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In dem nachfolgenden Beitrag wird ein Zusammenhang zwischen der Dreiecksgeome-
trie und der Differentialgeometrie von Flichen hergestellt. Genauer gesagt, geht es um
einen Zusammenhang zwischen der Euler-Geraden eines Dreiecks AB C und einer spe-
ziellen Quadrik im R, der sogenannten Tzitzeica-Fliache. Bezeichnen (x, v) die Ko-
ordinaten des variablen Punktes A, so zeigt sich, dass die Steigung der Euler-Geraden
bei fixierten Ecken B, C eine Tzitzeica-Flidche beschreibt. Durch das Studium der Ni-
veaulinien dieser Flédche finden die Autoren einen alternativen Beweis fiir die Tatsache,
dass der geometrische Ort der Ecken A des Dreiecks ABC mit einer Euler-Geraden,
die konstante Steigung besitzt, eine Ellipse oder eine Hyperbel bildet.
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1 Introduction

The relative position of Euler’s line with respect to the sides of a triangle has raised
geometers’ interest since the very first paper on this topic, L.eonhard Euler’s classi-
cal work [3]. To mention just a few recent references where this question has ap-
peared, we remind the reader of problem Al in the W.L. Putnam competition from
1997, which explored the case when Euler’s line is parallel to one of the sides of
a triangle. Problem 10980 in the American Mathematical Monthly, proposed by Ye
and Wu [11] (see Corollary 1 below), works with the same configuration. In the
Editorial Comment following the solution of the problem [11], the editors of the
Monthly have pointed out other contributions to the history of this problem, especially
Gossard’s presentation at an AMS conference in 1915, A generalization given by
Paul Yiu, dating from 1999, is mentioned in [4]. In the interesting paper [7], Ro-
driguez, Manuel, and Semido characterize the geometric locus of points A in the plane
for which the Euler line of AABC has a prescribed slope m, when B and C are
fixed.

In this paper we expand upon these matters by connecting the issue with ideas from affine
surface geometry. In particular, we construct a Tzitzeica surface, or proper affine sphere,
which we call the Euler surface associated with the equation of the slope of the Euler line.
The geometry of the Euler line may then be analyzed in terms of the Tzitzeica surface (and
vice versa). In Section 2, we review the background material on the slope of the Fuler line
and existing results. In Section 3, we review the concept of a Tzitzeica surface and affine
invariance. In particular, we introduce the atorementioned Euler surface and detail its
relevant geometrical properties. In the final section, we discuss the relationship between
the geomelry of the Euler surface and the geometry of the Euler line, both generally and
by way of a detailed example. As a by-product, we obtain an example of a Tzitzeica curve
on a Tzitzeica surface that is not asymptotic. This yields a nice counterexample to the
converse of a classical result of affine geometry, which states that any asymptotic curve on
a Tzitzeica surface is Tzitzeica.

2 The relative position of the Euler line in a triangle

In this section we present a few results unified by the following:

Lemma 1. Let A, B, C be three arbitrary points in the Euclidean plane. Denote by mg
the slope of Euler’s line in AABC and by miy, mo, m3 the slopes of the lines BC, AC, and
AB, respectively. Then

mimy + momz + msznig + 3

mgeg = s
my + mp + m3 + 3mymoms

Proof. We assume for the beginning that AABC is acute. Consider AABC in Fig. 1,
where H is the orthocenter, O is the circumcenter, £ is the foot of the altitude from A on
the side BC, § is the projection of the circumcenter onto the altitude from A, and M is the
midpoint of the side BC. Measuring the slope of the angle between BC and Euler’s line
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A

S 0

F M

Fig. 1 The construction for Lemma 1

of AABC, we have (see Fig. 1)

mi —mg HS AF — AH — OM
— —tanZ(HOS) = =
l4+mmg MF BM — BF

_ 2RsinBsinC —2RcosA — Rcos A

N Rsin A —2Rsin C cos B

. 28in BsinC +3cos(B + ()

~ sin(B+ C) —2sinC cos B

_ 3cosBcosC —sinBsin C _ 3—tanBtanC‘

sinBcosC —sinCcosB  tanB —tanC '

here, R denotes the circumradius of AABC. Replacing in the last relation the following
expressions

m3 —my my — 2
tan B = ——, tanC = ——=
1 4+ mims 1+mimo
we get the equality
3 Ma—my | my—ih
m1 — Mg _ 1+mmsz  14+mimy
l+mymgp  Maom  m-—mp

14myms 14+mymy

Cross-multiplying and collecting the like-terms, we obtain
My + Moz + Wi3Hl + AL E + Momp + mame + 3mymomsme + 3 = 0.

