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1 Introduction
Given an n × 2 matrix, its rows can be geometrically interpreted as a cloud of points in
the plane. Such a cloud of points could show clustering around a straight line. In statistics
Pearson’s empiric) correlation coefficient is often used to capture the degree to which this
phenomenon occurs in a number. This seems a peculiar usage, for Pearson’s correlation
coefficient changes when the cloud of points is rotated. Hence, whereas the shape of the
cloud of points is completely preserved, the very number that is supposed to characterize
clustering around a line changes its values see also [4], [5], [6]). Other measures of linear
association that do better in this respect can easily be created. Such measures, however,
fail as a rule to be invariant under the action of rescaling the data. It will be explained that
this is no coincidence.

2 Setting notations and conventions
The mean of the components x1, x2, xn of a vector x will be denoted by x̄. The
covariance of two n-vectors x and y will be denoted by cov(x,y), hence one has

cov(x, y)
1

n

n

i=1
xi - x̄)(yi - ȳ).

In dem nachfolgenden Beitrag geht es darum, Maße zu finden, welche die Anpassung

einer Punktemenge der euklidischen Ebene an eine Gerade beschreiben. Ein
solches Maß ist beispielsweise der auf Pearson zurückgehende Korrelationskoeffizient,
der sensitiv für ein solches Clustering“ von Punkten ist. Der Autor stellt nun fest,”dass das PearsonscheMaß nicht invariant gegenüber Drehungen, wohl aber gegenüber
Streckungen in der x- bzw. y-Richtung ist. Insbesondere beweist er den Satz, dass es

kein solches Maß gibt, dass sowohl gegenüber Rotationen als auch Skalierungen invariant

ist.
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The variance of a vector x is by definition the quantity cov(x,x) and will be denoted by
var(x). Pearson’s correlation coefficient for two vectors x and y is defined by

.P(x, y)
cov(x, y)

vvar(x)vvar(y)

provided the denominator in the fraction above is non-zero.

To every cloud of points, consisting of n points, belongs an n × 2 matrix and vice versa.

If the cloud of points contains at least two different points, then its corresponding matrix
will be called a datamatrix. A datamatrix will be called degenerate if the corresponding
points in the plane are collinear. Datamatrices will, as a rule, be denoted by the symbol
d. The first and second column of an n × 2 matrix will sometimes be denoted by x and y.
These columns can be interpreted as vectors in Rn. The Pearson correlation coefficient of
a datamatrix d is understood to be the coefficient of its two columns and will be denoted as

.P(d). Incaseswhere there is oneconstantcolumn the coefficient is set to 1 by convention.

3 Transformation groups and invariance

Suppose an n × 2 datamatrix d is given. When rotating the corresponding cloud of points
over an angle the matrix belonging to the rotated cloud is given by

d d
cos( -sin(
sin( cos(

The fact that Pearson’s correlation coefficient changes under rotation could thus
mathematically be expressed by saying that one generally has

.P(d .P(d).

A 2 ×2 matrix of type

cos( - sin(
sin( cos(

will be called a rotation. The set of all rotations forms a so-called matrix multiplication
group, that is to say see [1], [3]):

• Every rotation has an inverse and the inverse matrix is a rotation.

• The matrix product of two arbitrary rotations is a rotation.

In the following this group will be referred to as the group of rotations. The fact that
Pearson’s correlation coefficient changes its value under rotations will be referred to by
saying that the coefficient is not invariant under the group of rotations.

Similar to rotating a datamatrix one can scale an n × 2 matrix d to obtain a transformed
datamatrix d given by

d d a 0
0 ß
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where a,ß > 0. The set of all matrices of type

a 0
0 ß

with a, ß > 0 is also a matrix group. It will be called the diagonal group. Note that
Pearson’s correlation coefficient is invariant under this diagonal group.

A translation of a datamatrix d is understood to be a transformation of the form

d d + a

where a is a matrix of type
p q
p q

p q

Note that Pearson’s coefficient is invariant under translations.

