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Folgen von HohenfuBpunktdreiecken
und ihre Grenzpunkte

Evgeny Strekalovskiy

Evgeny Strekalovskiy hat 2004-06 an der Friedrich-Schiller-Universitit Jena Mathe-
matik und Informatik studiert. Gegenwartig setzt er sein Studium an der Rheinischen
Friedrich-Wilhelms-Universitat Bonn fort. Er ist dreifacher Bundessieger im Bundes-
weltbewerb Mathematik und Bundessieger im Wettbewerb Jugend forscht.

1 Einleitung

Betrachtet man irgendeine Abbildung, die jedem Dreieck der euklidischen Ebene ein-
deutig sein ,Nachfolgedreieck™ zuordnet, so entsteht flir jedes Ausgangsdreieck Ag eine
Folge Ao, A1, Ag, ... von Dreiecken. Es gibt sicherlich unzéihlige Moglichkeiten solche
Dreiecksfolgen zu konstruieren. Eine besonders interessante Folge entsteht, wenn man als
Nachfolgedreieck jeweils das aus den drei HohenfulBpunkten gebildete Hohenfufpunkt-
dreieck nimmt. Es zeigt sich, dass diese Folge immer gegen einen ,.Grenzpunkt™ strebt,
sobald sie blof beliebig weil fortsetzbar ist. Das Bemerkenswerte hierbei ist, dass die La-
ge dieses Grenzpunktes bei gleichschenkligem Ausgangsdreieck durch eine stetige aber
nirgendwo differenzierbare Funktion beschricben wird, wodurch sich die Folge von vielen
anderen deutlich auszeichnet.

Diese Folge erfreute sich bereits grofer Autmerksamkeit seitens verschiedener Autoren,
jedoch war fast ausschlieBlich das Verhalien der Innenwinkel der Folgendreiecke Gegen-
stand der Untersuchung, und nicht das des Grenzpunktes. Die wohl erste Beschreibung

Verbindet man in einem Dreieck Hy die drei HohenfuBSpunkte, so entsteht ein neues
Dreieck Hi, und Wiederholung dieser Konstruktion liefert eine Folge Ho, Hy, Hp, ...
von immer kleineren HohenfuB3punktdreiecken, die gegen einen Grenzpunkt konver-
gieren. Diese Folge hat schon die Aufmerksamkeit vieler Mathematiker gefunden, dar-
unter Lax und Conway. Unser Autor berichtet dariiber und stellt explizite Formeln fiir
die Folgendreiecke auf. Es stellt sich heraus, dass der Grenzpunkt eine stetige, aber nir-
gends differenzierbare Funktion des Ausgangsdreiecks 1st. Eine besondere Rolle spielt
dabei der Fall, wo im Lauf der Konstruktion ein rechtwinkliges Dreieck entsteht.
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findet sich bei Hobson [7] bereits 1891. Darauthin untersuchte Véalyi [14] die allgemeine
Gestalt und Anzahl periodischer Folgen (s. Abschnitt 4) auf rein kombinatorischem We-
ge (s. Folge A102536 in [10]) und Tuckey [12] stellte die Entstehung der 12-Periodizitit
fest, wenn das Gradmal der Anfangswinkel ganzzahlig ist. Diese Tatsache sowie einige
weitere Eigenschaften streng periodischer Folgen haben des Weiteren Kingston und Syn-
ge [8] untersucht. Sie fiihrten die VerhiltnisgroBen ein, arbeiteten jedoch wie auch in [14]
und [12] direkt mit den Innenwinkeln selbst, wodurch ein groferer Anteil der Resultate
und Beweise eher technisch erscheint. Hierauf nahm Alexander [1] Bezug und beschrieb,
wie sich der Ubergang zum jeweils nichsten Folgendreieck als Shift auf einer bestimmten
Kodierung der Dreiecke erweist und so jede Untersuchung der Innenwinkel auf die dieser
Kodierungen zuriickfiihrbar ist, wobei die letztere bequem mit den méichtigen Mitteln der
symbolischen Dynamik erfolgen kann. Mochte man Aussagen direkt iiber die Innenwinkel
selbst und nicht auf dem Umweg lber die Kodierung erhalten, bedart es dann allerdings
immer einer ,,Ubersetzung”. Im Gegensatz dazu werden wir in der vorliegenden Arbeit die
Innenwinkel von vorn herein ganz im Lichte der Bindrdarstellungen der Verhiilinisgrofien
behandeln. Mit dieser Methode gelangt man auf einheitlichem Wege schnell, einfach und
durchsichtig zu wesentlichen unmittelbaren Aussagen tiber die Innenwinkel selbst. In die-
ser Form finden sie sich nicht in fritherer Literatur. So wird insbesondere die Herleitung
des bemerkenswerten Satzes 4.4 ermoglicht, der wie auch der Satz 4.5 ein neues Resul-
tat darstellt. In eine andere Richtung gingen LLax [9] und spéter Ungar [13], indem sie
die sog. Mischungseigenschaft nachwiesen. Diese impliziert, dass ,,fast jedes” Ausgangs-
dreieck zu einer Polge fiihrt, in welcher man von der Grif3e abgesehen frither oder spiter
Folgendreiecke nahezu jeder moglichen Gestalt antrifft.

Untersuchungen beziiglich des Grenzpunkies gibt es weitaus weniger. Eine Formel fiir
den gleichschenkligen Iall wird in [11] und [2] hergeleitet, in der letzten Arbeit wird
die erhaltene Funktion auch als nirgendwo differenzierbar herausgestellt. Die Frage nach
dem Grenzpunkt kam erneut in [5] durch Conway et al. auf. Hier findet man einen Exi-
stenznachweis, das Fortsetzbarkeitskriterium 4.2 und zum ersten Mal eine auf Conway
zurtickgehende analytische Herleitung der expliziten Formel aus Satz 2.3 fiir ein allge-
meines Ausgangsdreieck. Conway wies auf die durch die Stetigkeit mogliche Erweite-
rung der Definition des Grenzpunktes auf die abbrechenden Folgen, lie jedoch offen,
welcher Punkt genau als Grenzpunkt genommen werden soll. In der vorliegenden Ar-
beit prisentieren wir einen synthetischen Beweis der Formel und klédren die letzte Frage
vollstindig. Die allgemeine Formel fiir die l.age des Grenzpunktes relativ zum Mittel-
punkt einer Seite in Satz 2.4 und die gesamte Untersuchung zu Hochstentfernungen im
Abschnitt 3 kommen in fritheren Arbeiten nicht vor. Der Grenzpunkt Hy eines Dreiecks
ist noch nicht als ein Kimberling Center X, erfasst (Encyclopedia of Triangle Centers).

