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Families of irreptiles

Christian Richter

Christian Richter absolvierte seine mathematische Ausbildung bis zur Habilitation im
Jahr 2001 an der Friedrich-Schiller-Universitit Jena. Derzeit stellt ihm die Deutsche
Forschungsgemeinschaft ein Heisenberg-Stipendium fiir geometrische und approxi-
mationstheoretische Studien in Jena und Paris zur Verfiigung.

1 Introduction

The search for tilings of the plane by congruent images of some given polygon A leads in
a natural way to the concept of a reptile. A is called a repiile if it can be dissected into
finitely many pairwise congruent pieces which are similar images of A. We speak of a
dissection if the covering pieces can only have boundary points in common.

Many known examples of reptiles are polyominoes or polyiamonds. A polygon is called
a polyomino (polyiamond) if it has a connected interior and possesses an edge-to-edge
dissection into finitely many congruent squares (equilateral triangles).

A family of reptiles that are polyominoes can be obtained as follows (see [2], [3, p. 971, [6,
p. 541, and the first illustration in Fig. 1). Fix an integer £ > 1 and dissect a square S into
(2k)? congruent smaller squares Sy, .. ., S(Zk)2~ Let 8. denote the rotation about the centre
¢ of S by an angle of % Now choose a simple polygonal arc I' contained in the union of
the boundaries of the pieces §; that connects ¢ with a point on the boundary of § such that
I'Né(I'y = {c}. Then I', §.(1"), and a quarter of the boundary of § bound a reptile A € §
(shaded in Fig. 1). Indeed, since A splits into k% congruent squares S; and since S as well
as any other square admits a dissection into four congruent similar copies of A, A can be

Ein Polygon P wird selbstdhnlich genannt, wenn es als Vereinigung von # > 2 in-
nendisjunkten dhnlichen Kopien seiner selbst darstellbar ist. Durch Iteration der Zer-
legungsprozedur erlaubt jedes solche P Partitionen in endlich viele beliebig kleine
dhnliche Bilder von P. Umgekehrt gestattet P Pflasterungen der Ebene durch Einbet-
tung in immer grossere dhnliche Kopien. In der vorliegenden Arbeit beschreibt der Au-
tor Konstruktionsprinzipien fiir gewisse Klassen selbstdhnlicher Polygone. Die Prinzi-
pien sind durch unterhaltungsmathematische Studien zu Polyominos und Polyiamonds
motiviert, fiihren aber deutlich iiber diesen Rahmen hinaus.
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Fig. 1 Examples of reptiles

dissected into 4k = (2k)? pairwise congruent images of A under suitable similarities. A
similar procedure starting with an equilateral triangle gives a family of reptiles that are
polyiamonds (see [2], [6, p. 175], and the second part of IFig. 1).

The third family illustrated in Fig. 1 contains reptiles obtained from an arbitrary parallelo-
gram P. One splits P into (2]{)2 congruent smaller similar copies P, . . ., P(Zk)z and fixes
a simple polygonal arc I connecting two points of the boundary of P and symmetric with
respect to the centre of P that is contained in the union of the boundaries of the pieces P;.
Then I' dissects P into a polygon A and a congruent image of A. Hence A is a reptile,
because A is the union of 2k2 of the pieces P;, which are similar to P. In the context of
polyominoes this idea can be found for example in [3, p. 97] and [6, p. 52].

The last example in Fig. 1 is the so-called sphinx, which is a polyiamond composed by six
equilateral triangles. It is a reptile with an odd number of vertices, whereas the number of
vertices in all previous examples is evern.

Fig. 2 Examples of irreptiles (see [9])

If a polygon A splits into finitely many similar copies of A that are not necessarily pair-
wise congruent then A is called an irreptile (see [9]). Every irreptile A gives rise to a
dissection of the plane into images of A under similarities whose similarity ratios are at
least 1. Scherer’s nice book [9] gives an insight into the great richness of irreptiles. Fig. 2
shows four examples. Further results on irreptiles appear sporadically in the literature or
on the internet, mainly in the context of recreational mathematics and often concerning
polyominoes or polyiamonds (see e.g. [8]).

