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Rings which are generated by their units:
a graph theoretical approach
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The study of rings which are generated additively by their units seems to have arisen in
1953-1954 when Wolfson [13] and Zelinsky [14] proved, independently, that if V is a
finite or infinite dimensional vector space over a division ring D, then every linear trans-
formation is the sum of two nonsingular linear transformations unless dimV = 1 and

Der folgende Beitrag behandelt eine Strukturfrage zur Theorie endlicher kommutati-
ver Ringe. Solche Ringe sind beispielsweise durch die Restklassenringe Z/nZ (n € N)
oder durch direkte Produkte solcher gegeben. Ein Element # eines kommutativen Rin-
ges R, das in R ein multiplikatives Inverses u~! besitzt, wird Einheit genannt. Man
sagt, dass der Ring R durch Einheiten erzeugt ist, wenn sich jedes Element von R
als Summe von Einheiten darstellen ldsst. In diesem Beitrag wird unter Verwendung
eraphentheoretischer Methoden in elementarer Weise gezeigt, dass ein endlicher kom-
mutativer Ring R mit von 0 verschiedenem Finselement genau dann durch Einheiten
erzeugt ist, wenn es in R kein Ideal I mit Faktorring R/I = Z /27 x Z/2Z gibt.
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D = Z;. This implies that the ring of linear transformations Endp (V') is generated ad-
ditively by its units. In fact, every element of Endp (V) is the sum of two units except
for one obvious case when V is a one dimensional vector space over Z;. Wolfson’s and
Zelinsky’s result caused quite a bit of interest in the study of rings that are generated by
their units,

In 1958, Skornyakov [8, p. 167, Problem 31], posed the problem of determining which
regular rings are generated by their units. More precisely, he asked: Is every element of a
von Neumann regular ring, which cannot have Zy as a quotient, a sum of units? — This
question of Skornyakov was answered negatively by Bergman in 1977 (see [5] which is a
significant contribution to the theory of von Neumann regular rings). Bergman constructed
a von Neumann regular algebra in which not all elements are sums of units.

In 1968, while apparently unaware of Skornyakov’s book, Ehrlich [2] produced a large
class of regular rings generated by their units. He proved that if R is a ring such that 2 is a
unit and for every ¢ € R there exists a unit # € R such that aua = a, then every element
of R is the sum of two units.

In 1974, Raphael [7] launched a systematic study of rings generated by their units, which
he calls S-rings.

Finally, in 1976, Fisher and Snider [3] proved that if R is a von Neumann regular ring with
primitive factor rings artinian and 2 is a unit, then every element of R can be expressed as
the sum of two units.

In 1998, Wolfson’s and Zelinsky’s result was reproved by Goldsmith, Pabst and Scott
where they remarked that this result can hardly be new but they were unable to find any
reference to it in the literature (see [4]). Interest in this topic increased recently after they
defined the unit sum number in [4].

For additional historical background the reader is referred to the paper [10], which also
contains references to recent work in this area. Also see [9] for a survey of rings which are
generated by their units.

The purpose of this note is to give an elementary proof of Theorem 1.1. The proof uses
graph theory, and offers, as a byproduct, that if R is a finite commutative ring with nonzero
identity which is generated by its units, then every element of R can be written as a sum
of at most three units.

Theorem 1.1 ([7, Corollary 7]). Let R be a finite commutative ring with nonzero identity.
Then R is generated by its units if and only if R cannot have Zp x Zy as a quotient.

2 Basic notation and properties of graphs

In this section we introduce some notation and definitions of graphs that will be used
throughout the note. We also state and prove Lemmas 2.1 and 2.2 which are required
in Section 3. Here, by a graph G we mean a finite undirected graph without loops and
multiple edges (unless otherwise specified). The reader is referred to [1] and [12] for a
fuller treatment of the subject.

For a graph G, let V (G) denote the set of vertices. Let & be a graph and suppose x, vy €
V(G). We recall that a walk between x and y is a sequence X = vp, €1, U, ..., €k, Vg = ¥
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of vertices and edges of G, denoted by
4] er
X=v9—V —> ... —> V=Y,

such that for every i with 1 < i < k, the edge ¢; has endpoints v;_; and v;. Also a paih
between x and v is a walk between x and y without repeated vertices. The number of
edges in a walk (counting repeats) or a path is called its length.