Solving for s g in this relation immediately yields the relation from the statement of our
lemma,

A similar argument can be made if AABC is obtuse. U

Corollary 1. [11] Consider four distinct straight lines in the same plane with the property
that no two of them are parallel, no three are concurrent, and no three form an equilateral
triangle. Prove that, if one of the lines is parallel to the Euler line of the triangle formed by
the other three, then each of the four given lines is parallel to the Euler line of the iriangle
Jormed by the other three.
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Proof. Denote by #y, mp, mz, and my the slopes of the four lines dy, da, dz, da, respec-
tively. Suppose that Eulet’s line of the triangle formed by the lines di, da, d3 is parallel to
dy and has the slope mp. Then mp = my and we get

Mo 4 mMoms + mi3nil 4 mmy + moniyg + mamig + 3 pignizig + 3 = 0.

This relation is symmetric in any one of the slopes and the conclusion follows immediately.
U

Corollary 2. ([2], Problem 4 on p. 20) In the acute triangle ABC, Euler’s line is parallel
to BC if and only if tan B tan C = 3.

Proof. Choose a coordinate system so that the x-axis is parallel to BC. If we denote by
m the slope of the straight line BC, then m; = 0. Denoting m, m3, mg the slopes of the
straight lines AC, AB, and Euler’s line E, respectively, we get from Lemma 1

moamsz + 3

meg = »
my + m3

Thus, Euler’s line £ of AABC is parallel to BC if and only if m g = 0, which is equivalent

to momz = —3. Now we take into account that my = —tanC and ms3 = tan B (or,
depending on the position of AABC, we could have mp = tanC and m3 = —tan B).
Consequently, tan B tan C = 3. O

Note. The geometric locus of the points A in the plane (for B and C fixed) satisfying the
property that Euler’s line of AABC is parallel to BC is studied in [1]. The solution uses a
direct trigonometric argument. We present in Section 4 the argument based on Lemma 1.

3 Tzitzeica surfaces and the surface generated
by the formula for Euler’s line

The study of Tzitzeica surfaces originates in [8, 9, 10] and represents from the historical
standpoint the beginning of affine differential geometry (see [6]). Some of the original
references are still cited today (just to mention a recent example, see [5]).

Let S be a surface given by the local parametrization f : U = U < R? — R? and denote
by K(p) its Gaussian curvature at p € f(U). We denote by d(p) the distance between
the origin in R? and the tangent plane to the surface at p. A Tzifzeica surface is a surface
S for which there exists a constant a € R such that for all points p of the surface,

K(p)=a-d*p). (1)

Tzitzeica proved that the class of surfaces satisfying the above condition is invariant under
the action of the centro-affine group.

Next, consider a curve ¢ : I € R — R?. Denote the torsion of ¢ by 7. Then, the curve
is called a Tzitzeica curve if it satisfies, for all # € I, the relation T (t) = a - d(t)2, where
d(r) is the distance from the origin to its osculating plane at the point ¢(¢} and a is a
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Fig.2 A NEPRYE) square of the Euler
surface, centered at the origin.

real constant. One of the classical results in affine differential geometry states that any
asymptotic curve on a Tzitzeica surface is a Tzitzeica curve.

