
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 64 (2009)

Artikel: Edge lengths determining tetrahedrons

Autor: Wirth, Karl / Dreiding, André S.

DOI: https://doi.org/10.5169/seals-99158

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-99158
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Elem. Math. 64 2009) 160 – 170
0013-6018/09/040160-11

c Swiss Mathematical Society, 2009

Elemente der Mathematik

Edge lengths determining tetrahedrons

Karl Wirth and André S. Dreiding
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1 Introduction
For a tetrahedron to actually exist, the edge lengths of each of its four faces evidently
must obey the triangle inequality. This condition is necessary but not sufficent for six edge

lengths to make up a tetrahedron. There does, for example, not exist a tetrahedron with
five edges of length 4 and one edge of length 7, even though the triangle inequalities are

fulfilled. Just consider two equilaterals with edge length 4 as faces of a tetrahedron; the

remaining edge length must be smaller than 4v3 (< 6.93), since this is the extreme value
reached when the tetrahedron becomes degenerate see Fig. 1).

When are six given lengths the edge lengths of some tetrahedron? This question has

been addressed to already several times in the literature Menger, Blumenthal, Dekster
and Wilker, Herzog, see below), mostly even for the general case of d-dimensional
simplices. The present work, as an offshoot of our original investigations concerning tetrahedral

structures in organic chemistry, is restricted to the 3-dimensionalcase. This restriction

Für die Seitenlängen jedes Dreiecks gilt die Dreiecksungleichung. In Analogie dazu
stellen die Autoren die Frage, welche Beziehung zwischen den Kantenlängen eines

beliebigen Tetraeders bestehen. Unter Verwendung von Cayley-Menger Determinanten

beweisen sie im Hauptsatz dieser Arbeit mit elementaren Mitteln notwendige und
hinreichende Bedingungen dafür, dass sechs positive reelle Zahlen Kantenlängen eines
Tetraeders sein können. Mit Hilfe dieses Hauptsatzes werden dann weitere Probleme
betreffend Festlegung von Tetraedern durch Kantenlängen gelöst. Dabei geht es auch
um die Anzahl anisometrischer Tetraeder, die mit bestimmten Kantenlängen möglich
sind. Die in diesem Beitrag behandelten Probleme haben ihren Ursprung in der
Untersuchung von Tetraeder-Strukturen in der Chemie.



Edge lengths determining tetrahedrons 161

4 4

44

4 3
4

Fig. 1

enables us to offer a well-rounded and readily accessible approach to the above question.
We provide theorems with elementary proofs, based on a single, essentially geometrical
condition necessary and sufficient for the existence of a tetrahedron Lemma 2.1).

2 Preliminaries

As the concept of triangle inequality plays an important role in this paper we first outline
our pertinent terminology: If a,b,c) is a triple of positive real numbers, the system of
inequalities a < b + c b < a + c c < a + b is called a triangle inequality
note the singular). We say that a,b,c) obeys or fulfills the triangle inequality if all three

inequalities hold. It is a property of an unfulfilled triangle inequality, that only one of the
three inequalities does not hold: Indeed, let there be, for instance, b+c a, thenwe have
equivalently 2b+2c a+ b+c which implies b < a+c and c < a+b. In the following,
we distinguish between a triangle inequality applied to lengths, for short L-inequality, and
a triangle inequality applied to angles, more precisely their measures here in degrees), for
short A-inequality.

To start our subject we give some definitions: Let S x, y, z, x, y, z) be a sextuple of
positive real numbers called the lengths of S. If there exists a nondegenerate) tetrahedron
T such that the lengths of S are the edge lengths of T as shown in Fig. 2, we say that S

is tetrahedral or that S determines T The order of the lengths in a tetrahedral sextuple S

indicates in which way the edges of T are arranged: The first three lengths x, y and z of S

become the lengths of edges joining in a vertex of T and the last three lengths of S, denoted
by the same letters but overlined x, y and z, become the lengths of the corresponding
opposed edges of T Clearly, all tetrahedrons determined by the same sextuple S are

isometric, and a given tetrahedron T can be determined in 4! ways by sextuples they are

mutually different if T is asymmetric).

