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A trigonometric double-inequality

Horst Alzer

Horst Alzer received his doctoral degree in mathematics from the University of Bonn,
and his habilitation in mathematics from the University of Wiirzburg.

Trigonometric functions, in particular the sine and cosine functions, play a relevant role
in physics and various branches of mathematics. In view of their importance the proper-
ties of these functions have been studied intensively. Of special interest are inequalities
for trigonometric functions. In his classical book Analytic Inequalities D.S. Mitrinovic
dedicated a whole section to this subject. In the recent past, several authors discovered re-
markable new inequalities for sine, cosine, and their relatives. Many of them appeared in
the Journal of Inequalities in Pure and Applied Mathematics, in Mathematical Inequalities
and Applications, and in the Journal of Inequalities and Applications.

In this note we present a double-inequality involving sine and cosine. Our work has been
inspired by a short paper published by R.J. Webster [4] in 1984. He proved the elegant
inequalities

| sin(cosx)| < |cosx| <cos(sinx) (x € R). ()

See also [1] and [2]. We offer the following counterpart of (1):

Seit Jahrzehnten spielen Ungleichungen fiir trigonometrische Funktionen eine wichtige
Rolle in der Mathematik. D.S. Mitrinovi¢ hat dem Thema in seinem Buch ,,Analytic
Inequalities™ ein ganzes Kapitel gewidmet. In diesen Zusammenhang gehort auch die
elegante Ungleichung

|sin(cos x}| < |cosx| < cos(sinx) (x € R),
die im Jahr 1984 von R.J. Webster verdffentlicht wurde. In der vorliegenden Arbeit

stellt der Autor fiir beliebige reelle Werte von x eine Variation der vorhergehenden
Ungleichungen in der Form

o \sin(cos X) -+ sin{sin x)| < |cosx+sinx| < p (cos(cos X) + cos(sin x))

vor mit den bestméglichen Konstanten «, 8, welche durch o = (\/5 sin(1/ \/5))_1
bzw. B = (\/fcos(l/ﬁ))_l gegeben sind.




46 H. Alzer

Theorem. For all real numbers x we have
« | sin(cosx) + sin(sinx)| < |cosx + sinx| < B (cos(cos X) + cos(sin x)) (2)

with the best possible constant factors

1 1
- _10884... and B= —09301.... (3
V2 sin(1/+/2) i 8 V2 cos(1/+/2) &

Proof . First, we consider the left-hand side of (2) with « as given in (3). We establish

f(x)=|cosx +sinx| — « |sin(cos x) 4 sin(sinx)| = 0 forall x € R.

Since f(x + @) = f(x), it suffices to show that f is nonnegative on [0, ]. Using the
formulas

b T
cosda + sing = \/Esin(z +a), cosa —sinag = x/f COS(Z +a), (4

and
. ) o a+b a—>b
sing + sinb = 2 sin 7 cOS 2

we obtain the representation

1f() 13| si ! ‘Sin i cos,/1_82‘
—f(x) = 18] sin — — —
2u V2 V2 7

S:S(x):sin(%—i—x). ()
IfO<x <3x/4,then 0 <& < 1. This leads to

with

1—82

1 1
— f(x) =18 sin — —sm— coS
2a

V2 V2
Furthermore, if 37 /4 < x <, then 0 < —8 < 1/+/2. Hence,

1 5 1 —(—8)2
—f(x)—( 8) sin — — sin — —

2 R

This implies that we have to prove that

2
O<ts1n——sm— cos

v

We denote the expression on the right-hand side by g(7). Differentiation gives

for ¢ € [0, 1].

_ 232" _ K 11 -2y 1
V201 = 12326 (1) = 21 (12 1) cos —= sin | — +h( - )sm . (6)
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where
h(s) =5 coss — sins.

Since 2(s) < 0 for s € [0, 7], we conclude from (6) that ¢”(¢) < 0 for ¢ € [0, 1]. Thus, g
is concave. We have g(0) = g(1) = 0. Hence, ¢(¢) = 0 fors € [0, 1].

Now, we prove the second inequality in (2) with £ as given in (3). We show that
1(x) = B(cos(sinx) + cos(cosx)} — |cosx +sinx| >0 forall x €R.
Since u is periodic with period r, we may assume that x € [0, 7r]. Applying (4) and

a+b a—>b
cosa + cosh = 2cos > cos 3

1
—u(x) = COS — COS — 18] cos —
2p \’

where § is defined in (5). If 0 < x < 37r/4, then0 <4 < 1 and

yields

1 8 1 — 82 1
—u(X) = COS — COS — 8 cos —

28 V2 2 V2

Moreover, if 37/4 <x <, then 0 < —8 < 1/4/2 and

Lu()c) = COS _—8 cos ﬂ — (—38) cos L
28 V2 2 V2

Therefore, we have to show that

2

{ — 1
0 < cos— cos —ftcos— for t €[0,1]. (D

V2 2 V2

We define for ¢t € (0, 1]:

t 1 1 -2
v(f) =cos— and w() = —cos

V2 t 2

The function v is decreasing. To prove that w is also decreasing, we apply the inequality

taniA — A
tany =y + k—y
which holds for all X and y with O < A < /2 and 0 < v < A. A proof is given in [3,

pp. 245, 246]. We set & = 1/+/2. Since

tan A — A

3 =041...,
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we get
1
tany§y+§y3 for v € [0, 1/4/2]. (8)

Let
IQ

v{r) =
Using (8) gives

2y(t)
cos y(1)

w0 =ty - 2 <y + 2y - 2P

W30 +2v0)

T 0.

Thus, v and w are positive and decreasing on (0, 1], so that we obtain

v(HHw(t) = v(w(l) = cos L for 1 € (0, 1].

V2
This settles (7). The proof of double-inequality (2) is complete.
We define
COSX + sinx COSX + sinx
P = |- I g Qe = ST

sin(cos x) + sin(sin x) COS(COS X) + cos(sin x)

Then we have
P(m/4) : d Q@/4) :
T = an T = F
V2 sin(1/4/2) V2cos(1/+4/2)
This implies that the constant factors given in (3) are the best possible. O
References
[1] Bensom, H.: On sin o cos and cos o sin. Math. Gaz. 67 (1983), 43-44.

3
[4

]
[2] Haigh, G.: Another proof that cos(sinx) > sin{cosx). Math. Gaz. 68 (1984), 36.
1 Mitrinovié, D.S.: Analytic Inequalities. Springer, New York 1970.

]

Webster, R.J.: cos(sinx) > | cos x| > | sin(cos x}|. Math. Gaz. 68 (1984), 37.

Horst Alzer

Morsbacher Str, 10

D-51545 Waldbrol, Germany
g-mail: H.Alzer@gmx .de



	A trigonometric double-inequality

