x0 x1x2x3x4
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repräsentiert. Immerhin lässt sich jede Binärzahl a resp. jeder endliche Dualbruch 1)
durch Anhängen von unendlich vielen Nullen als Element von X auffassen. Damit
erscheint D als Teilmenge von X, und zwar unter Erhaltung der Ordnung. In diesem
Zusammenhang treffen wir die folgende Vereinbarung: Wenn eine Folge x X mit lauter
Nullen endet, das heißt: wenn es ein n gibt mit xk 0 k > n), so bezeichnet x auch die
Binärzahl nk

0 xk .k und für zwei derartige Folgen x, y bezeichnet x+ y die Summe der
betreffenden Zahlen, ausgedrückt als ein Element von X; analog für das Produkt x · y.

Die Elemente x D haben die besondere Eigenschaft, dass sie in X einen unmittelbaren
lexikographischen Vorgänger x besitzen: Bezeichnet x die ganze Zahl z, so ist

x z 0000 x z- 1) 1111

Ist x D \ Z, so weist x eine letzte 1 nach dem Komma auf, und man hat

x x0 x1 xn-1 1 0000 x x0 x1 xn-1 0 1111

Beispiel. x 5 0110000 x 5 0101111

In diesen Fällen lässt sich kein y X angeben, das echt zwischen x und x liegt. Dies
widerspricht unserer vielfach erhärteten Gewissheit, dass zwischen je zwei verschiedenen

Zahlen unendlich viele weitere Zahlen liegen. Der Ausweg aus diesem Dilemma ist
einfach: Wir betrachten x und x als zwei verschiedene Darstellungen ein und derselben
reellen Zahl. Abstrakt: Die Menge R der reellen Zahlen ist die Quotientenmenge von X
bezüglich der so definierten Äquivalenz x ~ x x D. Da die Sache so übersichtlich
ist, führen wir keine eigene Bezeichnung für die Äquivalenzklassen ein, sondern arbeiten
weiterhin mit den Folgen x X selbst und werden die notwendigen Überprüfungen an

Ort und Stelle vornehmen.

Das Hauptwerkzeug unserer Konstruktion sind die Abrunde-Operatoren

Tn : X Dn X) x Tnx n 0)

die wie folgt definiert sind:

Tnx k :=
xk 0 k n)
0 k > n)

Man hat die folgenden Rechenregeln:

a) Tnx x ; n n Tnx Tn x < Tnx + .n ;
b) Tnx y n 0 x y ;
c) |Tnx| |x0| + 1 n 0) ;
d) Tn Tm Tmin{n,m}

Wir zeigen als erstes, dass sich zwei verschiedene reelle Zahlen nicht beliebig nahe kommen

können, sondern immer durch ein binäres Intervall“ positiver Länge voneinander”getrennt sind:
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Satz 1. Sind x und y zwei Elemente von X mit x y, so gibt es ein r N und Binärzahlen
u, v Dr mit

x u < v y. 2)

Beweis. Wegen x < y ist y0 - x0 1, oder es gibt ein m 1 mit

Tm-1x Tm-1y =: a xm 0 ym 1

Es wird genügen, den Fall a 0, xm 0, ym 1 m 0 zugelassen) weiter zu verfolgen.
Wegen x y trifft mindestens eines der beiden folgenden zu:

I) In der Folge y erscheint nach ym eine erste weitere 1, das heisst, es gibt ein r > m
mit

x 0000m xm+1 y 0001m 00 001r yr+1

In diesem Fall trennen die Zahlen u := .m und v := .m + .r die beiden Folgen x und
y wie angegeben.

II) In der Folge x erscheint nach xm eine erste weitere 0, das heisst, es gibt ein r > m
mit

x 0000m11 110r xr+1 y 0001m ym+1

In diesem Fall trennen die Zahlen u := Trx + .r .m - .r und v := .m die beiden
Folgen x und y wie angegeben.

4 Folgen von unendlichen Dualbrüchen

Eine unendlichstellige reelle Zahl als Resultat einer Rechnung Addition, Multiplikation,

können wir nur über einen Grenzprozess“ erhalten. Wir betrachten also Folgen

”
j x j j 0), x j k =: x j.k

von unendlichen Dualbruchen.¨ Eine derartige Folge ist monoton wachsend, wenn fur¨ alle
j 0 gilt: x j+1 x j und beschrankt,¨ wenn es ein M N gibt mit x j.0 M für alle
j 0.

