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addition to his current professorship for Applied Mathematics at the FernUniversität
in Hagen. His main fields of research are real analysis, the history of science,
mathematical modelling, and discrete mathematics.

In re mathematica ars proponendi quaestionem pluris facienda est quam solvendi.
G. Cantor, 1867 [8, p. 31]

In 1873, Georg Cantor 1845–1918) presented the first proof of the uncountability of the
set of real numbers by establishing essentially the following statement.

Theorem. For every sequence of real numbers xn)n.N, there is an x0 ]0, 1[ with
x0 xn for all n N.

Cantor’s proof of this result [2, §2] makes use of nested intervals, but today a proof based
on another ingenious idea of Cantor is more popular, namely the diagonal method, which
he introduced in 1891 to prove the uncountability of 2N [3]. However, Cantor himself did
not employ diagonalization directly in the proof of uncountability of R, but gave a rather
intricate derivation of 2N

|R| in [4, §4]. The origin of the now standard argument for

Der heute gebräuchliche Beweis für die Überabzählbarkeit derMenge der reellen Zahlen

stützt sich auf das sogenannte zweite Diagonalisierungsverfahren von Cantor, das

dieser jedoch zum Nachweis der Überabzählbarkeit der Potenzmenge der natürlichen
Zahlen verwandt hatte. Wegen der Nicht-Eindeutigkeit der ublicherweise¨ eingesetzten
Dezimaldarstellung reeller Zahlen mussen¨ aber kunstliche¨ Zusatzbedingungen gestellt
werden, die im Dualsystem versagen. Dies wurde von Fraenkel beobachtet, dessen

Ausweg in der Betrachtung einer flacheren“ Diagonalen bestand. Doch auch sein
Argument ”enthält eine Bedingung an die Dualdarstellung der Diagonalenelemente. Im
vorliegenden Beitrag wird nun ein von Zahlensystem und Darstellung unabhängiger
Beweis vorgestellt.
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the theorem is unknown to me). It starts off from decimal representations

|xn|
k.Z

xn,k · 10-k xn,k {0, 9},

and assigns a digit different from xn,n to x0,n. To avoid the possibility that x0 coincides
with some xn which has two decimal representations, one might either assume that for
these the unique) finite representation had been chosen and exclude 9 as a value of x0,n
w.l., 0 is a member of xn)n.N, such that x0 0), or one might restrict the values for x0,n

to {1, 8} in the first place.

Presumably, it is this “classical procedure” which David Hilbert 1862–1943) considered
worth explicating to Albert Einstein 1879–1955), and “Einstein, who seized everything
immediately, was totally overwhelmed by the splendor of these thoughts...” translated
from a letter 1918) of Hilbert to Cantor’s daughter Else, as quoted in [7, p. 176]). On the
other hand, the same proof stirred a lot of controversy among lesser minds, even leading
to a court case cf. [6]).

Although ennobled by its inclusion in The Book [1, p. 92f] and therefore regarded as

perfect [1, p. V], this proof has the disadvantage of being rather artificial in the construction
of the wanted number, depending on the base p of the number system employed and,
more seriously, it does not work at all for the dual system! The second variant even
has problems in base p 3, which can, however, be overcome by putting x0,n 1, if
xn,n 1, and otherwise x0,n 0, if n is odd, and x0,n 2, if n is even.) This was

noted by Abraham Fraenkel 1891–1965) [5, p. 66f], whose way out was to insert bits 0
into the binary expansion of x0 between any two switched entries from the sequence of
reals, thereby using a less inclined diagonal. Again, this only works if a representation
not ending in 1s is assumed for all numbers. Therefore we propose the following most
straightforward proof of the theorem for base p 2.

Proof. Let
n N : |xn|

k.Z
xn,k · 2-k xn,k {0, 1},

and define
n N : x0,2n-1 xn,2n, x0,2n 1 - xn,2n,

and

x0

k.N
x0,k · 2-k

Then x0,k)k.N is not eventually constant since x0,2n-1 x0,2n and therefore x0 ]0, 1[
and n N : x0 xn because x0,2n xn,2n.

This proof does not depend on the base p of the number system, because we may put
x0,2n xn,2n + 1) mod p. It is constructive in the sense of Cantor, who asserts that one
can determine (“bestimmen”) x0 in the theorem. In fact, since he had shown in [2, §1] that
the set of algebraic numbers can be arranged in a sequence xn)n.N, the corresponding x0
from our proof of the theorem is an explicit transcendental number.
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