Lastly, consider an arbitrary triangle in the Euclidean plane. By making a convenient
choice of coordinates axes, we can assume that one of the slopes (say, m3) is zero. Then,

as we have seen in the previous section, the slope of Euler’s line becomes
3+ mymy
mg = ——————. (2)
miy + mo

Define the surface f : U  R? — R? given by

3+xy)

peey) = (6 =

where U denotes the complement of the linex4+y = 01in R?. We present two views of the
surface in Figures 2 and 3. In the first surface, we are looking at the image of a V3 x/3
square centered at the origin, while the second plot is zoomed out, covering the image of
a 10 x 10 region. There is, of course, a planar vertical asymptote due to the singular line
along x = —v, and graphical artifacts there should be ignored.

This surface has a large amount of symmetty, which is clear from the defining equation as
well as the graph. First of all, z is an odd function of (x, ¥) in the sense that

2(—=x, =y)=—z(x,y)

(in other words, z changes sign under a 180° rotation). Also, the surface is clearly sym-
metric with respect to the plane x = y.
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\

Fig. 3 A 10 x 10 square of the Euler sur-
face from a different perspective,
centered at the origin.

We now prove the following:

Theorem 1. The surface f : U = U c R?> — R? given by

3+xy)

Fonyy= vy -

is a Tzitzeica sutface.

Proof. By a standard computation, the Gaussian curvature is

[-n—m? 3 3
o bnom x+»

S g7 (9 xt+ 208y — 3y + 2xy3 + y4 4+ 322 (=1 + )

3)

here [, m, n are the coefficients of the second fundamental form and e, f, ¢ are the co-
efficients of the first fundamental form of the surface defined by f. We also compute the
support function ¢ (i.e. the distance from the origin to the tangent plane), resp. its fourth

power:

g 324(x + v)*

(94 x4 +2x%y — 392 + 2633 + ¥4 4+ 3x2 (=1 +y2))*
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We compute the necessary ratio and find it to be constant, whereby it is verified that the
surface is Tzitzeica:

K l @
at 108
U
Remark. The quadric z = — “?fyy is an open subset of a hyperboloid of one sheet, as one
can see by reducing it to its canonical form (in new coordinates x, v, z)
2 2 2
X y z
——t =4 —==1.
3 T 6 T 6

In the last section we will discuss the details of its geometric relationship with the Euler
line of a triangle in the plane.

4 Geometric analysis

So far we have pointed out that a specific quadric is a Tzitzeica surface. This result is
known and would not be worthy of reporting by itself. However, the interesting aspect
is the connection between affine surface geometry and triangle geometry in the plane.
Using (2), we now discuss this connection. In particular, we are interested in clarifying
the relationship between various loci of the vertex A of an otherwise fixed triangle AABC
in the Euclidean plane and the geometry of the Euler surface. We will naturally obtain the
results of [7] by considering the level curves of (3).

Suppose, without loss of generality, that in AABC, the points B and C are fixed at (b, 0)

and (c, 0), where b < ¢. We will allow the coordinates (x, y) of the vertex A to vary. Then

the slopes m, and s13 (recall Lemma 1) are related to the coordinates of A by
y ¥

my — 3 i3 = .
X—c x—2>5

(5
This yields a map S : R? — R?, (x,v) — (mp, m3). The map f o S results in a

correspondence between the vertex A and the slope of the Euler line given by

—3(x —b)(x —¢) — ¥?
mg = )
v2x —b —c)

(6)
or
3x% 4 2mpxy 4+ y2 — Bx + mey)(b + ¢) 4 3be = 0. (7)

A constant slope for the Euler line requires setting mg constant. For the Euler surface,
this corresponds to setting z constant, i.e., choosing a level curve of the surface. The level
curves of (3) are of the form

xy+x+ymep+3=0, (8)

which is clearly a hyperbola for any fixed value of mg. The effect on the loci defined by
A is determined by setting m ¢ constant in equation (7). In this case (7) defines a quadratic
curve in R?. The discriminant is given by

A = 4m7 —3). (9
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Thus, we see that the locus of vertices A which yield a fixed Euler line slope mp €
(—+/3, v/3) forms an ellipse, while for mp € (—oc0, —v/3) U (v/3, 00), the locus is a
hyperbola. A short calculation shows that for the values ++/3 we obtain double lines.
These are the conclusions found in [7] using a different approach.