In the present paper we describe several rather large classes of irreptiles, that are not poly-
ominoes and, mostly, neither polyiamonds. These classes contain many examples from
[9]. Our emphasis is on a large variety of shapes, but not on optimal dissections (i.e. into
a minimal number of pieces). In some cases it will turn out that it is possible to obtain
dissections into similar copies being based on proper similarities only.
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Irreptiles with many vertices cannot be convex. They have to have so-called reflex vertices
where the size of the corresponding inner angle exceeds m. Indeed, if an irreptile has a
total number of v vertices then the number v, of reflex vertices is bounded by

'3 Y
7 <U,f<2

(see [7, pp. 48-49], [4]). So if v is even then v, = % — 2 and if v is odd then v, €
(Y52, 231, As far as we know, in all known examples with odd v one has v, = Y>3, Is
v = ”55 possible? Does there exist a convex pentagon that is an irreptile?

In the sequel we use the symbols cl(A), int(A), and conv(A) for denoting the closure, the
interior, and the convex hull of a set A C Rz, respectively.

2 An uncountable family based on isosceles triangles

Given a real parameter £ > 0, the origin O = (0, 0) together with the vectors b1 = (1, 0)
and bp = (%, &) span an isosceles triangle. We fix moreover two integer parame-
ters 0 < k =< [. Then ¢ = kby + [by is the centre of the parallelogram P =
conv{0, 2kb1, 2tby, 2kb1 + 2{b2}. We denote the reflection with respect to the point ¢
by 8.. Now we pick a simple polygonal arc I' with the following properties:
(i) T" connects the vertices 2kby and 2[by of P and ' \ {2kb1, 2{D2} € int(P),
(ii) all vertices of I" belong to the lattice Zby + Zby = {iby + jby : i, j € Z} and all
edges of I' are parallel to by or by — by = (—%, &),

(iii) I' is symmetric with respect to ¢, thatis, I' = §.(1"), and

(iv) I' is contained in the triangle T = conv{0, 21b1, 21b,}.
Then I splits P into two polygons A and 38.(A), where O € A without loss of generality
(see Fig. 3).

2lby

2kby
Fig. 3 Proof of Proposition 1

Proposition 1.

(a) The polygon A defined above is an irreptile. Moreover, if the length ||b2|| = 4/ % + &2
is rational then there exists a dissection of A into finitely many images of A under
suitable proper similarities.
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(b) The number va of vertices of A is odd. If vr denotes the number of inner vertices of
I" then vqa = vr 4+ 3 and the number of reflex vertices of A is ”7F

Proof. (a) A splits into proper congruent images of the triangle conv{0, b1, b2}, which
itself is a proper similar copy of 7'. Hence it suffices to show that 7' can be dissected into
finitely many similar images of A. Since A C T, it is enough to show that cI(7" \ A) has a
dissection of that kind.

Both A and T have only one edge parallel to by, namely conv{0, 2/b,}. Hence the bound-
ary of ¢cI(T"\ A) consists of line segments parallel to by and by — by only (see Fig. 3). Since
all vertices of cI(T\ A) belong to the lattice Zb| +Zby = Zb1+Z(by—b1), cl(T\ A) splits
into finitely many translates of the parallelogram P~ = conv{0, by, b — b1, b2} (dotted in
Fig. 3). Thus it remains to find a dissection of P~ into similar copies of A, which have to
be proper if ||b2|| is rational.

The parallelogram P = conv{0, by, by, b1 + by} splits into Ik translates of

b1 by b1 b 1 1
— = — 3 Sl = — P = —(AUS.(A.
L2 oy B (AU 8(4))

0, -
Conv{ 2% T 2%kl

P~ is the image of P under a reflection with respect to a vertical axis. This gives rise to
a dissection of P~ into 2k! similar copies of A. So A is an irreptile.