Das universelle Instrument zur Erzeugung von bestimmten reellen Zahlen ist der folgende
Satz:

Satz 2.

e) Es sei x j j=0 eine monoton wachsende und beschränkte Folge in X. Dann gibt es

ein wohlbestimmtes Element s X und für alle n 0 ein jn mit

Tns Tn(x j) j jn)

f) Dabei gilt x j s für alle j 0

In Worten: Die auf n Stellen nach dem Komma abgerundeten Zahlen“ x j sind für alle”j jn gleich der auf n Stellen angegebenen Limeszahl“ s.
”
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Beweis. e) Es kann höchstens ein derartiges s geben. Für den Existenzbeweis halten wir
n 0 zunächst fest. Die Folge

j Tn(x j) j 0)

ist nach Regel a) monoton wachsend. Da ihr nur 2M + 1) · 2n mögliche Werte zur
Verfügung stehen, muss dieses Wachstum nach endlich vielen Schritten zum Stillstand
kommen. Es gibt also ein jn und ein sn Dn mit

Tn(x j sn j jn)

Dieses sn inkorporiert die ersten n Stellen der gesuchten Limeszahl“ s: Ist n n, so gilt”für j := max{ jn, jn } die Beziehung

Tn(sn Tn Tn x j Tn(x j sn ;

in Worten: Die einmal berechneten Stellen der Limesfolge s ändern sich bei höherem
Genauigkeitsanspruch nicht mehr und können als definitive Ziffern von s verwendet werden.
Der unendliche Dualbruch s sk k=0 wird also erklärt durch

sk := sn.k n k 0)

Dann gilt
Tns sn Tn(x j) j jn)

wie behauptet.

f) Gäbe es ein j mit x j > s, so hätte man Tn(x j) > Tns für ein gewisses n und folglich

Tn(x j Tn(xj) > Tns sn j j)
im Widerspruch zur Definition von sn.

Wir bezeichnen das in Satz 2 beschriebene s X im Weiteren mit limj.8 x j Beachte:
Der so definierte Grenzwert ist rein digital“ erklärt; es werden keine Abstände gemessen.

”Wir notieren noch die folgende Rechenregel:

g) Ist x j j=0 eine Folge der in Satz 2 beschriebenen Art und gilt xj y für alle j so

folgt limj.8 x j y

5 Rechnen mit reellen Zahlen

Wir kommen nun zur Definition der Rechenoperationen. Für das Rechnen mit reellen
Zahlen müssen wir uns natürlich auf das etablierte Rechnen mit endlichen Dualbrüchen
abstützen. Dabei verwenden wir weiterhin + und · für die vorhandene Addition und
Multiplikation in D und verwenden und für die in R neu einzurichtenden Operationen.

Zunächst die Addition. Für beliebige x, y X sind die Folgen

j Tjx j Tjy
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monoton wachsend und beschränkt, und dasselbe ist dann auch für die Folge

j Tjx + Tj y j 0)

der Fall. Mit Hilfe von Satz 2 definieren wir nun

x y := lim Tjx + Tjy)
j.8

InWorten: Man erh ält n korrekte Stellen der Summe x.y, indem man hinreichend genaue

Approximationen Tj x und Tj y in D addiert und das Resultat auf n Stellen abrundet.

Beispiel. Betrachte zwei Folgen x, y X, die den folgenden Bedingungen genügen:

x0 y0 0 xk yk 1 k 2m m 0) xk + yk 1 sonst).

Zur Berechnung von x y kann man der Einfachheit halber x 0 1111 und yk 1
k 2m) bzw. 0 sonst) annehmen.Man erhält x.y 1 1101000100000 mit einer

1 an den Stellen k 0 und k 2m, m 0. Für n := 2m findet man jn 2n; das heißt
zum Beispiel, dass erst T32x + T32y die ersten 16 Stellen von x y richtig wiedergibt.

Die so definierte Addition : X × X X ist offensichtlich kommutativ, und 0 wirkt als
Neutralelement. Wie man leicht nachprüft, gilt

h) x y x + y x, y D)

das heißt, die Operation ist eine konsistente Erweiterungder in D vorhandenenAddition
auf X.