For the proof of Theorem 1.1 we need the following well-known fact. We state and prove
it here for the convenience of the reader.

Lemma 2.1. Let x and y be distinct vertices of a graph G. If there is a walk between x
and y then there is also a path between x and v.

Proof. By assumption there is a walk between x and vy and so we may select a walk
€1 €k
Wix=vw—>vy— ... — =Y

of minimal length &£ between x and v. If W is not a path, select a vertex that appears twice,
say v; = v; where i < j. Consider

;. e e €j+1 ek
Wix=vwp—v1—...—V —Vj}] —> ... — Vg =Y.

Then W' is a walk between x and vy with length shorter than &, a contradiction. Therefore
W is a path between x and vy. U

A graph G is called connected if for all vertices x and y there exists a path between x and
v. Otherwise, G is called disconnected.

A bipartite graph is one whose vertex-set is partitioned into two (not necessarily
nonempty) disjoint subsets, called parts, in such a way that the two end vertices for each
edge lie in distinct parts. Among bipartite graphs, a complete bipartite graph is one in
which each vertex is joined to every vertex that is not in the same part.

Let Gy and G2 be two vertex-disjoint graphs. The category product of G and G2 is
denoted by G1xG». Thatis, V(G1xG2) := V(G1) x V(G2); two distinct vertices (x, y)
and (x', y") are adjacent if and only if x is adjacent to x’ in G1 and y is adjacent to y’ in G».

We now state and prove the following lemma which will be used in the proof of Theo-
rem 1.1. A bipartite graph is nontrivial if both parts of its vertex set are nonempty. For
more information on this lemma we refer the reader to [11].

Lemma 2.2. Let G1 and G be two bipartite graphs at least one of which is nontrivial.
Then G1x G is disconnected.

Proof. We assume that G is nontrivial. Thus (1 is partitioned into two disjoint subsets
X1 and Y7 as well as G into two disjoint subsets X» and Y» in such a way that | Xq| > 1,
|X2| = 1 and |¥2| = 1. Chooseda € X1,b € X7 and ¢ € Yo, We claim that there is no path
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between {(a, b) and (4, ¢) in G1xG. In order to do this, suppose in contrary that, there is
a path P between (a, b) and (a, ¢) in G1xG2:

P:o@b) = (a1, b)) =2 (a2, b2) —> ... 22 (@p_1. buo1) = (@, 0).

We now obtain the walk W in (1 and the walk W in G2 both with length #n:

= é1 é én—1 &
W: a—a —adr— ... — ay_1 — da,
~ é1 én €n—1 é
W: b—bl—>by—> ... 5 by_1 — c.

The existence of the walk W implies that # is even while the existence of the walk W
implies that n is odd, a contradiction. Thus there is no path between (a, b) and (a, ¢) in
G1x G», which implies that G| x G5 is disconnected. O

Let us consider yet a few more definitions required for a complete understanding of the
next section. For a graph & and vertices x and y of G, the distance between x and vy,
denoted by d(x, y), is the number of edges in a shortest path between x and y. If there is
no path between x and vy then we write d(x, y) = oc. We recall that the largest distance
among all distances between pairs of the vertices of a graph G is called the diameter of G
and is denoted by diam(( ). Finally, for a given vertex x € V(G), the neighbor set of x is
the set Ng(x) := {v € V() | v is adjacent to x}. Moreover, if & has a loop at vertex x,
then we always assume that x € Ng (x).

3 Proof of Theorem 1.1

In this section, using the results presented in Section 2, we are able to prove Theorem 1.1.

Let R be an arbitrary finite associative ring R with nonzero identity, say 1, which is pre-
served by homomorphisms and inherited by subrings. Let U be the set of units of R. We
attach a graph to R, denoted by Gg, based on the elements and units of R. This graph
is obtained by letting R be the set of vertices and defining distinct vertices x and y to be
adjacent if and only if x +y € Ug. If we omit the word “distinct” in the definition of Gg,
we obtain the graph Gg; this graph may have loops. Note that if 2 ¢ Up, then Gp = Gg.
The graphs in Fig. 1 are the graphs attached to the rings indicated.

It is easy to see that, for given rings R and S, if R = S asrings, then Gr = Gy as graphs.
Also wehave GrxGs = Grys.

In Fig. 2 we illustrate these points for the direct product of the rings Z» and Z3.
We need the following result, which is useful in the sequel.