If |b2] = % m,n € {1,2,...}, is rational then there is a rotation y fixing 0 such that
y(b2) = —|ballb1 = —2by and hence y (1) = =pir = &(ba — b1). Now P~ is

splitted into kn’Im? translates of

b1 by—b b1 by, — by 1 1
T P S i PO T v M) Pl = — (A US.(A)) ).
COHV{O’ kn?” Im?2 T kn? + Im? } V(2klmn ) y(2klmn( a )))

This gives a dissection into proper similar images of A.

(b) va = vr + 3, because 0, 2kbq, and 2lb; are the only vertices of A that are not inner
vertices of I,

By (iii), ¢ is not a vertex of I' and the vertices of I' appear in pairs (x, 8.(x)). So vr is
even and v4 is odd.

If x is an inner vertex of I' then x is a reflex vertex of A if and only if 8.(x) is a convex
vertex of A. Thus the number of reflex vertices of A is “7F [

Proposition 1 gives irreptiles with arbitrary odd numbers of vertices v4 > 3. In the fol-
lowing we modify the construction for obtaining even numbers v4 > 4.

We choose &, by, and by as above and fix arbitrary integer parameters k, I, m > 1. Now
we consider the parallelogram P = conv{0, 2(k + )by, 2mby, 2(k + 1)b1 + 2mb»r}. &
denotes the reflection with respect to the centre ¢ = (k + Dby + mb, of P. We pick a
simple polygonal arc I such that

(i) T connects (2k 4+ )by with [by +2mb2 and T" \ {2k + Dby, Ib1 4+ 2mb;} C int(P),
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(ii) all vertices of I" belong to the lattice Zby + Zb, and all edges of I are parallel to by
or by — by, and

(iii) I' is symmetric with respect to ¢.
Again I' splits P into two polygons A and §.(A), where 0 € A (see I'ig. 4).

2mb2 lb] + 2mb2

.~ P1(4)

R

0 i Qk+Db 20+ Dby

Fig. 4 Proof of Proposition 2

Proposition 2.

(a) The polygon A defined above is an irreptile. Moreover, if the length ||b2| = ,/ % + &2

is rational then there exists a dissection of A into finitely many images of A under
suitable proper similarities.

(b) The number vy of vertices of A is even. If vr denotes the number of inner vertices
of I then vg = vr + 4 and the number of reflex vertices of A is "TF

Proof. For every integer n > 2, the homothetic copies ¢;(A) = %A + wbz, 1 <
i < n, have pairwise disjoint interiors and cover the edge conv{0, 2mbs} of A (see the
right-hand part of Fig. 4). We assume 7 to be chosen large enough such that all ¢; (A) are
contained in A. Then the remaining polygon cl(A \ (¢1(A) U ... U g,(A))) is formed by

vertices from the lattice %(Zbl +7Zby) = %(Zbl + Z(by — b1)) and by edges parallel to by

and by — b1 only. Thus we can decompose it into translates of %P‘ = %conv{o, b1, by —
b1, bo} (dotted in Fig. 4) and it suffices to prove that P~ admits a dissection into suitable
similar copies of A. This remainder of part (a) and the verification of part (b) can be treated

as in the proof of Proposition 1. U

3 A countable family of polyiamonds

let by = (0,1) and by = (%, @) and fix arbitrary integers k,i > 0. §; is to
denote the reflection with respect to the centre ¢ = kb1 + Iby of the parallelogram
P = conv{0, 2kby, 2lby, 2kb1 + 21b2}. Let T' be a simple polygonal arc such that

(i) T" connects the vertices 2kbq and 21by of P and I \ {2kb1, 21b;} C int(P),
(ii) all vertices of I" belong to Zb1 +Zb; and all edges of I" are parallel to by or by — b1 =
(—%, ‘/T§ ), and
(iii) I' is symmetric with respect to c¢.
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I" dissects F into two polygons A and 8.(A), where 0 € A (see the left-hand part of Fig. 5).