T x z

y y

z x

Fig. 2

Given a sextuple S x, y,z, x, y, z), each of the triples x, y, z), x, y,z), x, y, z)
and x, y, z) is called a face-triple of S. If all four face-triples obey the L-inequality
we refer to S as a facial sextuple. The four triangles thus determined are called faces
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of S. A tetrahedral sextuple S is facial but the reverse is not true, as the counter-example
S 4, 4, 4, 4, 4, 7) illustrates see Section 1).

When the four faces of a facial but not necessarily tetrahedral) sextuple S are arranged in
a plane, as shown in Fig. 3, we speak of the net of S. In Fig. 3, any three angles marked
by the same shade of gray make up what we call a vertex-triple of S inside a triple choose

any order). Note that the sum of the angles of one vertex-triple can be 360 so that two
faces of the net will overlap except where this triple consists of three outside angles which
are shown in Fig. 3 by the darkest shade of gray).

x
x

x

y

y

y

z

z z

Fig. 3

We can now reformulate the question posed in Section 1, more precisely, as follows:
Which facial sextuples S are tetrahedral or, in other words, which condition must be
satisfied for the net of a facial sextuple S to be the net of a tetrahedron T Obviously, S is

tetrahedral if a tetrahedron T can be generated by inward folding of the three outside faces

of the net of S. From the triangle inequality for spherical triangles it follows that this is

possible exactly if one of the vertex-triples of S with sum < 360 obeys the A-inequality
in that case, of course, this also holds for the other three vertex-triples). By referring to a

vertex-triple containing only acute angles as an acute vertex-triple, it is possible to state a

sharpened version of this tetrahedrality condition as follows:

Lemma 2.1. A facial sextuple S is tetrahedral exactly if it has an acute vertex-triple
obeying the A-inequality.

Proof. It suffices to show that a tetrahedral sextuple S has at least one acute vertex-triple
in other words, that any tetrahedron has at least one vertex where the three adjacent face

angles are acute): Assume that the four vertex- triplesof S would not be acute, i.e., they all
contain an angle 90 Since the tetrahedrality of S demands that all vertex-triples obey
the A-inequality, the sum of the angles of each vertex-triple is > 180 and thus the total
sum of all twelve face angles becomes > 720 a contradiction because this sum must be

4 · 180 720
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3 Main theorem

The following main Theorem 3.1 was originally proved by Menger [8], not only for
tetrahedrons but for the general case of d-dimensional simplices. For tetrahedrons, we give
another derivation based on Lemma 2.1. A similar reasoning, albeit in the opposite direction,

can be found in an early paper of Blumenthal [1].

Theorem 3.1. A sextuple S x, y, z, x, y, z) is tetrahedral exactly if i) S is facial and
ii) D(S) is positive, where D(S) denotes the so-called Cayley-Menger determinant1:

D(S)

0 x2 y2 z2 1
x2 0 z2 y2 1
y2 z2 0 x2 1
z2 y2 x2 0 1
1 1 1 1 0

3.1)

Proof. As already pointed out the condition i) is necessary, so that Lemma 2.1 can be

applied: Without loss of generality, the following angles a, ß and given by the cosine
law, can be chosen as those of an acute vertex-triple of S:

cosa
y2 + z2 - x2

2yz
cosß

x2 + z2- y2

2xz
cos

x2 + y2 - z2

2xy
3.2)

Obeying the A-inequality means that

a < ß + ß < a + < a + ß |ß - | < a < ß +
Since 0 |ß - | and ß + < 180 and since the cosine decreases monotonically in the
interval [0 180 ] one can equivalently write

cos|ß - | > cosa > cos(ß +
respectively

cos(ß - > cosa > cos(ß +
Using trigonometric relations and other transformations, the following further equivalent
inequalities are obtained:

cosß cos + sinß sin. > cosa > cos ß cos - sinß sin.
sinß sin. > cosa - cosß cos. > -sinß sin.
sin2ß sin2 > cos a - cos ß cos 2

1- cos2 ß)(1 - cos2 > cos2 a - 2cosa cosß cos + cos2 ß cos2

1 + 2cosa cosß cos - cos2 a - cos2 ß - cos2 > 0.