Die vorliegende Arbeit ist in drei Abschnitte unterteilt. Zunidchst wird die Existenz des
Grenzpunktes nachgewiesen, und Formeln fiir seine Lage werden hergeleitet. Im nédchsten
Abschnitt wird die Entfernung des Grenzpunktes zu bestimmten Punkten des Ausgangs-
dreiecks untersucht. Der letzte Teil behandelt schlieflich die Folgendreiecke an sich, und
zwar in Bezug auf ihre Innenwinkel.
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2 Die Folge der HohenfuBpunktdreiecke

Zuerst soll der Begriff ,,Grenzpunkt” einer Dreiecksfolge festgelegt werden. Wir nennen
einen Punkt P Grenzpunki der Dreiecksfolge (A A, B, Cy,), talls die drei Eckpunkifolgen
(Ap), (Byyund (Cy) allesamt gegen P konvergieren. Ggf. nennen wir die Dreiecksfolge
konvergent. Wir filhren nun die zentrale Dreieckstolge dieser Arbeit ein.

Definition 2.1. Sei A ein nichtrechtwinkliges Dreieck. Das durch die Verbindung seiner
drei HohenfuBpunkte entstehende Dreieck heit das Hohenfufipunktdreieck von A. Eine
Dreiecksfolge Hy, H1, Hp, . .., bei welcher Hiqy das HohenfuBSpunktdreieck von Hy fiir
jedes k ist, heit eine Folge von Hohenfufpunkidreiecken. Mit Ax41, Br41 bzw. Ciryi
wird diejenige Ecke von Hiy1 bezeichnet, die in Hy auf der der Ecke Ag, Bx bzw. Ck
gegeniiberliegenden Seite liegt.

Co

Ag 61 By Ap C By

Fig. 1 Zwei Folgen von Hohenfulpunktdreiecken

Eine solche Folge bricht gef. irgendwann mit einem rechtwinkligen Dreieck ab, da dann
zwei HohenfuBpunkte zusammenftallen. Das Fortsetzbarkeitskriterium, das wir im Ab-
schnitt 4 beweisen werden, besagt, dass dies genau dann passiert, wenn einer der Innen-

winkel des Ausgangsdreiecks die Form 2%77 mit ganzen k und # hat.

Satz 2.2. Jede unendliche Folge von Hohenfufpunkidreiecken ist konvergent.

Beweis. Sei Oy der Umkreismittelpunkt und r, der Umkreisradius des n-ten Folgen-
dreiecks H,. Aus der Elementargeometrie ist bekannt, dass der Umkreisradius des
Hohenfubpunktdreiecks gleich der Halfte des Umkreisradius des urspriinglichen Dreiecks
ist (der Umkreis des erstgenannten Dreiecks ist der Feuerbach-Kreis des anderen), d.h.
Fngl = %rn. Mit r := rg folgt hieraus induktiv

.
= 2.1)
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In jedem Folgendreieck Hy, liegt der FuBpunkt der Hohe auf eine lidngste Seite stets auf
dieser Seite, d.h. H,41 und H, und damit auch die entsprechenden Umkreise schneiden
sich. Der Abstand d{ Oy, O,41) ihrer Mittelpunkte ist folglich hdchstens gleich der Sum-
me ihrer Radien, d.h,

3r
d(On’ On—H) <Tp+Tpg1 = ﬁ
Hieraus folgt leicht, dass (Oy,) eine Cauchy-Folge ist, womit lim,_, o Oy existiert. Wegen
rp, — 0 ist dies auch der Grenzpunkt der drei Eckpunktfolgen. O

Der Begrift des ,,Grenzpunktes® kann aber auch auf die abbrechenden Folgen von
HohenfuBpunktdreiecken sinnvoll erweitert werden. Falls ndmlich das #n-te Folgendrei-
eck H, rechtwinklig ist, so definieren wir den Grenzpunkt dieser Folge als diejenige Ecke
von H,, bei der der rechte Winkel ist. Wir werden spiter sehen, dass dies eine durchaus
natiirliche Definition ist.

Somit besitzt also jede Folge von Hohenfulipunktdreiecken, ob abbrechend oder nicht,
einen Grenzpunkt. Die folgenden zwei Sidtze geben fiir ein gegebenes Ausgangsdreieck
die genaue Lage des n-ten Folgendreiecks und die des Grenzpunktes relativ zum Um-
kreismittelpunkt sowie zu der Mitte einer Seite an. Die euklidische Ebene wird dabei mit
der komplexen Zahlenebene identifiziert (abkiirzend werden wir I?Pz := Py — Py fiirden
Vektor von P; nach P> schreiben). Es seien O und r der Umkreismittelpunkt und -radius
des Ausgangsdreiecks; @, F Yy seien die Richtungswinkel der Vektoren vom Umkreismil-
telpunkt zu den drei Ecken, d.h. so dass A = O +7e'®, B = O +re'?, C = O +re'”. Die
entsprechenden Grofen des n-ten Folgendreiecks H, werden mit dem Index n versehen.
a+;§+7

Der Grenzpunkt wird mit H, bezeichnet. SchlieBlich setzen wir @ := und

n =0+ (=2)"@—-w), xp=o+(=2"B-0), Y=o+ (-2"F-o).

Satz 2.3. Es gili

=1y

2n+1

0.9}
Hyo=0+r Z (eig"” + et 4 ei"’”) '
=0

Falls Hy, existiert, ergibt der AbDruch der Reihe nach n Gliedern Oy, und es gilt

—nn —1nn EREV
( 271) 61% ; Bﬂ = On —I—i’( 217,) elxn’ Cﬂ = On —I—i’( 2’1) €lwn.

AnZOn‘I_r

Beweis. Wir zeigen zuerst die zweite Aussage des Satzes tiber die Lage der Folgen-
dreiecke. Die Dreiecke Hp bis H, mogen existieren. Aus der elementaren Geometrie
ist bekannt, dass die drei HohenfuSpunkte von H,,, d.h. die Ecken von H,41, auf dem
Feuerbach-Kreis k liegen (zusammen mit den drei Seitenmittelpunkten), dessen Mittel-
punkt F der Mittelpunkt der Strecke O, P ist, wenn P den Hohenschnittpunkt bezeich-
net; der Radius von k ist auBerdem r' = %rn. Der Satz von Hamilton [3] besagt aber
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OpP = Oy Ay + Oy By + 0,Cy, 50 dass zusammen folgt

OnAn + Oan + Ol’lcﬂ
5 .
Mit den Bezeichnungen in der Skizze (fiir den Fall eines spitzen Dreiecks Hy,, der andere
Fall geht analog) ist 0,8 = M.Cp41 = 2RCpyq und 0,Cp, = 1, = 2r' = 2Cy1 F, d.h.
die beiden Dreiecke A O, SCy und AC,41 RF sind dhnlich, also ZRCy1 F = £50,Cy.