Note that this kind of polygon is closely related with that from the first part of the previous

section. Here the parameter & is restricted to @ so that A is a polyiamond. In contrast

to that, the choice of k£ and [ is more flexible, since k > [ is no longer forbidden, and the
restriction (iv) from Section 2 is dropped.

O by 2kl mb 1(4) ... @a(Ad)

Fig. 5 Proof of Proposition 3

Proposition 3.

(a) The polygon A defined above is an irreptile. There exists a dissection of A into
Jinitely many images of A under suitable proper similarities.

(b) The number va of vertices of A is odd. If vr denotes the number of inner vertices of
I" then vqa = vr 4+ 3 and the number of reflex vertices of A is UTF

Proof. 1Let m be the smallest integer such that the equilateral triangle 7" = conv{0, mby,
mby) covers A. Since A splits into finitely many equilateral triangles, it suffices to show
that 7 admits a dissection into finitely many proper similar copies of A.

In contrast to the situation of Proposition 1, now cI(T \ A) has an edge conv{2lby, mby)
parallel to by. (It vanishes if m = 2[.) Foreveryi € {21, ..., m — 1}, we define a trapezoid
T; = conv{iby, (i —1)ba+b1, i —1)bo+2b1, (i+1)by}. Thencl(T\(AUTyU. .. UTH_1))
has all its vertices in Zby + Zby = Zb1 + Z(by — b1) and all its edges are parallel to by
or by — by. We split it into parallelograms (dotted in the left-hand part of Fig. 5) and
dissect them into proper similar copies of A as we did in the proof of Proposition 1. Now
it remains to prove that every 7;, 21 <i < m — 1, has a dissection of the same kind.

Let y be a rotation about the origin with angle 27” The lower edge of y(A) is the only
one parallel to by and has length 2/. Hence, for every integer n > 1, there exist translates
pi(A), 1 <j=<n,of ﬁy(A) such that the lower edge of 7; splits into the lower edges of
p1(A), ..., pa(A). We assume n to be fixed large enough such that all these translates are
subsets of 7; (see the right-hand part of Fig. 5). The remaining polygon ¢I(T; \ (¢1(A) U
...Ug, (A))) is formed by vertices from ﬁ (Zby+Z(by — b)) and edges parallel to by and
b2 — b1. Hence it splits into finitely many rhombs similar to conv{0, by, by — by, 2b2 — b1}
(dotted in Fig. 5). Dissections of these rhombs into proper similar copies of A are obtained
as in the proof of Proposition 1. This completes the verification of (a).

Claim (b) can be proved as in Proposition 1. O
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One example of an irreptile found by the last construction is the sphinx (see the last exam-
ple from Fig. 1). Proposition 3 says that a dissection representing the sphinx as an irreptile
can be realized by the aid of proper similarities only (see Fig. 6 as an example). It is worth
noting that this is impossible for the sphinx as a reptile.

/o

Fig. 6 A dissection of the sphinx based on proper similarities only

Proposition 4. Lei the sphinx S be dissected into n > 2 pairwise congruent similar copies
@1(S), ..., @u(S) of itself. Then at least one of the similarities ¢; is an improper map.

Proof. Suppose that all ¢;, 1 < i < n, are proper. Let the vertices of S be denoted by
a,...,easin Fig. 7. Then b must be a vertex of one of the ¢; (), say of ¢1(S). The
inclusion g1 (S) < Sis possible only if b = ¢ (a) or b = ¢1(b).

a b a ¢1(e) b

Case 1. b = @1(b). Case 2: b = p(a).
Fig. 7 Proof of Proposition 4

In the latter case (Case 1 in Fig. 7) ¢1(c) had to be a vertex of one of the tiles ¢;(5),
2 <1i < n. This is impossible, because all ¢; (S) are proper congruent images of ¢ (S).