Lemma 3.1. Lei R be a finite commutative local ring with maximal ideal m. Then the
Jollowing statements hold:

(a) If |R/m| = 2, then G is a complete bipartite graph.
(b) If |R/m| > 2, then for every x, v € R we have NER (x)n NER (y) # 0.
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1 2
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Proof. Part(a): Let X =mandY = R\m. Wehave V(Gr) =XUYand X NY =@.
Therefore X and Y partition V(Gpr) into two subsets. It is clear that no pair of distinct
elements of X are adjacent. We show that no distinct elements of ¥ are adjacent. In order
to do this, fix an element in R \ m, say ¢. By assumption we have R = mU (m +a) =
mU (m + (—a)). Now for distinct elements x and y in R \ m, we may write x = m + a
and y = m’ — a where m, m’ € m. If x + y € Ug, then we conclude that m + m' € Ug.
Therefore m has a unit element and so m = R, a contradiction. Thus x + v ¢ Upg, which
implies that x and vy are not adjacent. Therefore no distinct elements of ¥ are adjacent.
Hence Gp is a bipartite graph.

Supposethatx € X and v € Y are given. If x + v ¢ Upg, thenx +ve X andsov € X, a
contradiction. Thus x 4+ v € Ug, which implies that x and v are adjacent. Therefore each
vertex of X is joined to every vertex of ¥ and so Gp is complete bipartite.

Part (b): By assumption we conclude that |[Ug| = 2|R|/3. Suppose that x is an arbitrary
element of R and fix it. There are two possibilities: either 2x ¢ Ug or 2x € Ug. If
2x ¢ Ug, then Gy has no loop at vertex x. On the other hand, for every element 1 — x,
where u € Ug, we have u —x # x and u — x is adjacent to x in Gg. This implies
that {u —x | u € Up} C NER(X) and so |N5R(x)| > |Ugr| > 2|R|/3. If 2x € Ug,
then Gg has a loop at veriex x. On the other hand, for every element u — x, where

ue Up\{2x},wehaveu — x # x and u — x is adjacent to x in G . This implies that
n—xluelUp\2x}JU{x)={u—-—x1|uelUgp}C NER(X) and so we have again
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|N5R (X)) = |Ug| = 2|R|/3. Theretore, in both cases, we have |N5R (x)| = 2|R|/3.
Now, for every x, v € R,

|INg () NNg, (W] = NG O+ NG, D = [Ng, (X)) U Ng ()]
> (2|R|/3) + (2|R[/3) — |R]
= |R|/3
> 0
and so NgR x)n NER (v) # @ as required. Ol

Now let R be a finite commutative ring with nonzero identity and fix it. We want to prove
R is generated by its units if and only if R cannot have Z; x Z, as a quotient. We start
with the proposition below which contains a necessary and sufficient condition for Gg to
be connected.

Proposition 3.2. Gy is connected if and only if R is generated by its units.

Proof. (=) Suppose thata € R is written by the sum of some units and b € R is adjacent
toa in Gg. Therefore a + b € Ug and so we may write b = ¢ — a, for some ¢ € Ug. Thus
b is the sum of some units.

Now suppose that x € R is given. Since G is connected, there exists a path between
x and 1 and, therefore, by the above observation we conclude that x is the sum of some
units, This means that R is generated by its units.

(<=) Suppose that a € R. Since R is generated by its units, we may writea = u1 +...+
uy, where u; € Ugr, 1| <i <k. We now have the walk
€1 €2 €3 ey
O0— —u1 —— U1+ —> —U1 —ip — 13 —> U1 +ux+u3z+ uq

e S .t =a
between 0 and ¢, when k is even and the walk

€] €2 e3 €4
O— 1 —> —U1 — Uy —> U]+ U+ U3 —> —U1 — U2 — U3 — U4q

er
— ... — U1+ ... F U=

between 0 and ¢, when k£ is odd.

This implies that for every x, v € R there is a walk W between x and 0 as well as a walk
Ws between O and v. The walks Wy and W» together form a walk W between x and y. By
using Lemma 2.1, we conclude that there is also a path P between x and y, which implies
the connectedness of Gg. O

The following proposition contains another necessary and sufficient condition for Gg to
be connected.