Ops1 = F = Oy + (2.2)

Ch
ei();n+]+77) eifﬂ
I .'
-y Op F >
e!bn
u‘D
k i Ta
£ RN
An M, Cﬂ+1 B,

Fig. 2 Skizze zum Beweis von Satz 2.3

Der Vektor Cy41 I geht also aus dem Vektor m durch Spiegelung an einer Senkrechten
zu A, By, (und Stauchung) hervor. Die Differenzen zwischen den Richtungswinkeln von
0,Cy,und O, B, bzw. O, A, und Cyu4q I' miissen damit modulo 2z iibereinstimmen (siche
Fig. 2 links), d.h.

?n_ﬁn:an_(Vn—i—l_"n) bzw. 7n-l-l :a”+Eﬂ_7”+n'

Analoge Rekursionsgleichungen ergeben sich auch fiir ;41 und Fn +1- Yon diesen ausge-
hend beweist man leicht mit vollstindiger Induktion

¥y = o+ (-2 (@ — ) +nm, B, =+ (-2)"(B — o) +nn,
Vu =0+ (=2)"(V — ®) + nr,
dh. @y = g + 1w und mit (2.1) also Ay = Oy + 1€ = Oy + ri5H ¢ usw, Mit

(2.2) liefert das insgesamt die zweite Aussage des Satzes.

Im Fall einer unendlichen Folge haben wir im Beweis des Existenzsatzes gesehen, dass
die Umkreismittelpunkte O, gegen H., konvergieren. Nach dem soeben Gezeigten kon-
vergieren sie aber auch gegen die im Satz angegebene Reihe.
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Sei nun ein Folgendreieck Hy, rechtwinklig. Der rechte Winkel liege 0.B.d.A. bei Cy,. Zu
zeigen ist, dass die Reihe des Satzes gegen Cy, konvergiert. Nach dem Satz von Thales
verlduft die Seite Ay, By, durch den Umkreismittelpunkt, womit die Vektoren Oy, Ay, und
Om B offenbar entgegengerichtet sind, d.h. @, = B, + 7 (modulo 27). Wegen &, =
Pm M7, By = Yo+ M und @i — X1 = (—2)"TH@ — B) = —2(¢n — xn) folgt also
Om = Xm + 7 sowie ¢, = x, flir n > m (beides modulo 27). Fiir alle n > m definieren
wir nun O, als O addiert zu den ersten n Gliedern der Reihe des Satzes und A,, By, C,
durch die im Satz angegebenen Gleichungen (fiir # < m sind die entsprechenden Punkte
nach dem ersten Teil des Beweises durch die gleichen Formeln gegeben). Mit Qg4 =

1P . , : . .
An+1 Op+r1 (2n+)1 (el(’)" + etXn 4 e”ﬁn — el()(rri‘wn_f/’n))7

und eine einfache Rechnung ergibt

s n N N N .
Asr = Gy = r SO oo (i — ) (oo . i)

Mit ¢, = xm + 7 (modulo 277) folgt hieraus A;+1 = Cp; genauso ist auch By = Cyy.
Analog gelten die beiden Gleichungen

g = T oo i (i it
Ant1 = Bu=r Antl (e @ )(e te )’

Bytr1 — Ay = 2n+1 ixn (ean L )(ezx + Pz )7
aus welchen A,41 = By, Byy1 = A, fiir alle n > m wegen ¢, = x, (modulo 2x)
abgelesen werden kann. Folglich ist A, = B, = Cy, fir alle n > m. Die Punkte O, die
als Grenzpunkt die Reihe des Satzes haben, konvergieren somit nach Definition der A,
auch gegen C,; und der Satz ist vollstdndig bewiesen. U

Der Grenzpunkt wird somit sowohl bei unendlichen als auch bei abbrechenden Folgen
durch eine gemeinsame Formel beschrieben, in der die beiden Fille nicht mehr unterschie-
den werden. Auch wird er dadurch zu einer stetigen Funktion der drei Ecken (bei festem
Umkreis).

Satz 2.4. Bezeichnet M. den Mittelpunkt der Seite ¢ = AB, so gilt

i 2"y i[wt(-2 (7o)
Heo =M, = P,
o =M+ > Z( Y

Ialls Hy, existiert, ergibt der Abbruch der Reihe nach n Gliedern den Mittelpunkt My, der
Seite A, B, von Hy,.

Beweis. Falls die gegebene Folge mit Hy, abbricht, so definieren wir Ay, By, C, und Oy
fiirm > m auf die im Satz 2.3 angegebene Weise. Unabhingig davon, ob die Folge abbricht
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oder nicht, ist dann sicherlich M, — Hy. Mit dem Satz 2.3 gilt

Myr1 — M, = 5 — 7
= Opp1 + r_(_ziln;l (eifﬁn+1 + eixrm) —0, - r(z_n_i)ln (eifpn n eixn)
_, (—2}11331 (ei(ﬂnH g _ Qeiwn)
—(_2]113:1;1 (2 cos £l tntl R 26“/’”)
Zum einen ist 21T =, (2YN @+ P —20) = @ — (—2)"Gw — TV — 20) =
und zum anderen w = —(=2"@ — B) = (2" (+y + kn), daod — B =

2y + 2km mit einem bestimmten ganzen k nach dem Peripherie-Zentriwinkelsatz gilt.
Mit 1 — cosx = 2 sin? % und r = (erweiterter Sinussatz) ist also

2sm
(_1)n+1 ) _ _
My — M, = rW(2 cos(2™tlyy et 26”“)
. )n —cos2"ly | (oS 2y sin? 27y it
T 2siny 2n+l1 27 gin y '
Der Satz folgt nun sofort unter Beachtung des Ausdrucks fiir ;. ]
yl\ C
Heo
PR G
Fig. 3

Legen wir das Ausgangsdreieck speziell so ins Koordinatensystem, dass seine Seite AB
parallel zur reellen Achse verlduft (diese Situation ist in Fig. 3 dargestellt; es ist dann
=3 —y,B=-Z+4y,7=2%+a— B nach dem Peripherie-Zentriwinkelsa(z), so
wird d1e Formel im letzten Satz zu

Der Fall ¢ = g verdient dabei besonders hervorgehoben zu werden.
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Satz 2.5. Sei AABC ein gleichschenkliges Dreieck mit der Basis ¢ und dem Winkel y bei
C. Dann liegt der Grenzpunkt Hy auf der Symmetrieachse von AABC und seine Hohe
hu.. iber der Basis ist

B Z(— , Sin 2ory 2.3)
N 2nsiny '

Wie sich herausstellt, ist die durch die Reihe (2.3) dargestellte Funktion von y (natiirlich
bis auf die Stellen y = km, k € Z, an welchen sie gar nicht definiert ist) erstaun-
licherweise eine iiberall stetige aber nirgendwo differenzierbare Funktion! Die Nicht-
Differenzierbarkeit ergibt sich aus dem in [6] bewiesenen Korollar 4.6:

Satz 2.6. Sei b > 1 und B = {b". n € Z \ {0}}. Ferner seien ay, ..., dm, m > 1,
positive reelle Zahlen mit der Eigenschaft Z—’; & B fiirallek, ] = 1,....,m mitk # L
Dann ist fiir jede Funktion g(x) = c1cos(ai1x) + ...+ ¢y cos(amx) mit nicht gleichzeitig
verschwindenden Koeffizienien c1, . . ., ¢ die zugehorige Funktion

Fix = zgw”’”

stetig aber nirgendwo differenzierbar.