1The determinant was given this name 1953) by Leonhard M. Blumenthal in [3, p. 99] with the justification
that it had been proposed initially 1841) by the young Arthur Cayley in his very first paper dealing with certain
point arrangements [5, pp. 267–271] and had been subsequently used more than eigthy years later 1923) by Karl
Menger to solve imbedding problems in Euclidean space [8, pp. 120 and 133].



164 K. Wirth and A.S. Dreiding

If the cosines on the left side of this inequality are expressed by the terms of 3.2) one

arrives, by some calculation, at
D(S)

8x2y2z2 > 0.

Since the denominator is positive it follows that the facial sextuple S is tetrahedral exactly
if condition ii) holds.

Remarks

1) Both conditions of Theorem 3.1 must be verified in order to ensure that a sextuple
S is tetrahedral. In general, i) does not imply ii): Take again, see Section 1) the

facial, but not tetrahedral S 4, 4, 4, 4, 4,7) where D(S) -1568. Conversely,
ii) does not necessarily imply i): Just consider S 1,1,3,5,1,3) where D(S)

468 but S is not facial.

2) If S is a tetrahedral sextuple the Cayley-Menger determinant D(S) has an imme¬
diate geometrical significance: D(S) 288V2, where V denotes the volume of a

tetrahedron determined by S. This formula, the 3-dimensional analogue of Heron’s
formula, has alreadybeen provedby the painter Piero della Francesca (~1412–1492),
see [9]); the reader may verify it by using, for instance, the scalar triple product and

vector algebra. Note that a tetrahedron will be degenerate exactly if S is a facial
sextuple and if D(S) 0. In other words, D(S) 0 of a facial S expresses the
relationship among the distances between four points in a plane. Indeed, for the
facial S 4, 4, 4, 4, 4, 4v3) which determines the degenerate tetrahedron shown in
Fig. 1, for example, one obtains D(S) 0.

3) The Cayley-Menger determinant D(S) is a polynomial of degree 6 in 6 variables.
The following specific representation of D(S), where S x, y, z, x, y,z), shows

its symmetry properties:

D(S) 2x2x2 y2 + y2 + z2 + z2 - x2 - x2

+2y2y2 z2 + z2 + x2 + x2 - y2 - y2

+2z2z2 x2 + x2 + y2 + y2 - z2 - z2

+(x2 - x2 y2- y2 z2 - z2 - x2 + x2 y2 + y2 z2 + z2

D(S) is invariant under 4! permutations of the six variables. These permutations
correspond to the 4! ways a tetrahedron can be determined by tetrahedral) sextuples.

4) The condition i) can also be expressed by Cayley-Menger determinants as follows:
S is facial exactly if Dj S) is negative for all j with 1 j 4, where Dj S) is the

j, j)-minor of D(S), i.e., the determinant of the submatrix obtained from the matrix
involved in 3.1) by deleting the j -th row and the j-th column. Consider j 1 the
same reasoning can be used for j 1):

D1(S)

0 z2 y2 1
z2 0 x2 1
y2 x2 0 1
1 1 1 0

-(x + y + z)(x + y - z)(y + z - x)(z + x - y),
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which is negative exactly if the face-triple x, y,z) obeys the L-inequality. Furthermore,

if D1(S) is negative, Heron’s formula for the area V1 of the face determined
by x, y, z) is obtained: V1 14v-D1(S).

5) If D(S) is positive it suffices to check that one of the four determinants Dj S) is neg¬

ative i.e. that just one of the four face-triples obeys the L-inequality) for a sextuple
S to be tetrahedral see remarks in [2]). Let, for instance, D1(S) be negative: Since

D1(S) · Dj S) 2t2D(S) + D1 j S))2, where D1 j S) is the 1, j)-minor of D(S)
and where t x for j 2, t y for j 3 and t z for j 4, the determinants

Dj S) with 2 j 4 are negative, too. Theorem 3.1 can now be sharpened; it then
corresponds to Blumenthal’s formulation for d-dimensional simplices in [3] when
d 3:

S is tetrahedral. D(S) is positive and D1(S) is negative.