In the remaining case b = ¢@1(a) (Case 2 in Fig. 7) the edge conv{g; (e}, p1(d)} of ¢1(S)
had to be an edge of another tile, say of ¢2(5). Againusing that ¢2(S) is a proper congruent
image of ¢1(S) we conclude that the position of ¢ (S) relative to ¢1(S) is as it is illustrated
by the dotted lines in Fig. 7.
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Now ¢1(e) plays a similar role in the remaining polygon ¢3(S)U. . . Ugp, (S) as the vertex b
did with respect to S. Repeated application of the above arguments shows that the horizon-
tal strip of S over the edge conv{a, b} whose height agrees with that of the parallelogram
P = ¢(5) U@ (S) had to be dissected into translates of P, a contradiction, [

Proposition 3 covers in particular a class of generalized sphinxes found by Hinrichs [5].
His family of examples served as a motivation for the present research.

We close this section with the remark that a suitable modification of the above construction

vields polyiamond irreptiles with an even number of vertices. This coincides with the

particular case of Proposition 2 where § = #

4 A countable family based on isosceles right triangles

We fix two integers 1 <[ < k and consider the rectangle R = conv{0, 2keq, 2ler, 2ke; +
2ley}, where ey = (1,0), e2 = (0, 1). 8 is to denote the reflection with respect to the
centre ¢ = key +lep of R. Let I' be a simple polygonal arc such that

(i) T" connects 2key with 2{ex and T \ {2keq, 2{ex} C int(R),

(ii) all vertices of I" belong to Z x Z and all edges of I" are parallel to ey 4 e or e — e»,
(iii) I' is symmetric with respect to ¢, and
(iv) I' is contained in the triangle T = conv{0, 2key, 2ke;}.

I" dissects R into two polygons A and §.(A), where O € A (see the left-hand part of Fig. §).
In contrast to the previous examples, the present family contains polygons A whose edges
have four different directions.

2ken 2ken

ey o
key | PAADY
3(A) A

2]

3 P1(A) | 2 (4)
0 e 2key 0 ke 2key

Fig. 8 Proof of Proposition 5

Proposition 5.
(a) The polygon A defined above is an irreptile.

(b) The number v4 of vertices of A is odd. If vr denotes the number of inner vertices of
I" then v4 = vr + 3 and the number of reflex vertices of A is -
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Proof. It suffices to show that 7" admits a dissection into finitely many similar copies
of A, because A splits into isosceles right triangles. We choose similarities ¢1, ..., ¢4
with similarity ratio 4 such that 7 = @1 (T) U ... U p4(T) and ¢1(0) = ¢2(0) = key,
p3(0) = @4(0) = keg, p1(2ke1) = @p3(2ke1) = 0, p2(2key) = 2key, p4(2key) = 2ken.
Then the remainder ¢l{(T \ (@1(A) U ... U¢@a(A))) has all its vertices in %(Z x Z:) and all
its edges are parallel to e; + e or €1 — e (see the right-hand part of Fig. 8). Hence this
remainder splits into squares (dotted in the illustration) which can be dissected into similar
copies of R = A U 8-(A). This proves (a).

Claim (b) can be verified as in Proposition 1. O

5 An uncountable family related to rhombs

Let b1 and b2 be two vectors spanning a rhomb, that is, b1 and by are linearly independent
and of the same length. Given an integer £ > 0, we define A as the polygon bounded by
the simply closed polygonal arc connecting 0, (2k + 1)by, 2k + 1)by + ba, 2kby + by,
2kb1+2bo, ..., (k+1)D1+kbo, (k+ 1)b1+ (k+ 1)b2, O (see the left-hand part of Fig. 9).