The other coordinate slices of the Euler surface yield hyperbolae. Upon, say, polynomial
division, we find

m3 —3
my +ms’
which shows explicitly that a hyperbola is obtained if we set m3 to be constant. Due to
the interchange symmetry between #, and m3, the same will be true if we set mo to be
constant. The effect of this restriction on the locus A is straightforward by consideration
of the equations (5). In particular, the hyperbolae map to lines: For values of the slope of
the Euler line that vary with the slope mi» (or m3) only, that relationship must be inverse
by (10), while the triangle vertex A will trace out a line in the plane as a result of (5).

meg = —ms3 + (10)

Being space curves lying in a plane, the curves arising from the above coordinate slices
are all trivially Tzitzeica curves — curves with zero affine distance from the origin. These
curves are not asymptotic curves of the surface, since in these cases the osculating plane
does not overlap with the tangent plane to the surface. It is known that any asymptotic
curve on a Tzitzeica surface is a Tzitzeica curve. Therefore, this class of curves provide
counterexamples to the converse (Tzitzeica implies asymptotic).

On the other hand, viewed as curves in the 2-dimensional subspace of R? corresponding
to the coordinate slice, the hyperbolae are non-trivially Tzitzeica, in that the 2-d affine
distance is constant but nonzero (affine circles). Thus, the level curves are all affine circles
that map to loci {A} that are also affine circles, while the loci corresponding to the other
coordinate slices degenerate into lines.

Lastly, we provide here a more detailed analysis on a special case to make further reference
to the literature. We begin by recalling a remark from [1]. Let AABC be a triangle in the
Euclidean plane with fixed vertices B and C. The geometric locus of the points A with the
property that Euler’s line of the triangle ABC is parallel to BC is the union of two open
arcs of an ellipse from B to C.

To see this, one can express tan B and tan C from the right triangles ABF and AFC,
respectively, to get (see Fig. 1):
ha hg

BF FC
Hence hg = 3BF .- FC. If we consider Cartesian coordinates so that B = (0,0), C =
(c,0),and A = (x4, va), then F = (x4, 0), and the previous equation can be written as:

3

yi =3x4(c —x4).

One may visualize this piece of ellipse from B to C, an arc between perpendiculars on BC
at B and C, that we denote by (F). For every point A on this arc, we have tan B tan C = 3,
and FEuler’s line for the triangle ABC is parallel to BC (see also [2, p. 20], the configuration
mentioned above in Corollary 2). However, on this arc, there is a point where Fuler’s line is
degenerate (and the corresponding position of A is not on the geometric locus we discuss).
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When A is at the vertex of this arc, by reasons of symmetry, the triangle ABC has to be
isosceles, therefore tan B tan C = 3 yields (tan B)2 = 3, therefore B = C = % SO in this
case the triangle has to be equilateral. However, in an equilateral triangle the Euler line is
degenerate, since O = H = (G, where G is the center of gravity of AABC. This position
does not belong to the geometric locus of the vertices A with the property that Euler’s line
is parallel to the side BC. Therefore the geometric locus is an arc of ellipse from B to C,
with a gap of one point, corresponding to the position when ABC' is equilateral.

Let the vertex A be on the ellipse described above. Then this position corresponds to a
point in the fourth quadrant of the domain of the surface patch f : (0, 00) x (—00,0) C
R? — R given by

3+m1m2)
mi+my /)

flmy, mp) = (ml,mz,— (1)
The domain is (0, c0) x (—oc, 0) since m; > 0 represents the slope of the side AB, and
my < 0 represents the slope of the side BC. More precisely, tan B = mj and tan C =
—my. Then, while A is moving along the ellipse (E) described above, (m1, mp) traces the
branch of the equilateral hyperbola m sy = —3 that is mapped through f on a curve on
the surface Im f. However, this curve represents the intersection of the surface Im f with
the mqmi-plane in R3. It corresponds to the geometric locus of the points A for which the
Euler line is parallel to the side B C. More precisely, this curve can be written as

3
c:R—{0) >R com)= (ml, -, O)A
mi

Of course, this curve is the intersection of the surface Im f with the #11m»-plane in R,
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