4 Acute-facial sextuples and completely tetrahedral sets

Given a triple a, b, c) of positive real numbers, the triangle inequality for their squares,

i.e., a2 < b2 +c2 b2 < a2 + c2 c2 < a2+b2, is said to be a Q-inequality. A fulfilled
Q-inequality implies a fulfilled L-inequality: Indeed, from a2 < b2 + c2, for instance, it
follows a2 < b + c)2 which is equivalent to a < b + c.

We speak of an acute-facial sextuple S if all of its four face-triples obey the Q-inequality.
Since a fulfilled Q-inequality implies a fulfilled L-inequality it follows that an acute-facial
S is facial. In addition, the cosine law implies that S is acute-facial exactly if all vertextriples

i.e. all twelve face angles) are acute. Furthermore, we have:

Theorem 4.1. An acute-facial sextuple S is tetrahedral.

Proof. Assume that an acute-facial S would not be tetrahedral. Then, according to Lemma
2.1, the four acute vertex-triples of S do not obey the A-inequality. This implies that the
sum of the angles of each vertex-triple is < 180 and thus the total sum of all twelve face

angles becomes < 720 again a contradiction to the required 720

Up to now we considered given sextuples and asked whether they are tetrahedral or not.
We shall now ask from which supply the lengths of sextuples can be freely chosen so as

to guarantee tetrahedrality. A non-empty) set W of positive real numbers, in the present
context called lengths, is said to be a completely tetrahedral set if all sextuples S with
lengths from W are tetrahedral. The following Theorem 4.2, in essence, is a consequence
of Theorem 4.1. Another derivation of almost the same result and an extension to
ddimensional simplices have been given by Dekster andWilker in [6].

Theorem 4.2. A set W of lengths is completely tetrahedral exactly if it is a subset of an
interval I [t, tv2] containing at most one endpoint of I

Proof. Of course, t must be positive. On the one hand, assume that W is a subset of an

interval I [t, tv2], with W not containing both t and tv2. From tv2)2 t2 + t2 it
follows that, for any a, b and c in W, one has a2 < b2 + c2 so that all triples with lengths
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from W obey the Q-inequality. Hence, all sextuples S with lengths from W are acutefacial

and, by Theorem 4.1, tetrahedral, meaning that W is completely tetrahedral. On the
other hand, let W be a set containing lengths a and b with av2 b. Then the Cayley-
Menger determinant of the sextuple S̃ a,a, b, a,a, b) is D(S̃) 4b4(2a2- b2) 0.

Thus, according to Theorem 3.1, S̃ is not tetrahedral, meaning that W is not completely
tetrahedral.

Remarks

1) Note that D(S̃) 0 for b av2, so that the facial S̃ determines a degenerate
tetrahedron; its edges become the sides and diagonals of a square.

2) All sextuples S with lengths obtained from a completely tetrahedral set W are acute¬

facial. The converse evidently is not true; just consider S 2,2,2,1,1,1) as a

counter-example.

Which completely tetrahedral set U consists of the smallest six successive integers? Since
n 13 is the smallest solution of the diophantine inequality n + 5 < nv2 it follows from
Theorem 4.2:

U {13, 14, 15, 16, 17, 18}. 4.1)

5 Properties of tetrahedral spawning sextuples

A sextuple Ssp a, e,c, b, d, f with a b c d e f will be called a spawning
sextuple. A remarkable property of spawning sextuples has been detected by Herzog [7]:

Theorem 5.1. If a spawning sextuple Ssp is tetrahedral all sextuples S obtained by
permuting the lengths of Ssp are tetrahedral, too.