Um die Assoziativität der Operation zu beweisen, benötigen wir die für jedes n 0
geltenden Ungleichungen

i) Tn(x y) Tjx + Tjy j jn) ; Tnx + Tny Tn(x y)

Beweis. Erstens ist

Tn(x y) Tn(Tjx + Tjy) Tjx + Tjy j jn)

und zweitens hat man für j := max{n, jn} die Abschätzung

Tn(x y) Tn(Tjx + Tjy) Tn(Tnx + Tny) Tnx + Tny

Damit schließen wir nun wie folgt: Zu jedem n 0 gibt es ein j und ein j mit

Tn x y) z Tj x y) + Tjz Tj x + Tj y + Tj z

Tj x + Tj y z) Tj x y z)
x y z)

Hieraus folgt x y) z x y z) nach Regel b), und aus Symmetriegründen gilt
dann auch die umgekehrte Ungleichung.
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Das für die Addition in geordneten Körpern maßgebende Axiom

O+) x < y x + z < y + z

haben wir zun ächst nur in der folgenden schwächeren Form:

j) x y x + z y + z

Beweis. Für alle j gilt nach Satz 2(f) die Ungleichung

Tjx + Tjz Tjy + Tjz y z

und mit g) folgt die Behauptung.

Um weiter zu kommen, benötigen wir die folgende schlanke Version von Satz 1 sowie
deren Gegenstück:

k) Gilt x y, so gibt es ein r N mit x .r y

l) Für alle x D und alle n 0 gilt x x .n

Beweis. Nach Satz 1 gibt es ein r N sowie Zahlen u, v Dr so dass 2) gilt. Hieraus
folgt mit j) und h):

x .r u .r v y

Zum Beweis von l) betrachten wir ein festes n 0. Für alle hinreichend großen j gilt

Tjx Tjx + j Tj x + .n Tjx .n x .n

und hieraus folgt die Behauptung mit a).

Damit können wir nun O+) beweisen:

Beweis. Es gibt ein r N mit x .r y, und hieraus folgt mit j):

x z) .r y z. 3)

Die Äquivalenz x z) ~ y z) würde nach l) die Ungleichungen

y z x z) .n n 0)

nach sich ziehen, was für n > r zu einemWiderspruch mit 3) führt.

Nun zu einem heiklen Punkt: Die Binärzahlen haben ja zwei Repräsentanten in X. Damit
wir tatsächlich als Addition auf R auffassen können, müssen wir die Äquivalenz

x y ~ x y x D, y X)

verifizieren.

Beweis. Mit j) folgt x y x y. Wäre dabei x y x y, so gäbe es nach k) und
l) ein r, so dass

x y .r x y x .n y

für alle n zutrifft, im Widerspruch zu j).
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Bezüglichder Multiplikation könnenwir uns ein wenig kürzer fassen. Wir betrachten zwei
beliebige x, y X, wobei wir zunächst x > 0, y > 0 voraussetzen. Dann ist die Folge

j Tj x · Tjy j 0)

monoton wachsend und beschränkt. Satz 2 garantiert daher die Existenz des Produkts

x y := lim Tj x · Tjy)
j.8

Die so definierte Multiplikation : X>0 × X>0 X ist offensichtlich kommutativ mit
1 als Neutralelement, und es gilt das Ordnungsaxiom

O· x > 0 y > 0 x y > 0

Um die Assoziativität der Operation zu beweisen, benötigen wir die für jedes n 0
geltenden Ungleichungen

m) Tn(x y) Tjx · Tjy j jn) ; Tnx · Tny T2n(x y)

Beweis. Erstens ist

Tn(x y) Tn(Tjx · Tjy) Tjx · Tjy j jn)

und zweitens hat man für j max{n, j2n} die Abschätzung

T2n(x y) T2n(Tj x · Tjy) T2n(Tnx · Tny) Tnx · Tny

Damit schließen wir nun wie folgt: Zu jedem n 0 gibt es ein j und ein j mit

Tn x y) z Tj x y) · Tjz Tj x · Tj y · Tj z

T2 j x · T2 j y z) T4 j x y z)

x y z)

Hieraus folgt x y) z x y z) nach Regel b), und aus Symmetriegründen gilt
dann auch die umgekehrte Ungleichung.

Den ganz ähnlichen Beweis des Distributivgesetzes

n) x y z) x y) x z)

überlassen wir dem Leser.