Proposition 3.3. G is connected if and only if R cannot have Zp x Z» as a quotient.
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Proof. Every finite commutative ring with nonzero identity is isomorphic to a direct prod-
uct of finite local rings (see [6, p. 95]). Therefore, we may write R = Ry x ... X Ry,
where every R; is a local ring with maximal ideal m;.,

(=) Suppose by contrary that R has Z, x Zp as a quotient. This implies that for at least
two i, for examplei = 1, 2, we have | R; /m;| = 2. Now part (a) of LLemma 3.1 implies that
Ggr, and G, are both bipartite. Thus by using Lemma 2.2, we conclude that Gg, xG R
is disconnected.

On the other hand, by the observation just before .emma 3.1, we have

ER] >.<ER2 if k=2,
Gp =

(ERliﬁRz)kERgx...ka if £ > 3.
But fori = 1,2 wehave 2 ¢ Ug, and so G, = Gg,. Therefore we obtain

Gr, xGr, if & =2,
Gr = : - .
(GR1XGR2)XGR3X...XRk if kK > 3.

Now the disconnectedness of Gg, xG Rk, implies that G is also disconnected. This con-
tradiction shows that R cannot have Z, x Z as a quotient.

(<=) By assumption R cannot have Z» x Z, as a quotient. This implies that for at most
one i, we have |R; /m;| = 2. There are the following cases to be considered:

(1) |R;/m;| > 2 holds for every i.

Suppose that x = (x1,...,xx) and vy = (v1,..., ¥x) are arbitrary distinct elements of
Ry x ... x Ry. Since for every i with 1 < i < k we have |R; /m;| > 2, by using part
(b) of Lemma 3.1 we conclude that NER, x;) N Nng (vi) # @. Therefore we may choose

zi € Ng, (xi) N N, (¥;). Thus we have the following walk in GRyx.. xRy

(XL X 5 (@ e T~ (V1eee 0.

This implies that d(x, y) < 2 and so diam(Gg) = diam(GRg,«..«Rr,) < 2.
(2) |R;/m;| > 2 holds for every i except one of them.

First, suppose that £ = 1. In this case R = R is a finite local ring with maximal ideal
mj in such a way |R;/my| = 2. Thus, if R is a ficld, then we have R = Z, and so
diam(Gg) = 1. If R is not a field, then by using part (a) of Lemma 3.1 we conclude that
G r is complete bipartite with |R| > 4 and so diam(Gg) = 2.

Second, suppose that £ > 2. In this case we may assume that |Ry/mq| = 2 and | R; /m;| >
2 forevery i with 2 <i < k. Supposethat x = (x1, X2, ..., xp)and y = (v, v2, ..., ¥&)
are arbitrary distinct elements of Ry x Rz x ... x R. If either x1, y1 € my or X1, v1 € my,
then by the same argument as above, we obtain a path between x and y with length at
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most 2. This implies that d(x, v) < 2. Now, we may assume that x; € my and y; ¢ my.
Forevery i with 2 < i < k, consider w; as follows:

1 if x; € m;,

w; = .
0 if x; € my.

On the other hand, since for every i with 2 < i < k we have |R;/m;| > 2, by using part
(b) of Lemma 3.1 we conclude that Nng (wi) N NER. (vi) # @. Therefore we may choose

Z; € NER, (w;y N NER. (vi). Thus we have the following walk in ERl SRy ¥ Ryt

€1 e €3
(x17x21~-‘,xk) —p (y17w27“'7wk) — (xlaZZM-‘,Zk) — (y11y2=‘--7yk)~

This implies that d(x, v) < 3. Therefore, for every distinct x, y € Ry X Ry X ... X Ry we
have d(x, y) <3 and so diam(Gg) = diam(G g, «p,x..xRr,) < 3.

Therefore in both cases we have diam(G ) < 3. Thus every two vertices of G are joined
by a path with length at most 3, which implies that G p is connected. O

Propositions 3.2 and 3.3 imply that R is generated by its units if and only if R cannot have
Zy x Zy as aquotient which completes the proof of Theorem 1.1. Our proof shows that if R
cannot have Zy x Z as a quotient, then not only G g is connected, but also diam(Gg) < 3.
Therefore, we may state

Corollary 3.4. Lei R be a finite commutative ring with nonzero identity. If R is generated
by its units, or equivalently, R cannot have Zy x Zy as a quotient, then every element of
R can be written as a sum of at most three units.
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