4 General measures of linear association

In this section a small framework will be set up in an effort to capture the concept of a

bivariate measure of linear association in general terms. Such measures will be defined as

being functions of a certain type, defined on the set of all datamatrices. The functions will
have to meet certain continuity conditions. To be more precise in this, denote the set of all
2-column datamatrices with k rows by Dk. The set D is now defined as the union of the

D1,D2, So D comprises all possible 2-column datamatrices, indifferent their number
of rows.

Definition 1. A real-valued functiond d), definedon the set of all 2-column datamatrices

D, is said to be continuousat the point d if for every sequence d1,d2, of matrices
of the same size) converging to d the sequence d1), d2), converges to d).

Definition 2. A bivariate measure of linear association is understood to be a real-valued
function d d), defined on the set of all 2-column datamatrices D, that has the
following six properties:

a) For every d one has 0 d) 1.

b) One has d) 1 if and only if d is degenerate.

c) is invariant under row permutations.

d) is invariant under translations.

e) is invariant under scalar multiplication, that is to say, one has d) s d) for
every non-zero scalar s.

f) If a datamatrixd does not contain columns that are constant then is continuous at d.
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A measure will be called symmetric if d) remains unchanged when exchanging the two
columns in d.

The absolute value of Pearson’s correlation coefficient could serve as a first example of a

symmetric) measure of linear association.

Definition 3. If a measure of linear association is invariant under rotations, then it will
be called a geometric measure. Similarly, if is invariant under the diagonal group, then

it will be called an algebraic measure.

General measures always being invariant under translations, geometric measures are actually

invariant under the group of Euclidean transformations. For this reason they present
geometric characteristics in the sense of modern geometry see [9]). The absolute value of
Pearson’s coefficient, however, is algebraic, not geometric. It does not present a geometric
characteristic. Clustering around a line being a geometric property, Pearson’s coefficient
seems not the right measure to capture this phenomenon. Following lines in [5], [4], here

is an example of a geometric measure:

Definition 4. Given an arbitrary n × 2 matrix d its Euclidean correlation coefficient is
given by

.E d) max|.P(d |
where the maximum is taken over all rotated datamatrices d of d.

More colloquially, the Euclidean correlation coefficient is the maximum value of
Pearson’s correlation coefficient that can be obtained by rotating the cloud of points. Thus
the properties listed in Definition 2 are met and therefore d .E d) is a measure of
linear association indeed. Besides this, exploiting the fact that rotations form a group, it is
easy to see that the Euclidean correlation coefficient is invariant under rotations. However,
the Euclidean correlation coefficient fails to be invariant under scalings. As will become
apparent in the next theorem, this is no coincidence.

Theorem 5. A measure of linear association cannot possibly be both geometric and
algebraic.

Proof Suppose that d d) is a measure of linear association that is both invariant
under the rotation and the diagonal group. Then it is also invariant under transformations
of type

q1sq2

with q1, q2 rotations and s a positive diagonal matrix. However, every invertible 2 × 2
matrix can be decomposed in this way see for example [10]). It follows from this that is

invariant under the group of all invertible 2×2 matrices. Otherwise stated, for an arbitrary
datamatrix and an arbitrary invertible 2 ×2 matrix g one would have

d) dg).

It will turn out that this is impossible. To see this, define for every straight line in R2 the

matrix p( as the 2 × 2 matrix belonging to the orthogonal projection on Nowfix an
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arbitrary non-degenerate datamatrix d and choose in such a way that the matrix product
dp( does not contain constant columns. Define the sequence g1,g2, g3 by

g. p( +
1

e - p(

where e stands for the identity matrix. Then g1, g2, g3 is a sequence of invertible
matrices that converges to the non-invertible matrix p( Because dp( does not contain
constant columns the measure is continuous there and for that reason one may write

1 dp( lim
..8

dg. lim
..8

d) d).

The value 1, however, is exclusively reserved for degenerate matrices. Thus the assumption

that is both geometric and algebraic leads to a contradiction.