Mit sin x = % ldsst sich die den Grenzpunkt beschreibende Funktion als

o0 . D AR R n+1
c sin“ 2"y c (=D cos2"x
— —1)* s -
Sy 2’;( ) rsmy ZSmyZO o (2 2 )
& 1 ,co82"y
= - —COo8 1
Zsiny (3 V+Z( " )

umschreiben. Die Funktion Y 02 ((—1)" =22~ COSZ L kann man dabei auch als

= cos(2 - 4ky) o g(@y)
Z (0054" —— ):Z o

0

mit g(X) := cosx — %cos 2x schreiben, so dass diese nach dem oben zitierten Satz 2.6
stetig und nirgendwo differenzierbar ist. Wegen der obigen Beziehung muss das notwendig
auch auf f zutreffen (die Stellen y = kw, k € Z, ausgenommen).

3 Lagebeziehungen des Grenzpunktes

In diesem Abschnitt werden wir einige Resultate beweisen, die den Hochstabstand des
Grenzpunktes zu speziellen Punkten des Ausgangsdreiecks betreffen.

Satz 3.1. Der Abstand des Grenzpunkites Hy, zum Umkreismittelpunkt O ist kleiner oder
gleich %r, wobei r der Umkreisradius ist.
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Beweis. Falls die gegebene Folge endlich ist, definieren wir die Punkte O, wie in Satz
2.3. Wir bestimmen als ersten Schritt das Maximum von 002 . Wir setzen 0.B.d.A. Yy =
—a — B, also @, = (=", xp = (=2Y'Bund ¥, = (— 2)”_ = —@n — Xn. Mit den

Abkiirzungen y = O‘J”S und x = % ‘3 folgt nach Satz 2.3
m elT | piP  o—i@HB)  o=21T 4 p=2iF | ,2(@HP)
— = 3.1)
r 2 4
_ 2cosx e +e7?  2cos2x e 4 ot
- 2 B 4

. . VR
= e (Cosx+81n2xe My _ A—reg’y )

Betrachtet man % als Funktion von 3y mit dem Parameter x, so ergibt eine einfache

Rechnung fiir ihre Extremwerte | sin®x — I £ cosx| < %, sowie | sin x| + m unter

2 2

der Bedingung sin“ x — ‘sin = l‘ |cos x| = 0. Durch Betrachtung der Ableitungen stellt

man unschwer fest, dass | sin x| + 4|smx| =3 7 fiir {7 < x <7 — {5 ist und die Bedingung
fiir den zweiten Extremwert fiir die ibrigen Werte von x aus [0, n] nicht erfillt ist. Also
gilt stets 00z < 3r. Hieraus folgt O, Onta < 3 - 4, da der Vektor Oy, Q42 die Form
(3.1) mit @, x, anstatt @, B8 sowie dem Vorfaktor ( ) hat. Also ist schlieflich O Hy, <
Y024, OnOny2 < 37 O

Intensive Computerberechnungen sprechen sehr fiir die Richtigkeit der folgenden

Vermutung 3.2. Der Abstand von Hy, zie O ist sogar < %r mit Gleichheit genau fiir die
Anfangswinkel %, 27” , 47”

Einige anfingliche Folgendreiecke fiir dieses ,heptagonale” Ausgangsdreieck sind in
Fig. 1 rechts dargestellt (siehe [4] fiir eine umfangreiche Zusammenstellung seiner geo-
metrischen Figenschaften). Wie am Ende des obigen Beweises wiirde das aus 00g < %r
folgen; diese Relation wird ebenso durch massive Computerberechnungen gestiitzt. Daftr
spricht auch, dass die Grofe % 0 Og fiir das angegebene Dreieck ein relatives Maximum
besitzt (z.B. als Funktion von @ und B mity = —@ —f fiir@ = 27” B = 47”); dabei ist an-
zumerken, dass das zweite Folgendreieck Hy aus Hy durch Streckung mit Faktor 1/4 her-
vorgeht und sein Umkreismittelpunkt O, auf dem Umkreis von Ho liegt, so dass die Vek-

_— ——

toren Qg 02, 0204, . .. alle gleichgerichtet sind und Lingen r, 4, 42, ... haben. Fiir spitze
Ausgangsdreiecke folgt die Vermutung O Hoo < O O1+01Hx < 2r+3 2 = ‘S‘r mit dem
soeben bewiesenen Satz, da der Hohenschnittpunkt P innerhalb des Umkreises liegt und
01 der Mittelpunkt zwischen O und P ist. Der beste Vorfaktor nur fiir spitze Ausgangs-
dreiecke ist vermutlich 1,04752.. ., angenommen fiir die Anfangswinkel &7, 27, x;

interessanterweise ist hier Hz das heptagonale Dreieck von oben.,

Satz 3.3. Der Absiand von Hxo zu der Mitie einer Seite des Ausgangsdreiecks ist kleiner
i (i
als 3300 SSEAA = 1,213 multipliziert mit der Linge dieser Seite.
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Beweis. Unter Benutzung von Satz 2.4 ist

€ o sin? 2"y
TR S S

Fiir m > 0 ist nach einer einfachen Umformung zunichst

% % —, B >, sin? 2"y
— e — — — 3.2
f(zm) 2M gin 2m (Z sin” +};) 2%y ) sy

n=1 Y

Fiir alle 0 < y < % ist weiter

o] i ¥ far
1 2 sin = sin &
FIlE 2 e S = 7 e T < T T
L 2tsiny sin y (I —cos5)(l+cos5)cos5 —~ e85
da (14 cos %) cos & auf [0, Z] monoton fillt und bei y = Z den Wert 1 + % - 1 hat.
Die Bezichung
oo .2 AanY :
V) Y sin”2" 5 . P sin Y
=) =sin— — = —=gin= —sm—+cos—
f(2 2+nz_; 27 sin % 2+2s1n%f(y) 2 7

fiihrt damit zu f (5) — f(y) > Obzw. f(y) < f (%), und iterativ auch f () < f(Z%)
fiir 0 < m < k. Mit (3.2) bedeutet das

00 O . 2ap
Y Y 2" Ly sin“ 2"y ny)
7 (gw) < dim 7 (52 )=Z7sm—+2—m )+ ==

firallem > 0,0 < y < Emitg(x) = Z;O_I 2" sin Lund (x) == Y00 Osm oy

Im Folgenden werden wir g(y) + 22 < (%) + Jf/gg) = Zﬁi_oo—sngﬁm

” <y =<3 2 zeigen. Variiert dann y 1m Intervall [4 21, so variiert 2Lm firm=20,1,2, ...
im Intervall [Z. 51, [%, §1, [, §lusw, d.h.insgesamt wirdso f(y) < « fiir0 < y < %
nachgewiesen werden. Mit der leicht nachpriitbaren Relation f(w —y) = f(y) ergibt dies
gerade die Behauptung des Satzes.