Outline of a proof. Let Ssp be a tetrahedral spawning sextuple. We use Theorem 3.1:
Since a, e, f is a face-triple of Ssp one has a < e + f where a is the largest and e and

f are the two smallest lengths of Ssp, so that all triples with lengths from Ssp obey the

L-inequality. Thus, all sextuples S obtained by permuting the lengths of Ssp satisfy i). It
remains to verify ii) for all these S. From here on we follow the ideas of the proof in [7]:
In a first step, it is shown by calculation that the minimumof all D(S) is reached byD(Ssp),

D(S1) or D(S2), where S1 a, e, d,b, f, c) and S2 a,e, d,b, c, f In a second step,

primarily geometrical considerations are used to prove that if D(Ssp) is positive then both
D(S1) and D(S2) are positive, too. Details of these two steps can be found in [7] for the
case a > b > c > d > e > f but both steps can also be applied to the general case

a b c d e f

Remarks

1) Calling a tetrahedron determined by a spawning sextuple Ssp a, e, c,b,d, f a

spawning tetrahedron see Fig. 4), Theorem 5.1 can be stated as follows: All
conceivable anisometric tetrahedrons obtained by rearranging the edges of the spawning
tetrahedron exist; including the latter there are maximally 30 of them, as will be

explained in Section 6.
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d

f

b

c
e a

Fig. 4

2) A tetrahedron with pairwise different edge lengths is named here a scalene tetrahe¬

dron. Note that, among all conceivable anisometric scalene tetrahedrons with edge
lengths 120, 110, 100, 90, 80 and 61 here exactly 30), only the spawning tetrahedron

does not exist see remark in [7]). By the way, there does not exist a scalene
tetrahedron with edge lengths 194, 193, 100, 99, 98 and 97 even though all triples
taken from these lengths obey the L-inequality see remark in [4]).

3) In the case of a spawning sextuple Ssp a,e, c,b, d, f one finds that ii) implies
i) see remark without proof in [7]). Assume that ii) does not imply i). As a

consequence of remark 5) to Theorem 3.1 and from a b c d e f it
follows: Since a,e, f is a face-triple of Ssp we have e+ f a, which is equivalent
to 2ef a2 -e2- f 2. Using this inequality and a specific representation of D(Ssp)

we get:

D(Ssp)=8b2e2 f 2-2b2 a2-e2- f 2 2

4e2 f 2
-2e2 f 2

+b2-d2 2

>0

-2 f 2 e2 + b2- c2 2

>0

-2(a2-e2- f 2

>0

f 2
+b2-d2

>0

e2+b2-c2

>0

<0,

which contradicts ii). The result can be summarized as follows:

Ssp is tetrahedral. D(Ssp) is positive.

6 Anisometric tetrahedrons with given edge lengths

How many mutually) anisometric tetrahedrons having six given edge lengths can be

formed, providing the spawning tetrahedron with these edge lengths exists?

First we consider the case of scalene tetrahedrons. The number of these tetrahedrons are

found by constructive combinatorics as follows: Starting with the edge of largest length
there are 5 possibilities for the length of the opposed edge. Any further edge can have the
largest of the four remaining lengths, and, finally, there are 3! possibilities for the lengths
of the last three edges. Hence, the number of anisometric scalene tetrahedrons is given
by 5 · 3! 30. The same result can be obtained by enumerative combinatorics: From
the 6! possible sextuples always 4! determine up to isometry) the same tetrahedron, and

thus we have 6!/4! 30 anisometric tetrahedrons. Note that, accordingly, the number of
determinants D(S) in the “Outline of the proof” of Theorem 5.1 can be restricted to 30.
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Which set V consists of the smallest six successive integers such that all 30 anisometric
scalene tetrahedrons with edge lengths from V exist see also remark in [7])? Since n 7
is the smallest positive solution of the diophantine inequality D(Ssp) > 0 where Ssp

n + 5,n + 1, n + 3,n + 4, n + 2, n) it follows from Theorem 5.1 and its remark 3):

V {7, 8, 9, 10, 11, 12}. 6.1)

Note the difference between the propertiesof the sets U 4.1) and V 6.1): U is completely
tetrahedral, i.e., all tetrahedrons with edge lengths from U exist, whereas V guarantees the
existence of all scalene tetrahedrons only.