5 Maximizing Pearson’s coefficient to obtain the Euclidean

In this section the main result in [5], [4] will be derived by using linear algebra. The
problem that will be dealt with is the maximization of the expression

| .P(dq)|

where q runs through the group of all rotations. Denoting the first and the second column
of d by x and y, the covariance matrix C(d) of d is defined as

C(d) var(x) cov(x, y)
cov(x, y) var(y)

Note that, if x̄ and ȳ are zero, then C(d) is just equal to the matrix product d†d, where d†
stands for the transposed of d. The next theorem is stated in terms of the determinant and

trace of the covariance matrix C(d):

Theorem 6. For an arbitrary 2-column datamatrix d one has

.E d) |max
q .P(dq)| 1-

4det [C(d)]

trace[C(d)]
2

where the maximum is taken over all rotations q. A rotation q is maximizing if and only if
the columns in dq are of equal variance.

Proof To maximize the expression | .P(dq)| it will prove to be comfortable to present
Pearson’s coefficient for an arbitrary 2-column matrix d as

|.P(d)| 1-
det [C(d)]

var(x)var(y)
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where det [C(d)] stands for the determinant of the covariance matrix of d. To start the
reasoning, note that for two arbitrary real numbers a and b one always has

ab
a + b

2

2

with equality if and only if a and b are equal. Taking for a and b the numbers var(x) and
var(y), one arrives at the following inequality for Pearson’s coefficient

| .P(d)| 1-
4 det[C(d)]

var(x) + var(y) 2
1 -

4 det[C(d)]

trace [C(d)] 2 (*)

with equality if and only if the columns of d are of equal variance. Now note that for an

arbitrary 2 ×2 matrix q one has

C(dq) q†C(d)q

where q†, as before, stands for the transposed of q. It follows from this that in the special
case where q is a rotation the right side of (*) remains unchanged when replacing d by dq.
As a consequence one has for an arbitrary datamatrix d and an arbitrary rotation q that

| .P(dq)| 1 -
4 det[C(d)]

trace [C(d)] 2

with equality if and only if the columns in dq are of equal variance. It is easy to see that to
every d there is always some rotationq that brings the latter about. Namely, when applying
a rotation over an angle of 90 the variances of the first and second column are exchanged.
Hence, by continuous rotation from 0 to 90 the column of smallest variance eventually
switches over into the one of largest variance. It follows that there must be some angle

in between 0 and 90 for which the columns are of equal variance. This proves that the
maximum value of |.P(dq)| is equal to the right side of the above.

Another explicit expression for the Euclidean correlation coefficient is given by the next
theorem:

Theorem 7. For an arbitrary n × 2 datamatrix one has

.E d) .max- .min

.max + .min

where .min and .max are the smallest and largest eigenvalue of the covariance matrix of d.

Proof This is a direct consequence of the previous theorem.

The theoremabove allows for an interesting interpretation of the Euclidean correlation
coefficient in orthogonal regression theory. Orthogonal regression distinguishes itself from
ordinary regression in that the orthogonal residual of a point in the plane relative to a

straight line is defined as the Euclidean distance of the point to the orthogonal projection
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of the point on the line in question, that is, the distance of the point to the line. In ordinary
regression one takes the distance to the vertical projection. Given a cloud of points in the
plane and a straight line, one could square the orthogonal residuals of all points and add

them up. Thus the so-called residual sum of squares or the sum of squares of errors of the
cloud of points relative to a straight line can be computed. The straight line that minimizes
the residual sum of squares relative to a fixed cloud of points, completely similar to ordinary

regression, is called the regression line in orthogonal regression theory. Regression
lines in ordinary and orthogonal regression usually differ. To see how a regression line in
orthogonal regression can be computed, suppose a straight line with equation ax + by c

is given, where a and b are normalized such as to have a2 + b2 1. Then the residual sum

of squares of a set of points x1, y1), x2, y2), xn, yn) relative to this line is equal to