=: k fiir

Fiir alle x gilt offenbar die Beziehung /i(x) = sin x + %h(2x) (speziell folgt h(%) = %
wegen hi(x) = h(m — x)) und mit dieser auch h(x) = sin® x + %sin2 2x + %h(4x).
Nimmt also die Funktion 2 an einer Stelle xo ihr Maximum M an, so folgt M = h(xp) <

sin? Xo + % sin? 2x0 + %M, d.h.
a sin’x 3V’
3 "4

Alsoist A(x) < % = h( ) fiir alle x und zudem A (x) = sin® x + h(2x) < sin?x + 3 Fo

NS OS]

4 5 2 ., 4 5 8 . o 2
Msgsmxo-l—gsm 2x0:§smxo+§smxocosxo:
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Die Funktion d;(x) = sin® x + % —X (% — ) erfiillt dl( Y= dl( } = 0 und ist
auf I = [F, 3] wegen a'”(x) = 2cos2x + & 2 > 0 konvex. Folghch ist di(x) < 0 auf
I, d.h. —(sm X+ 4) T —x Weiterhin ist da(x) 1= - auf I = [3, 2] wegen
d” (x) = —3 > 0 konvex, kann also nach oben durch die hneare Funktion, welche mit do
in den Endpunkten tibereinstimmt, d.h. 5= — —x abgeschitzt werden.

Wir haben som1tg(x)+ B} 2 g(x)—|— 2x auf I; und g(x)+ == b} & g(x)+ 2.
auf I, wobei fiir x = offenbar ]ewells Gle1chhe1t eintritt. Es g11t

> " sin? 2
g (x)= HZ:; (% sin 2nx_1 - i—zsin2 Zx—n) = % = Z (sm— - an ) :

) i _43 3
wegen0<s‘1nt—5“;—’:sint(l—sltﬂ)<t(l—#):%fur0<t<nalso

, siny _ sink 33 6
X) = > = > — auf Ij,
&) ¥ £ I "~ gt !
sin x () _sinx  x* _sink (5)?
x<— — —_—t — < — < — auf I.
g Z n=" Ty T 2
Damit ist g(x) —|— — %x monoton wachsend auf 71 und g(x) —|— — %x monoton
fallend auf I», d. h d1e belden Funktionen werden Jeweﬂs fiir £ T mit dem gemeinsamen
Wertg( Y+ ]f/;) maximal, womil insgesamt g(x) + —= hix) < g( )+ h<”/3) aurHUl =
[4, 2] gezeigt ist. U

Der kleinste Vorfaktor fiir die Aussage des Satzes liegt vermutlich nah bei 0,785786 (dies
istder Wert fiir y = %, a—p = 0,6328764878). Diesen Wert zu finden ist deutlich
schwieriger als beim Abstand zum Umkreismittelpunkt: Wahrend man fiir jenes Problem
ein Anfangsdreieck angeben konnte, das (hochstwahrscheinlich) zur optimalen Konstanten
fiihrt, scheinen hier die grofieren Werte von M. Hy, /¢ Computerexperimenten zufolge erst
bei sehr kleinen Werten von ¢ vorzukommen. Die Funktion im Satz 2.4 verhilt sich jedoch
gerade in diesem Bereich — obwohl mit scheinbar periodischen Mustern — hochstgradig
chaotisch.

Satz 3.4. Der Abstand von Hx zu der Ecke A ist kleiner als Ar|cosa| mit . = 1 +
s 2 it
> e % = 3,426. .. (und entsprechend fiir die anderen Ecken).

n=—00

Beweis. Fiir spitzes AABC (der andere Fall ldsst sich analog behandeln) entnimmt man
der Skizze ACp bcose = AH cos(% — ) = AHsin g, d.h. mit dem Sinus-

satz AH = bgng = 2rcosa. Da das Dreieck AABH offensichtlich das gleiche
Hohenfulipunktdreieck wie AABC hat, ist der Grenzpunkt Hso fiir beide Ausgangs-
dreiecke der @che. Fiir den Abstﬁ von Hy zu der Mitte M der Seite AH gilt
MHy < 45V AH nach Satz 3.3. Mit AH = 2r cos o folgt somit
1 1 A —
AHOOSAM+MHOO:5AH+MHOO<5AH—|—TAH:)chosa‘ I
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C

Fig. 4 Skizze zum Beweis von Satz 3.4

Besitzt das Ausgangsdreieck also einen fast rechten Winkel, so liegt der Grenzpunkt stets
sehr nahe an der entsprechenden Ecke, was nochmals fiir die Natiirlichkeit unserer Defi-
nition des Grenzpunktes fiir abbrechende Folgen spricht. Der Herleitung zufolge ist der
kleinste Vorfaktor fiir diesen Satz vermutlich genau 1 4+ 2«, wenn « der kleinste Vorfaktor
fiir den Satz 3.3 ist.

4 Die Winkel der Folgendreiecke
4.1 Die VerhaltnisgroBen

Mit dem letzten Abschnitt beenden wir die Untersuchung des Grenzpunktes und wenden
uns nunmehr den Folgendreiecken an sich, und zwar ihren Innenwinkeln o, By, y» zu. Als
Erstes werden wir das wichtige Fortsetzbarkeitskriterium und die expliziten Formeln fiir
die n-ten Winkel herleiten, daneben stellen wir auch einige weitere interessante Resultate
rund um die Winkel der Folgendreiecke zusammen.

Die Innenwinkel o, B, y unseres Ausgangsdreiecks Hy = AABC schreiben wir in der
Form o = an, B = bmr und y = cxw. Die Verhélinisgrofien a, b, ¢ liegen dann zwischen
O und 1 und erfiilllen a + b 4+ ¢ = 1. Die Bindrdarsiellung dieser Zahlen wird fiir uns im
Folgenden zu einem duferst michtigen Hilfsmittel werden:

a=0,aa1a2a3..., b=0,bob1bsb3..., ¢ =0,coci1c203...

