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Trigonometric functions, in particular the sine and cosine functions, play a relevant rôle
in physics and various branches of mathematics. In view of their importance the properties

of these functions have been studied intensively. Of special interest are inequalities
for trigonometric functions. In his classical book Analytic Inequalities D.S. Mitrinović
dedicated a whole section to this subject. In the recent past, several authors discovered
remarkable new inequalities for sine, cosine, and their relatives. Many of them appeared in
the Journal of Inequalities in Pure and AppliedMathematics, in Mathematical Inequalities
and Applications, and in the Journal of Inequalities and Applications.

In this note we present a double-inequality involving sine and cosine. Our work has been
inspired by a short paper published by R.J. Webster [4] in 1984. He proved the elegant
inequalities

| sin(cos x)| |cos x| cos(sin x) x R). 1)

See also [1] and [2]. We offer the following counterpart of 1):

SeitJahrzehnten spielen Ungleichungen für trigonometrische Funktioneneine wichtige
Rolle in der Mathematik. D.S. Mitrinović hat dem Thema in seinem Buch Analytic”
Inequalities“ ein ganzes Kapitel gewidmet. In diesen Zusammenhang gehört auch die
elegante Ungleichung

|sin(cos x)| |cosx| cos(sin x) x R),
die im Jahr 1984 von R.J. Webster veröffentlicht wurde. In der vorliegenden Arbeit
stellt der Autor für beliebige reelle Werte von x eine Variation der vorhergehenden
Ungleichungen in der Form

a sin(cos x) + sin(sin x) | cos x + sin x| ß cos(cos x) + cos(sin x)

vor mit den bestmöglichen Konstanten a, ß, welche durch a v2 sin(1/v2) -1

bzw. ß v2 cos(1/v2) -1
gegeben sind.
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Theorem. For all real numbers x we have

a | sin(cos x) + sin(sin x)| | cos x + sin x| ß cos(cos x) + cos(sin x) 2)

with the best possible constant factors

a
1

v2 sin(1/v2)
1.0884 and ß

1

v2cos(1/v2)
0.9301 3)

Proof First, we consider the left-hand side of 2) with a as given in 3). We establish

f x) |cosx + sin x|- a |sin(cos x) + sin(sin x)| 0 forall x R.

Since f x + p) f x), it suffices to show that f is nonnegative on [0,p]. Using the
formulas

cos a + sina v2sin p
cos a- sin a v2 cos

p
4 + a

4 + a 4)

and

sina + sin b 2sin
a + b

2
cos

a - b

2
we obtain the representation

1

2a
f x) |d| sin

1
v2 - sin

d
v2

cos
1- d2

2

with
d d(x) sin

p
4 + x 5)

If 0 x 3p/4, then 0 d 1. This leads to

1

2a
f x) d sin

1

v2 - sin
d

v2
cos

1- d2

2

Furthermore, if 3p/4 x p, then 0 -d 1/v2. Hence,

1

2a
f x) (-d) sin

1

v2 - sin -d

v2
cos

1- (-d)2

2

This implies that we have to prove that

0 t sin
1
v2 - sin

t
v2

cos
1- t2

2
for t [0,1].

We denote the expression on the right-hand side by g(t). Differentiation gives

v2(1- t2 3/2g t) v2t t2 - 1) cos
t

v2
sin

1- t2 1- t2

2 + h
2

sin
t

v2
6)
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where
h(s) s cos s - sin s.

Since h(s) 0 for s [0, p], we conclude from 6) that g t) 0 for t [0, 1]. Thus, g
is concave. We have g(0) g(1) 0. Hence, g(t) 0 for t [0,1].
Now, we prove the second inequality in 2) with ß as given in 3). We show that

u(x) ß cos(sin x) + cos(cos x) - | cos x + sin x| 0 forall x R.

Since u is periodic with period p, we may assume that x [0, p]. Applying 4) and

cosa + cos b 2 cos
a + b

2
cos

a- b

2

yields

1

2ß
u(x) cos

d

v2
cos

1- d2

2 - |d| cos
1

v2

where d is defined in 5). If 0 x 3p/4, then 0 d 1 and

1

2ß
u(x) cos

d

v2
cos

1- d2

2 - d cos
1
v2

Moreover, if 3p/4 x p, then 0 -d 1/v2 and

1

2ß
u(x) cos -d

v2
cos

1- (-d)2

2 - (-d) cos
1
v2

Therefore, we have to show that

0 cos
t

v2
cos

1- t2

2 - t cos
1

v2
for t [0, 1]. 7)

We define for t 0, 1]:

v(t) cos
t

v2
and w(t)

1

t
cos

1- t2

2

The function v is decreasing. To prove that w is also decreasing, we apply the inequality

tan y y +
tan -.3

y3

which holds for all and y with 0 < < p/2 and 0 y A proof is given in [3,

pp. 245, 246]. We set 1/v2. Since

tan -.3
0.41
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we get

tan y y +
1

2
y3 for y [0, 1/v

2]. 8)

Let

y(t)
1- t2

2

Using 8) gives

2y(t)
cos y(t) w t) tan y(t)-

2y(t)
t2

y(t) +
1

2
y(t)3-

2y(t)
t2

-
2y(t)5

+ 3y(t)3
+ 2y(t)

2t2 < 0.

Thus, v and w are positive and decreasing on 0, 1], so that we obtain

v(t)w(t) v(1)w(1) cos
1

v2
for t 0,1].

This settles 7). The proof of double-inequality 2) is complete.

We define

P(x)
cos x + sin x

sin(cos x) + sin(sin x)
and Q(x) | cos x + sin x|

cos(cos x) + cos(sin x)

Then we have

P(p/4)
1

v2 sin(1/v2)
and Q(p/4)

1

v2cos(1/v2)

This implies that the constant factors given in 3) are the best possible.
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