i
axi + byi - c)2

The above can be rewritten as

i

2a(xi - x̄) + b(yi - ȳ) + ax̄ + b¯y - c

This, in turn, can be rewritten as

n a b) C
a
b + a x̄ + b ȳ- c)2

where C stands for the covariance matrix of the cloud of points. From the above it can
be read off that the regression line must always pass through the barycenter of the cloud
of points. Given this, the coefficients a and b can be computed by optimizing the matrix
product

a b)C
a
b

under the constraint a2 + b2 1. It is well-known from linear algebra see [10]) that the
maximum and minimum are respectively the largest and smallest eigenvalue of the matrix
C and that they are realized by normalized) eigenvectors of this symmetric matrix. It
thus appears that the underlying mathematics in orthogonal regression is equivalent to the
determination of the principal components of the datamatrix d that belongs to the cloud of
points see [7]).

Now denote the largest and smallest eigenvalue of C by .max and .min. From the above it
follows that the residual sum of squares of the regression line is equal to n.min. The fact
that the regression line passes through the barycenter implies that the sum of the residuals
is zero. This, in turn, implies that the variance of the residuals is equal to .min. For this
residual variance one always has

.min
.max + .min

2

var(x) + var(y)
2
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with equality if and only if .max .min. Equality would present the worst case scenario
as to an orthogonal regression fit. It thus seems natural to define, similarly to ordinary
regression, the concept of the fraction of unexplained variance as the quotient of the left
and the right side of the above.

Definition 8. The fraction of explained variance in orthogonal regression is understood to
be the number

1-
2.min

.max + .min

.max - .min

.max + .min

In this terminology the fraction of explained variance is precisely the value of the
Euclidean correlation coefficient. Recall that in ordinary regression it is the square of
Pearson’s coefficient that presents the fraction of explained variance.

6 Comparing bivariate measures of linear association

Given a measure of linear association d d) there are many ways to derive other
measures from it. One trivial way to do this is by transforming the measure by means of a

strictly increasing continuous function f : [0,1] [0,1] with f 1) 1. Namely, if is
a measure of linear association then so is the composition f

Definition 9. Two measures of linear association .1 and .2 will be called equivalent
if there exists a strictly increasing continuous function f : [0,1] [0, 1] such that

.2 f .1.

Measures are sometimes created see [2], [5]) by so-called ‘balloon rules’. The idea of
such measures is, heuristically, that an ellipse is fitted to the scatterplot in such a way that
it contains, say, some 95% of the points. Then the axes of the ellipse are compared in the
form of a ratio. Actually, all these measures are more or less based on the ratio of .min
and .max. To be more precise, if f : [0, 1] [0,1] is a strictly decreasing continuous
function with f 0) 1 then a map of the form

d f .min
.max

presents a geometric measure of linear association. A subclass of geometric measures

emerges:

Definition 10. A measure of linear association that can be captured in the way sketched
above will be called an elliptic measure.

Generally all elliptic measures are equivalent. By the results in the previous section the
Euclidean correlation coefficient is a special example of an elliptic measure. It follows that
a measure is elliptic if and only if it is equivalent to the Euclidean correlation coefficient.
A non-trivial example of an elliptic measure is provided by the following:

Example 11. Given an arbitrary datamatrix d one could consider to determine the mean

value ¯P, with respect to the Haar measure on the group of rotations, of the absolute value



Classification of bivariate measures of linear association 9

of Pearson’s coefficient over all rotations dq. This mean can easily be computed. To see

this, suppose that the datamatrix d has columns of equal variance and that its Pearson

coefficient is If d is a rotation of d over an angle then Pearson’s coefficient of d is

related to as:

.P(d
cos(2.)

1- .2 sin2(2.)

The above can be derived by elementary trigonometric arguments. Consequently

¯P(d)
1

2p

2p

0

| cos(2.)|
1- .2 sin2(2.)

d.

2

p

p/2

0

| | cos(

1- .2 sin2(
d.