Die Zdhlung der Nachkommarziffern fangen wir dabei bei O an. Wenn wir im Folgen-
den eine endliche oder unendliche Entwicklung aufschreiben, so meinen wir damit immer
die Bindrdarstellung der entsprechenden Zahl. Die Periode 1 wird ausgeschlossen. Die
VerhiltnisgroBen von Hy, fiirn = 0, 1, 2, ... werden wir mit al® p@ 1) pegeichnen.

Wir bemerken zunichst das folgende einfache aber grundlegende Ergebnis aus der Ele-
mentargeometrie: Ist Hy Spitz, 0 ist oyl = T — 2y, Put1 = 7T — 2By, Yo+l = T — 2.
Ist Hy hingegen stumpf, 50 ist ay41 = 20y, But1l = 2Bn, Va1 = 2y, — 7w, wenn der
stumpfe Winkel bei Cy, liegt (und entsprechend fiir die anderen Ecken).
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In die VerhiltnisgroBen ,iibersetzt* bedeutet das: a+1, p+l i+l enistehen aus a™,
b ¢ durch das Vorriicken des Kommas um eine Stelle nach rechts, sowie durch eine
anschlieBende Ziffernumkehrung im Falle aé”) = bé ) = CO (Nullen werden zu Einsen
gemacht und umgekehrt). Iterativ ergibt sich hieraus auch die folgende allgemeine Regel,
mit der sich die VerhéltnisgroBen von H, und damit auch die entsprechenden Innenwinkel
direkt berechnen lassen.

Satz 4.1. Sind Hy, ..., Hy—1 nichtrechtwinklig, so ergeben sich die Bindrentwicklungen
vona™, b " qus denenvon a, b, ¢ jeweils durch Vorrticken des Kommas um n Stellen
nach rechts, wobei anschliefiend die Ziffern umgekehrt werden, falls die Anzahl der Siellen
O<i<n-—1mita;, =b;, = ¢; ngerade ist.

Beispiel. Gegeben seien z.B. o = n p= 1—4 = %n und gesucht die Innenwinkel

von Hs. Es ist

01234
a =13 =0,0111000011110... a® = 0,00011110... = %
= 1 =0,0101001011010... unddamit " =0,01011010...= &
¢ =+ =0,00111T0000111... ¢® = 0, 70000111 ... = 2,

denn unter den ersten 5 Stellen ¢ gibt es genau 2 mit jeweils drei gleichen Ziffern; da 2
gerade ist, riicken wir das Komma um 5 Stellen nach rechts ohne anschlieend die Ziffern
umzukehren. Also ist s = 1771 Bs = 6 7 und y5 = 9 =7,

Satz 4.2 (Fortsetzbarkeitskriterium). Eine Folge von Hohenfufpunktdreiecken ist genau
dann unendlich, wenn keine der drei Bindrentwicklungen von a, b, ¢ abbrichi.

Beweis. Ist keine der Entwicklungen von a, b, ¢ abbrechend, so ist insbesondere keine
dieser GroBen gleich 0,1 und Hp nichtrechtwinklig. Mit Satz 4.1 brechen auch die Ent-
wicklungen von @', 51, ¢ nicht ab und H; ist nichtrechtwinklig usw. Damit ist kein
Folgendreieck rechtwinklig.

Sind umgekehrt z.B. in der Bindrentwicklung von a hochstens die ersten n Ziffern von 0
verschieden, wiirde Satz 4.1 den Widerspruch ¢ = 0 oder ¢ = 1 ergeben, wenn die
Folge keine rechtwinkligen Dreiecke enthalten wiirde. 4

Satz 4.1 erlaubt uns auf direkte Weise die allgemeine Gestalt der Verhdlinisgrofen a, b, ¢
aufzudecken:

Satz 4.3. Bei unendlichen Iolgen stehen an den Stellen mit drei gleichen Ziffern mit 0
beginnend abwechselnd O und 1, die iibrigen Stellen enthalien genau eine 1, wenn sie
direkt nach dem Komma oder einer Stelle mit drei Einsen folgen, bzw. genau eine 0, wenn
sie nach einer Stelle mit drei Nullen folgen, also etwa

a =20, 100...100 0 101...010 1 100...100 0 101...010 1 ...,
b =0, 010...010 0 111...101 1 010...010 O 111...101 1 ..., 4.1)
¢c=20, 001...001 0 010...111 1 001...001 O O010...111 1 ...
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Verhdlimisgrdfien endlicher Folgen entsprechen der obigen Beschreibung, wenn man sie
mit Periode 1 aufschreibt.

Beweis. Im Fall einer unendlichen Folge Hy, Hy, H, ... sei ndmlich « > 0 und gy
die Anzahl der Stellen 0 < { < n — 1 mita;, = b; = ¢;. Nach Satz 4.1 ist dann
(aé”),bé”),cé”)) = (an, bn. ca) fiir gerades g, und (a(g”),b(()”), c(()”)) = (1 —ap.1 -
bu, 1 — ¢y) fiir ungerades g,. Bei spitzem H, ist a(()”) = bé”) = c(()”) = 0 und somit

dy = b, = ¢, = 0 fiir g, gerade und a, = b, = ¢, = 1 fiir g, ungerade. Bei stump-
fem H, ist z.B. (aén), b(()”), c(()”)) = (1, 0,0), wenn der stumpfe Winkel bei A, liegt, al-
SO (ap, by, cy) = (1,0,0) fiir g, gerade und (ay, by, cy) = (0,1, 1) fiir g, ungerade.
Die obige Beschreibung (4.1) ergibt sich, wenn wir jetzt nacheinander die Stellen # mit
gn = 0,1, 2,... betrachten. Bei Folgen, die mit einem rechtwinkligen Dreieck H,, ab-
brechen, ist die Begriindung fiir die Stellen n < ng genau wie oben und fiir n > 7y ganz
analog. O

Drei beliebige nach dieser Vorschrift konstruierte Zahlen a, b, ¢, erfiillen umgekehrt, wie
man leicht feststellt, automatisch die Bedingung a + b + ¢ = 1, so dass sie im Fall
0 < a,b,c < 1 VerhiltnisgroBen eines Dreiecks darstellen. Damit haben wir eine ganz
bequeme Methode, um alle moglichen Belegungen fiir die jeweils ersten n Stellen zu er-
mitteln, was z.B. im Abschnitt 4.3 von Nutzen sein wird.