Wie man leicht nachprüft, gilt

x y x · y x,y D)

das heißt, die Operation ist eine konsistente Erweiterung der in D vorhandenenMultiplikation

auf X. Damit wir tatsächlich als Multiplikation auf R auffassen können, müssen

wir die Äquivalenz
x y ~ x y x D, y X)

verifizieren.
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Beweis. Wie j) beweistman

o) 0 < x y x z y z

und hieraus folgt x y x y. Um nun x y x y auszuschließen, nehmen wir
nach k) an, es gäbe ein r N mit

x y) .r x y. 4)

Es gibt ein N mit Tjy < y0 + 1 2N für alle j und hieraus folgt y 2N. Wähle nun
n > r + N. Mit Hilfe von l) und o) ergibt sich dann

x y x .n) y x y) .n y) x y) .n · 2N

Dies steht wegen 2N .n < .r im Widerspruch zu 4).

6 Inverse

Sowohl das additive wie das multiplikative Inverse sind in R eindeutig bestimmt: Gilt
y1 x1 ~ 0 und y2 x2 ~ 0 und ist x1 ~ x2, so folgt nach dem schon Bewiesenen:

y1 y1 + 0 ~ y1 x2 y2 ~ y1 x1 y2 ~ 0 + y2 y2

und analog schließt man für das multiplikative Inverse.

Das additive Inverse eines beliebigen Dualbruchs x x0 x1 x2 x3 X lässt sich
explizit angeben: Definiert man die Folge y y0 y1 y2 y3 X durch

y0 := -x0 - 1 yk := 1 - xk k 1)

so gibt es bei der Addition von x und y wegen xk+yk 1 k 1) keine Stellenüberträge;

folglich erhält man ohneWeiteres

x + y -1 1111 ~ 0

Hiernach ist y das additive Inverse von x und darf mit -x bezeichnet werden. Es gelten
die Regeln -(-x) ~ x und -(x y) ~ (-x) (-y).

Das multiplikative Inverse erhalten wir mit Hilfe des in der Schule gelernten
Divisionsalgorithmus, wobei wir allerdings unendlichstellige Divisoren vorsehen müssen. Es sei
also ein a > 0 gegeben, dessen Kehrwert konstruiert werden soll. Die Zahl a kann nicht
beliebig klein sein: Es gibt ein m N mit Tna .m für alle n m. Betrachte jetzt die
Mengen

Qn := x Dn Tna + .n) · x 1 n m)

Für alle x Qn gilt .m · x Tna + .n) · x 1 und folglich x 2m. Wegen Dn Dn+1
und

Tn+1a + .n+1 Tna + .n+1 + .n+1 Tna + .n

hat man die Inklusionen Qn Qn+1 n m). Die Folge

n qn := max(Qn) Dn n m)
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ist daher monoton wachsend und nach oben beschränkt durch 2m. Nach Satz 2 existiert
somit der Grenzwert limn.8 qn =: q. Wir behaupten: Dieser Grenzwert ist der gesuchte
Kehrwert von a, das heisst, es gilt q a ~ 1.

Beweis. Betrachte ein festes n 0. Nach m) gibt es ein j und ein l j mit

Tn(q a) Tjq · Tja Tjql · Tja Tlql · Tla ql · Tla 1

Da dies für jedes n zutrifft, folgt q a 1.

Es gibt ein N mit 2m + a0+ 2 2N Um nun q a 1 auszuschließen, nehmen wir nach
k) an, es gäbe ein r N mit

q a) .r 1. 5)

Nach Konstruktion von qn gilt aber für jedes n m die Abschätzung

1 < qn + .n)(Tna + .n) Tnqn · Tna + .n(qn + Tna + .n)

Tnq · Tna + 2N .n q a) 2N .n

Dies steht für n > r + N im Widerspruch zu 5).

Damit verbleibt als einzige Restanz die Ausdehnung der Multiplikation auf Faktoren x
0, y 0. Gestützt auf die Regel

x 0 (-x) > 0

definieren wir

x y :=

0 x ~ 0 y ~ 0),

- -x) y x 0 y > 0),

- x -y) x > 0 y 0)

(-x) -y) x 0 y 0)

Wie man sich leicht überlegt, sind damit Kommutativität, Assoziativität sowie die Regel

(-x) y ~ -(x y)

auf ganz R sichergestellt, ebenso die Distributivität n), mit ~ an Stelle des Gleichheitszeichens,

falls y und z dasselbe Vorzeichen haben oder eine der beteiligten Variablen ~0

ist. Damit verbleibt der Fall x > 0, y > 0, z 0. Ist dabei y z ~ 0, also z ~ (-y), so

ist einerseits x y z) ~ 0 und anderseits auch

x y) x z) x y) - x y) ~ 0

Ist y z > 0, so hatman

x y z) ~ x y z) x -z) x z

~ x y z (-z) + x z ~ x y) x z)

und analog schließt man im Fall y z 0.