We now turn to the general case. Let ps denote the number of anisometric tetrahedrons
where s is a sequence indicating how often every of the six given edge lengths occurs. The

following list of all numbers ps can be verified by constructive combinatorics:

p6 1, p51 1, p42 2, p33 3, p411 2, p321 4, p222 6,

p3111 5, p2211 9, p21111 15, p111111 30 scalene tetrahedrons).

For the case p3111 5, the anisometric tetrahedrons are illustrated in Fig. 5, edge lengths
being differentiated by line formats. Note that if the three solid lines represent the second

largest edge length, then a tetrahedron as shown on the very left is a spawning one
independently of the order of the other three edge lengths). Taking any other order of the edge
lengths a tetrahedron as shown on the very right would never be spawning.

Fig. 5

Returning to the sets U 4.1) and V 6.1), we present two numbers of tetrahedrons: With
the use of the above ps and simple enumerative combinatorics it is found that there are

2451 anisometric tetrahedrons with lengths from the completely tetrahedral set U this
number was also derived with Polyas enumeration theory). With constructive combinatorics

and the use of Theorem 3.1 to check tetrahedrality it is shown that there are 2360
anisometric tetrahedrons scalene and non-scalene) with lengths from the set V; this number

was derived with the help of a computer program.

7 Tetrahedrality of golden and isosceles sextuples

In this last section we deal with tetrahedrality of certain special sextuples. Two interesting
examples are Sg a, a,b, a, b,b), named golden sextuple, and Si a,b,c, a,b, c),
named isosceles sextuple.

Theorem 7.1. A golden sextuple Sg a,a, b, a,b,b) is tetrahedral exactly if the ratio
r := a/b lies in the interval G =]1/ [ where is the golden ratio.
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Proof. We use Theorem 3.1: Calculation leads to

D(Sg) 2(a2 + b2 a2 - ab - b2 b2- ab- a2

Condition ii) is satisfied exactly if r2 - r - 1)(1 - r - r2) > 0, which is equivalent
to r G. Since r G implies r ]0.5,2[ it follows that the face-triples a,a, b) and

a,b,b) of Sg obey the L-inequality, meaning that condition i) holds, too. The reader

will recall that, according to remark 5) to Theorem 3.1, it would be sufficient to consider
only one face triple, which is trivial here because a and b are exchangeable.)

Remarks

1) A golden tetrahedron, i.e., a tetrahedron determined by a golden sextuple, is given
up to similarity by the ratio r or by just one face angle. The relation between the
base angles a and ß of two isosceles faces, which are anisometric in case a b, is

expressed by 4 cosa cosß 1 with 36 < a < 72 see Fig. 6).

b

a

b

a

b

a

Fig. 6

2) Any golden tetrahedron is spawning, so that, for a b, the rearrangement of its
edges always produces two additional anisometric tetrahedrons, according to p33

3 see Section 6).

Theorem 7.2. An isosceles sextuple Si a, b,c, a,b,c) is tetrahedral exactly if it is

acute-facial.

Proof. Starting with Theorem 3.1 one obtains by calculation

D(Si) 4(a2 + b2- c2 a2 + c2- b2 b2 + c2 - a2

Condition ii) is satisfied exactly if the three bracket- factors are positive or two of them
negative and one positive. The first case holdsexactly if the four equal face-triples a, b, c)
of Si obey the Q- inequality. This means that Si is acute-facial and, by Theorem 4.1,
tetrahedral. The second case is impossible because at most one of the three factors can be

negative property of an unfulfilled triangle inequality).

Remarks

1) That an isosceles tetrahedron, i.e., a tetrahedron determined by an isosceles sextu¬

ple, has only acute face angles may also be seen in a more direct way: Since the
four vertex-triples are equal and since one vertex-triple is acute Lemma 2.1), it
follows that all twelve face angles are acute. Note that a planar figure is the net of an

isosceles tetrahedron exactly if it consists of the four isometric triangles obtained by
subdividing an acute triangle see Fig. 7).
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Fig. 7

2) No isosceles tetrahedron with a b, a c and b c is spawning.
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