Betrachten wir die jeweils aus den ersten n Ziffern entstehenden ganzen Zahlen u =
do...dp—1,v = bo...by_1und w = ¢p...cy—1, $0 offenbart uns die Darstellung (4.1)
im Falle der Existenz von H, sogleich, dass die Summe s = u + v + w entweder gleich
11...11 =2"—1oder11...10 = 2" -2 (jeweils n Ziffern) ist, je nach dem, ob g, gerade
oder ungerade ist. Die Entscheidungsgrofie g, im Satz 4.1 ist also gerade oder ungerade,
je nach dem, ob s ungerade oder gerade ist und wir gewinnen zusammen mit Kriterium
4.2 den folgenden bemerkenswerten Satz, der uns die n-ten VerhiltnisgroBen direkt und
ohne die Kenntnis der jeweiligen Bindrdarstellungen oder sonstige Fallunterscheidungen
liefert (| x| ist der ganzzahlige und {x} = x — [ x] der gebrochene Anteil von x):

Satz 4.4. Fiir n > 0 sind die Verhdltnisgrofsen von Hy, gegeben durch
L (3-ew). d+eur(d-em) d+en(3-e)
2 2 2 2 ' 2 2

mit s = [2"%a] + (2"b| + |2"¢c], falls {2"a}, {2"b}, {2"c} > 0. Ansonsten existiert Hy,
nicht.

(Die bei Hobson [7] sowie in der Erlduterung von Hatzipolakis zur Folge A001045 in [10]
angegebenen Formeln o, = 53_—2%15 + (—2)"« usw. sind nicht richtig, worauf im ersten
Fall schon Kingston und Synge [8] hingewiesen haben.)

4.2 Spitze und stumpfe Folgendreiecke

In der Tat haben wir im letzten Abschnitt sogar mehr bewiesen als eine Beschreibung, wir
haben auch die Bedeutung der Ziffern erfasst:
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Satz 4.5. Wenn H,, existiert und nichtrechtwinklig ist, ist Hy, spitz genau dann, wenn d, =
by = ¢y, und stumpf bei Ay, genau dann, wenn (dy, by, cx) = (1,0, 0) oder (dy, by, cy) =
(0, 1, 1) (und entsprechend fiir B, und Cy,).

Damit konnen wir nicht nur zu gegebenen a, b, ¢ sofort das Spitz-Stumpf-Verhalten ab-
lesen, sondern wir konnen verbliiffenderweise auch umgekehrt zu fast jeder Vorgabe der
Spitz-Stumpf-Eigenschaft (fiir jedes n wird vorgegeben, ob Hy spitz oder stumpf bei A,,
By, oder C, sein soll; oder aber nur fiir n < np und dass Hy, rechtwinklig sein soll)
ein Ausgangsdreieck finden, welches diese Vorgabe erfiillt. Wir miissen die Ziffern von
a, b, c bloB so entsprechend dem obigen Satz wihlen, dass die allgemeine Struktur (4.1)
gewdhrleistet ist. Bei abbrechenden Folgen sind alle Vorgaben realisierbar, sogar so, dass
alle drei VerhiltnisgroBen die Form zi‘—nyr haben. Bei unendlichen sind nur diejenigen aus-
genommen, die zu Perioden 0 oder 1 fithren, d.h. Vorgaben mit nur endlich vielen spit-
zen Dreiecken und bei denen zusitzlich der stumpfe Winkel ab einem gewissen #g nicht
mehr bei A,, B, bzw. C, liegen soll. Mehr noch: Im Fall einer unendlichen Folge ist
das Ausgangsdreieck durch eine realisierbare Vorgabe der Spitz-Stumpf-Eigenschaft al-
ler Folgendreiecke offenbar eindeutig bestimmt! Diese Korrelation ist das Hauptresultat
von Alexander [1] und fiihrt zu der eingangs erwihnten Kodierung. Wenn man aber nur
vorschreibt, ob H, spitz oder stumpf sein soll, ist jede solche Vorgabe realisierbar, bei
unendlich vielen stumpfen Dreiecken sogar auf tiberabzihlbar viele Weisen!

Wir bemerken speziell, dass die ersten n Folgendreiecke Hy, Hy, ..., Hy—1 genau dann
alle spitz sind, wenn die Entwicklungen von a, b, ¢ wie folgt anfangen:

a=0,01010...dx0n41. .. .
n Ziffern

b =0,01010 .. . BuPuit on »
n Ziffern

¢ =0,01010...cnCn41 - ..

n Ziffern

Aquivalent kann man auch —Jﬂ cg—L,f— T, p—5 < 3,2% mit (i, v) =
(0, 1) fiir gerades n und (u, v) = (1, 0) fiir ungerades n fordern, wie man leicht mit Hilfe
der am Anfang bemerkten Rekursionsformeln fiir die Innenwinkel zeigt. Sind also alle
Tolgendreiecke spitz, so ist das Ausgangsdreieck Hy gleichseitig, d.h. fingt eine Folge von
HohenfuBpunktdreiecken mit einem nichtgleichseitigen Dreieck an, so kommt in ihr auf
jeden Fall ein stumpfes Dreieck vor.

4.3 Periodische Folgen

> 1), falls das n-
te Folgendreieck H, zum Anfangsdreieck Hp dhnlich ist. Im speziellen Falle o, = «o,
Bn = B, y» = y nennen wir die Folge streng n perwdzsch Bei periodischen Folgen
wiederholen sich also immer die gleichen Dreiecke bis auf Ahnlichkeit: H, ist zu Hy
ahnlich, H,41 zu Hy, Huqo 70 Hy usw.

Wir nennen eine Folge von Hohenfulipunktdreiecken n-periodisch (n =
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Die Ziffern der untereinander aufgeschriebenen Bindrentwicklungen der Verhiltnisgrofien
a, b, ¢ fassen wir zu Blocken von jeweils n Spalten zusammen:

a=0, avd1 G ... Au—1 Gy ugl - og—1 A2 .. ,

b=0, bob1 by ... by_1 by bpt1 ... boy—1 boy ...,

E= P01 % ens Bl Gn Budd s o O wus
erster n-Block zweiter #-Block

Der folgende Satz, welcher sich auf eine einfache Weise mit dem Satz 4.1 beweisen lasst,
gibt ein notwendiges und hinreichendes Kriterium fiir die n-Periodizitit.

Satz 4.6. Eine Dreiecksfolge ist genau dann n-periodisch, n > 1, wenn jeder n-Block aus
dem vorhergehenden durch irgendeine, fiir jeden n-Block die gleiche Vertauschung der
drei Zeilen, sowie durch die Ziffernumkehrung, falls die Anzahl der Stellen 0 <i <n — 1
mit a; = b; = c; ungerade ist, hervorgeht. Fiir strenge Periodizitdt ist die Zeilenvertau-
schung wegzulassen.

Beispiel. Fiir die Anfangswinkel ¢ = %, B = 27”, 3 1= 47” ist
a=4%=0,001001001...,
b=2=0,010010010...,
c=2=0,100100100...

Die entsprechende Folge ist also 1-periodisch und streng 3-periodisch (dieser Folge be-
gegneten wir schon im Abschnitt 3).