60 C. Blatter

7 Vollstandigkeit¨

Damit ist das System R in allen Punkten als geordneter Korper¨ etabliert; folglich gelten
in R sowohl samtliche¨ Regeln der Algebra“ wie die” Regeln über das Rechnen mit
Ungleichungen“.

”Ab sofort heben wir daher die speziellen Notationen der vorangehenden
Abschnitte wieder auf: Die reellen Zahlen erscheinen im Weiteren nicht mehr als unendliche

Folgen x; sondern wir betrachten sie als abstrakte Individuen x, zwischen denen
gewisse Bindungen bestehen. Auf die Operationszeichen und können wir fürderhin
verzichten, und an Stelle von x y schreiben wir ganz einfach x < y.

Beispiel. In R gibt es die Zahl v2. Zum Beweis argumentieren wir ähnlich wie bei der
Konstruktion des Kehrwerts. Betrachte die Mengen

Qn := x Dn x > 0, x · x 2 n 0)

Für alle x Qn gilt x 2, und für alle n 0 ist Qn Qn+1. Die Folge

n qn := max(Qn) Dn n 0)

ist daher monoton wachsend und beschränkt, besitzt also nach Satz 2 einen Grenzwert
q X, und man verifiziert leicht, dass q · q 2 ist.

Damit wir nicht für jede Zahl, die wir gerne hätten, ein derartiges Kunststück vorführen
müssen, benötigen wir ein allgemeines Prinzip, das unter leicht zu verifizierenden
Bedingungen die Existenz des angepeilten Objektes, zum Beispiel der n-ten Wurzel aus einer
beliebigen reellen Zahl c 0, garantiert. Dieses Prinzip ist natürlich die Existenz des

Supremums, eine unmittelbare Konsequenz des folgenden Satzes:

Satz 3. Die Gesamtheit der reellen Zahlen sei auf irgend eine Weise in eine Untermenge
A und eine Obermenge B zerlegt, d.h., es sei

R A B A Ø, B Ø; a < b a A, b B

Dann gibt es eine wohlbestimmte Zahl s R mit

x < s x A x > s x B x R) 7)

Die Zahl s selbst geh ört entweder der Untermenge oder der Obermenge an; jedenfalls
erzeugt s den Schnitt A, B) von R. Der in Satz 3 beschriebene Sachverhalt wird als
Ordnungsvollständigkeit der Menge R bezeichnet.

Beweis. Es kann höchstens ein derartiges s geben. – Die Menge Qn := Dn n A ist nach
oben beschränkt durch jegliches b B; ferner gilt Qn Qn+1 für alle n 0. Hiernach
ist

n sn := max(Qn) n 0)

eine monoton wachsende und beschränkte Folge von reellen Zahlen. Nach Satz 2 existiert
damit der Grenzwert limn.8 sn =: s R, und wir behaupten, dass s die Eigenschaft 7)
besitzt.
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Betrachte ein beliebiges x < s. Wäre x B, so hätte man sn x für alle n und folglich
nach g) auch s x, was sich mit x < s nicht verträgt.

Betrachte jetzt ein x > s. Nach Satz 1 gibt es ein r N und ein v Dr mit s < v x.
Wäre v A, so hätte man v sr s. Folglich ist v B und damit auch x B.

8 Schluss

Wir brechen hier unsere Konstruktion ab und schließen mit der folgenden Feststellung:

Satz 4. Die Menge R der reellen Zahlen ist überabzählbar.

Beweis. Die Menge M := {0,1}
N X der Null-Eins-Folgen ist nach Cantor überabzählbar.

Gemäß dem Vorangehenden stellt

f : M [0,2 ] x x0 x1 x2x3

eine surjektive Abbildung von M auf das reelle Intervall [0,2 ] dar, wobei jede Zahl

[ 0, 2 ] höchstens zwei Urbilder besitzt. Wäre das Intervall [0,2 ] abzählbar, müsste sich
demnach auch M abzählen lassen, was nicht der Fall ist.
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