20k + Dby (c+ 1)1 +b2)

k(b1 +52)

k +1bo

= A 5
2kby

2k + Dy

Fig. 9 Proof of Proposition 6

Proposition 6. The polvgon A defined above is an irreptile. Among the 2k + 3 vertices of
A there are k reflex vertices.

Proof. Let y be the reflection with respect to the axis R(by +b2) = {&(D1 +b2) : &£ e R}
and let &, be the reflection with respect to the centre ¢ = (k + %)bl + (k + 1)by of the
parallelogram P = conv{0, (2k + 1)b1, 2(k + 1)bo, 2k 4+ 1)b1 + 2(k + 1)b3}. Then P is
dissected into A, y (A), 8.(A), and 8.y (A) (see the left-hand part of Iig. 9).

The images 1 (A) = g7 A and ga(A) = — 47 (A)+(k+ 1) (b1 +b2) are contained in A,
cover the edge conv{0, (k+ 1)(b1+b2)} of A, and have disjoint interiors, because they are
separated by the line through 2kby and k(b1 +b2) (see the right-hand part of Fig. 9). Hence
A splits into ¢1(A), ¢2(A), and finitely many rhombs similar to conv{0, by, b2, b1 + b2}.
Any of these rthombs can be dissected into finitely many similar copies of P = AUy (A)U
8c(AYU by (A). So Ais an irreptile.

The vertices of A can easily be counted. In particular, 2k + 1 —i)by +ibp, 1 <i <k,
are reflex vertices. O
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Proposition 6 gives irreptiles with an odd number of vertices. Even numbers can be ob-
tained as follows. We fix by, by, and k as above and define A as the polygon bounded by
the polygonal arc 0, (2k + 2)b1, (2k + 2)b1 + bo, 2k + 1)1 + b2, Rk + 1)b1 + 2b2, . . .,
(k +2)by + kba, (k + 2)b1 4 (k + L)ba, (k + 1)b1 + (K + 1)b2, O (see the left-hand part
of Fig. 10).

by
2+ Dby o

&+ 1)1 +b2)

p2(A)
k(b1 +B2)

e+ 1)k [ ‘

P1(A)
by d

0 by (k+D1b  Qk+2)b

Fig. 10 Proof of Proposition 7

Proposition 7. The polvgon A defined above is an irreptile. Among the 2k 4 4 vertices of
A there are k reflex vertices.

Proof. We refer to Fig. 10 and leave the details to the reader. U

6 A countable family of non-lattice pentagons

Each of the previously defined irreptiles has its vertices in some lattice Zby + Zb;. In the
following we describe a family of pentagons including infinitely many non-lattice mem-
bers. We use the following technical tool.

Lemma. Let Py and P, be two parallelograms with pairwise parallel sides, Py having
edges of lengths 1 and . and P, having edges of lengths 1 and . If there are an integer

m > 0 and rational numbersro, ..., rm Withrg = 0 andr; > 0for 1 <i < m such that
1
A =Top + T
i+ "
=7

then Py, can be dissected into finitely many similar copies of P,.

Proof. Theorem 5 from [1] includes the above claim for rectangles. The generalization to
parallelograms is obvious. O

Proposition 8. Let &, 1 be real numbers with O < n < & and & + n < 2 such that there
are integers m, n > 0 and rational numbers po, ..., Pm,> qo, - - -, dn With po, go = 0 and
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Ploeeos Pmsq1s - -5 qn > O satisfying

1 20(E + 1) 1
2n = po& + and uzqo§+

pié§ + % §— 1§ + r
Dt g
Moreover, let the penitagon A be obtained by cutting off a parallelogram of edge lengths %

and 1 from an isosceles triangle T with edges of lengths 1, 1, and & + n as illustrated in
Fig. 11. Then A is an irreptile.