Um eine #n-periodische Folge zu erhalten, miissen wir also bloi beliebig die Ziffern an
den jeweils ersten s Stellen gemifl dem Aufbau (4.1) vorgeben sowie irgendeine Zeilen-
permutation wihlen, mit der dann auch die librigen Ziffern entsprechend dem obigen Satz
bestimmt werden. Die eventuell periodischen Folgen, d.h. solche, bei denen erst nach ei-
ner anfinglichen Verzdgerung von d Schritten die mit H; beginnende Folge periodisch
ist, konnen offensichtlich ganz analog beschrieben und auch konstruiert werden, indem
der erste n-Block erst ab Spalte d begonnen wird.

Wir bemerken, dass nach obigem Satz jede n-periodische Folge auch streng 6n-periodisch
ist. Da sich in den Entwicklungen von a, b, ¢ immer die gleichen Ziffern von n-Block zu
n-Block gef. bis auf Ziffernumkehrung wiederholen, kann man auch die entsprechenden
Darstellungen als ,,gewohnliche™ Briiche % angeben. Wegen

(0, apaiay. . .ay—1 Aod1as . ..dy—1 do...) = 2nl7_ 7 und
- — _ p+1
0, dod1ds. . .4y—1 Ao€10s .. . Ap—1 4o ...) =
(0. aoaraz. . . an—1 God1a2 n10)2n+1
mit@; ;=1 —¢; und p := apd1ds . .. ay—1 tolgt z.B.: Eine Dreiecksfolge ist genau dann

streng n-periodisch, wenn die Anfangswinkel o, B, y die Form o = st=mn, B = 7,

q
2n—1
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Y = w7 oder die Form o« = wtom, B = 5lgw, v = mign mit ganzen p, q, r
haben. Anfingliche Verzogerung von d Schritten wird mit dem Nenner 24 (2" +1) erreicht.
Die analogen Ausdriicke fiir n-periodische, aber nicht streng s-periodische Folgen lassen
sich zwar ebenso ohne Miihe gewinnen, jedoch haben sie eine etwas untibersichtlichere
Gestalt (diesbeziiglich sei auf [14] verwiesen).

Mit Satz 4.6 sehen wir, dass es unendlich viele periodische Folgen mit paarweise nicht

dhnlichen Ausgangsdreiecken gibt. Fir ein festes # sind es aber nur endlich viele, und

zwar insgesamt 2" (2" — 1) n-periodische und davon (4" + 2)/6 streng n-periodische; das

bekommt man z.B. mit Burnsides Lemma nach einer ldngeren Rechnung (in [14] ist u.a.

eine andere nur elementare kombinatorische Uberlegungen benutzende Herleitung der er-

sten Formel zu finden). 1-periodische Folgen sind die mit den Anfangswinkeln (%, 5. §)
Y W

: Tom T 7 7 3r T 2w 27 T 2n 4w 7 3m 97w
den Anfangswinkeln (5. %, §), (?’ 5 ?)v (? 5 T)’ (7’ N T)’ (E Nk ﬁ)a
2 Sm 6m T 2n 87 2m m An z x l=m 2r 2r I oA 16w
BB B\ TP \313 1) \5 15715 > \ 51515 }» \21° 21 21

2 8z iz
20 217 21

und (” 2ot 4—”) (die erste davon streng periodisch); 2-periodische Folgen sind die mit

und ( ) (die ersten drei davon streng periodisch).

Schlieilich lassen sich zu drei vorgegebenen Winkeln g, Bo, yo mit 0 < g, Bo, yo < 7,
ap + Po + yo = m stets solche periodischen Folgen finden, deren Anfangswinkel sich
von diesen beliebig wenig unterscheiden, d.h. die periodischen Folgen liegen ,dicht®. Fir

|l —col, |B—Bol, |¥ —yo| < zin ist das mit Periode n zu erreichen: Die ersten n Binérstellen
der VerhiiltnisgroBen setze man gleich denen von 7, g % und die ibrigen gemil einer

Variante aus Satz 4.6, mit der keine Periode 0 oder 1 entsteht; ggf. schreibe man %, g bzw.
L zuvor mit Periode T.

Ich méchte mich bei Frau Prof. Dr. ITrmtraud Stephani (FSU Jena), die mir bei der Erstel-
lung dieser Arbeit stets hilfreich zur Seite stand, sowie bei Herrn Prof. Dr. Hans-Jiirgen
SchmeiBer (FSU Jena) fiir die wertvollen Kommentare und Ratschlédge herzlich bedanken.

Literatur

[1]1 Alexander, J.C.: The symbolic dynamics of the sequence of pedal triangles. Math. Mag. 66 (1993), 147—

158.

[2] Anglesio, J.: A Nowhere-Differentiable Function from Geometry: 10790. Amer. Math. Monthly 108
(2001), 568.

[3] Arslanagid, S.: Die Abstiinde der besonderen Punkte im Dreieck. Die Wurzel 5 (1999), 9097 und 6 (1999),
114-120.

[4] Bankoff, I..; Garfunkel, J.: The heptagonal triangle. Maith. Mag. 46 (1973), 7-19.

[5] Conway, J.H.; Lawrence, E.; Parish, J.; Ehrmann, J.-P.: The orthic limit.
http://tech.groups.yahoo.com/group/Hyacinthos/message/5638 und
5640,5641, 5647, 5655,

[6] Heurteaux, Y.: Weierstrass functions in Zygmund’s class. Proc. Amer. Math. Soc. 133 (2005), 2711-2720.
[71 Hobson, E.-W.: A treatise on plane trigonometry. Cambridge University Press, 1891, 194-200.
[8] Kingston, J.G.; Synge, J.1..: The sequence of pedal triangles. Amer. Math. Monthly 95 (1988), 609-620.



70 Evgeny Strekalovskiy

[9] Lax, P.D.: The ergodic character of sequences of pedal triangles. Amer. Math. Monthly 97 (1990), 377-
381.

[10] Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences.
http://www.regearch.att.com/~njas/sequences

[11] Taylor, D.G.: Successive Pedal Triangles. Math. Gazette 30 (1946), 11-13.

[12] Tuckey, C.O.: Angles of pedal triangles. Math. Gazette 17 (1933), 48—49.

[13] Ungar, P.: Mixing property of the pedal mapping. Amer. Math. Monthly 97 (1990), 898-900.

[14] Vilyi, I.: Uber die FuBpunktdreiecke. Monatshefte fiir Mathematik und Physik 14 (1903), 243-253.

Evgeny Strekalovskiy

FPriedensgasse 16

D-99423 Weimar, Deutschland

¢-mail: evgeny.strekalovskiyegmx.de



	Folgen von Höhenfusspunktdreiecken und ihre Grenzpunkte