2 arcsin(| |)
p

However, the variances of the two columns in d being equal, one has applying Theorem 6)
that | | .E d). It follows that for such datamatrices one has

¯P(d)
2arcsin[.E d)]

p

Both sides of the equality above being invariant under rotations, the equality holds for
arbitrary 2-column datamatrices. Thus the mean of Pearson’s coefficient appears to be

elliptic.

Non-elliptic geometric measures do exist:

Example 12. Let d be an arbitrary n × 2 datamatrix and an arbitrary straight line in R2

that passes through the origin. Project orthogonally) the points in R2 that are defined by
d on the line Thus a subset of is created. Denote the diameter of this subset by d(d,
Define dmin and dmax as

dmin min d(d, and dmax max d(d,

where the minimum and maximum is taken over all straight lines that pass through the
origin. A measure can now be defined by setting

d) 1-
dmin

dmax

This is a geometric measure of linear association. To see that the measure is not
elliptic, consider the two datamatrices d1 and d2 defined by

d1 32v2
1 1
0 2
1 3

d2 v3 -1 0
1 1
0 -1
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The matrices above are such that their covariance matrices both have eigenvalues 1 and 3.

In spite of this one has

d1)
1

3
and d2)

1

4
It follows that cannot possibly be elliptic.

Given some geometric measure of linear association, there might be a wish to convert it
into an algebraic measure. A way to bring this about is by standardization see also [2]).
For an arbitrary vector x in Rn its standardization is defined as

std(x)
1

vvar(x)

x1 - x̄

x2 - x̄

xn - x̄

For a datamatrix d its standardization std(d) is understood to be thematrix that arises when
standardizing all its columns. For an arbitrary measure of linear association one can in
this way create a map

d [std(d)]

This map presents an algebraic measure of linear association.

Definition 13. The map above will be called the standardization of and will be denoted
as std(

When taking the Euclidean correlation coefficient as a candidate one arrives at:

Theorem 14. The standardization std(.E of .E is equal to .P.
Proof. If d is a datamatrix with columns of equal variance, then one has by Theorem 6)
that

.P(d) .E d).
For an arbitrary datamatrix d the matrix std(d) has columns of equal variance, hence one

generally has

.P(d) .P std(d) .E std(d)

It follows from this that std(.E is equal to .P.
Theorem 15. Two geometric measures of linear association are equivalent if and only if
their standardizations are equivalent. They are equal if and only if their standardizations
are equal.

Proof If two geometric measures .1 and .2 are equivalent then evidently std(.1) and

std(.2) are so. To prove the converse, suppose that std(.1) and std(.2) are equivalent.
Then there exists a continuous strictly increasing function f : [0, 1] [0,1] such that
std(.1) f std(.2). Using the fact that a measure of linear association is invariant under
scalar multiplications, this actually implies that one has

.1(d) f .2(d)

whenever the columns of d are of equal variance. Now let d be an arbitrary datamatrix and

let q be a rotation such that dq has columns of equal variance. Because both .1 and .2
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are geometric, one may write

.1(d) .1(dq) f .2(dq) f .2(d)

This proves that .1 f .2 and thus the equivalence of .1 and .2. The second statement
in the theorem can be proved in exactly the same way.

The next theorem contributes in explaining the prominent role of Pearson’s coefficient in
bivariate statistics.

Theorem 16. A measure of linear association is equivalent to Pearson’s coefficient if and
only if it is the standardization of an elliptic measure.

Proof Just apply the two previous theorems.

In the light of the ‘balloon constructions’ of measures, the theorem above explains why
in the past many efforts to create new bivariate correlation coefficients ended up with
measures equivalent to Pearson’s coefficient see [2], [5]). To have an example of an

algebraic measure that is not equivalent to Pearson’s coefficient, just standardize the
nonelliptic measure in Example 12.

The idea to exploit group theory in the creation and classification of measures of linear
association turns out to be a powerful tool. More details can be found in [8], where these

techniques are discussed in detail when dealing with multivariate measures.
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