1

=p2(e)

p1(e) = ¢2(@)

a =g (a) b=q1(f)

Fig. 11 Proof of Proposition 8

Proof. Weuse a, b, ¢, d, e, [ for denoting the vertices of A and T as in Fig. 11. § is to
denote the reflection with respect to the centre of the segment from ¢ to d. Then A and
8(A) form a dissection of a parallelogram P with edges of lengths 1 and &.

Let 1 and ¢ be dilatations with fixed points g and e, respectively, such that ¢1(f) = b
and gp(a) = @1(e). The similarity ratio of ¢ is H?:‘;"'l gin Now A splits into ¢1(A),
¢2(A), and three parallelograms Py, P2, Pz with angles of the same sizes as those of P

(see the right-hand part of Fig. 11).

Both Py and P, are similar to the parallelogram conv{b, ¢, d, f}. Hence in both cases
the ratio of the edge lengths is 1 : 2n. By the lemma, the first technical assumption
above guarantees that Py and P, can be dissected into finitely many similar copies of
P =AUS(A).

The lengths of the edges of Pz are ||d — c¢|| = n and

ler(e) —cll = llgi(e) —ei(HI —lle = bl

£ £ 1 & =1
= le=sll=llce=bl=——-7=+—7F7.
£+ E+n 2 20¢+n)
Hence P; is similar to a parallelogram with edges of lengths 1 and ”‘EE)C”C” = 2”5@_4;")

The second technical assumption and the lemma show that Ps admlts a finite dissection
into similar copies of P = AU §(A), too. This completes the proof. O
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N

N

Fig. 12 Two non-lattice examples

For obtaining a class of particular examples, we consider the parameters m = 1, pp = 0,

=k e{l,2,...},n =0, and go = 1. This gives &§ = ——=2—— and n = ¥A=2¢,
P1 { 1 do gives & TN n &
in particular 0 < n < Eand & 4+ 5 < 2 forall k € {1, 2,...}. All these examples are
non-lattice polygons, because ”Z:;H = g = ‘/7_3 is irrational. Fig. 12 shows the cases
k=1landk =2.

7 An uncountable family of trapezoids

In [9, Chapter 4] Scherer introduces trapezoids H (&, n) whose parallel edges of lengths &
and n are perpendicular to a third edge of length 1 (see Fig. 13). He shows that, for every
& = 0, H(, é) splits into four smaller similar copies of H (&, %). This gives another
family of non-lattice irreptiles. The example with & = 2 is illustrated in Fig. 2.

Fig. 13 The trapezoid H(£,n)

Moreover, Scherer shows that H (£, ) is an irreptile if both £ and n are rational. This
admits the following generalization.

Proposition 9. If the ratio L of the lengths of the parallel edges of a trapezoid T satisfies
m = % withm,n € {1,2, ...}, then there exists a dissection of T into2(m +n + 1)

proper similar copies of T'.

Proof. Suppose that the parallel edges are horizontal and have the lengths A and 1 without
loss of generality. Fig. 14 illustrates the required dissection of T. P is a parallelogram
formed by two congruent copies of T. The length of the horizontal edges of P is A + 1.
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8(T) ;
I.I
l‘IP

]

/ / ym(P) / y(T\ /

_____________ i

» - >
Fig. 14 Proof of Proposition 9

The similarity ratio of the maps v, y1,..., ¥ iS 01 = m Hence the length of

the lower edge of the trapezoid y(T) U y1(PY U ... Uy, (P) coincides with that of the
lower edge of T'. For 8, we choose aratiopr =1 — g1 = % so that the heights
of y(THYyU y1(PYU...Upu(P)and of 8(7") add up to that of T'. Finally, 81, ..., 8, use
the ratio g3 = &£ = % Hence 8(T) U 81(P) U ... U 8,(P) is a trapezoid,
too. It remains to show that the length of its upper edge agrees with that of T, that is,

lo2 + (L4 1)p3 = 1. One easily checks this by the aid of the assumption ﬁf =2 0
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