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Folgen von Höhenfußpunktdreiecken
und ihre Grenzpunkte

Evgeny Strekalovskiy

Evgeny Strekalovskiy hat 2004–06 an der Friedrich-Schiller-Universität Jena Mathematik

und Informatik studiert. Gegenwärtig setzt er sein Studium an der Rheinischen
Friedrich-Wilhelms-Universität Bonn fort. Er ist dreifacher Bundessieger im
Bundeswettbewerb Mathematik und Bundessieger im Wettbewerb Jugend forscht.

1 Einleitung

Betrachtet man irgendeine Abbildung, die jedem Dreieck der euklidischen Ebene
eindeutig sein Nachfolgedreieck“ zuordnet, so entsteht für jedes Ausgangsdreieck 0 eine

”Folge 0, 1, 2, von Dreiecken. Es gibt sicherlich unzählige Möglichkeiten solche
Dreiecksfolgen zu konstruieren. Eine besonders interessante Folge entsteht, wenn man als

Nachfolgedreieck jeweils das aus den drei Höhenfußpunkten gebildete Höhenfußpunktdreieck

nimmt. Es zeigt sich, dass diese Folge immer gegen einen Grenzpunkt“ strebt,
”sobald sie bloß beliebig weit fortsetzbar ist. Das Bemerkenswerte hierbei ist, dass die Lage

dieses Grenzpunktes bei gleichschenkligem Ausgangsdreieck durch eine stetige aber
nirgendwo differenzierbare Funktion beschrieben wird, wodurch sich die Folge von vielen
anderen deutlich auszeichnet.

Diese Folge erfreute sich bereits großer Aufmerksamkeit seitens verschiedener Autoren,
jedoch war fast ausschließlich das Verhalten der Innenwinkel der Folgendreiecke Gegenstand

der Untersuchung, und nicht das des Grenzpunktes. Die wohl erste Beschreibung

Verbindet man in einem Dreieck H0 die drei Höhenfußpunkte, so entsteht ein neues

Dreieck H1, und Wiederholung dieser Konstruktion liefert eine Folge H0, H1, H2,
von immer kleineren Höhenfußpunktdreiecken, die gegen einen Grenzpunkt konvergieren.

Diese Folge hat schon die Aufmerksamkeit vielerMathematiker gefunden,
darunter Lax und Conway. Unser Autor berichtet darüber und stellt explizite Formeln für
die Folgendreiecke auf. Es stellt sich heraus, dass der Grenzpunkteine stetige, aber
nirgends differenzierbare Funktion des Ausgangsdreiecks ist. Eine besondere Rolle spielt
dabei der Fall, wo im Lauf der Konstruktion ein rechtwinkliges Dreieck entsteht.
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findet sich bei Hobson [7] bereits 1891. Daraufhin untersuchte Vályi [14] die allgemeine
Gestalt und Anzahl periodischer Folgen s. Abschnitt 4) auf rein kombinatorischem Wege

s. Folge A102536 in [10]) und Tuckey [12] stellte die Entstehung der 12-Periodizität
fest, wenn das Gradmaß der Anfangswinkel ganzzahlig ist. Diese Tatsache sowie einige
weitere Eigenschaften streng periodischer Folgen haben des Weiteren Kingston und Synge

[8] untersucht. Sie führten die Verhältnisgrößen ein, arbeiteten jedoch wie auch in [14]
und [12] direkt mit den Innenwinkeln selbst, wodurch ein größerer Anteil der Resultate
und Beweise eher technisch erscheint. Hierauf nahm Alexander [1] Bezug und beschrieb,
wie sich der Übergang zum jeweils nächsten Folgendreieck als Shift auf einer bestimmten
Kodierung der Dreiecke erweist und so jede Untersuchung der Innenwinkel auf die dieser
Kodierungen zurückführbar ist, wobei die letztere bequem mit den mächtigen Mitteln der
symbolischen Dynamik erfolgenkann. Möchte man Aussagen direkt über die Innenwinkel
selbst und nicht auf dem Umweg über die Kodierung erhalten, bedarf es dann allerdings
immer einer Übersetzung“. Im Gegensatz dazu werden wir in der vorliegendenArbeit die”Innenwinkel von vorn herein ganz im Lichte der Binärdarstellungen der Verhältnisgrößen
behandeln. Mit dieser Methode gelangt man auf einheitlichem Wege schnell, einfach und
durchsichtig zu wesentlichen unmittelbaren Aussagen über die Innenwinkel selbst. In dieser

Form finden sie sich nicht in früherer Literatur. So wird insbesondere die Herleitung
des bemerkenswerten Satzes 4.4 ermöglicht, der wie auch der Satz 4.5 ein neues Resultat

darstellt. In eine andere Richtung gingen Lax [9] und später Ungar [13], indem sie

die sog. Mischungseigenschaft nachwiesen. Diese impliziert, dass fast jedes“ Ausgangsdreieck

”zu einer Folge führt, in welcher man von der Größe abgesehen früher oder später
Folgendreiecke nahezu jeder möglichen Gestalt antrifft.

Untersuchungen bezüglich des Grenzpunktes gibt es weitaus weniger. Eine Formel für
den gleichschenkligen Fall wird in [11] und [2] hergeleitet, in der letzten Arbeit wird
die erhaltene Funktion auch als nirgendwo differenzierbar herausgestellt. Die Frage nach
dem Grenzpunkt kam erneut in [5] durch Conway et al. auf. Hier findet man einen
Existenznachweis, das Fortsetzbarkeitskriterium 4.2 und zum ersten Mal eine auf Conway
zurückgehende analytische Herleitung der expliziten Formel aus Satz 2.3 für ein
allgemeines Ausgangsdreieck. Conway wies auf die durch die Stetigkeit mögliche Erweiterung

der Definition des Grenzpunktes auf die abbrechenden Folgen, ließ jedoch offen,
welcher Punkt genau als Grenzpunkt genommen werden soll. In der vorliegenden
Arbeit präsentieren wir einen synthetischen Beweis der Formel und klären die letzte Frage

vollständig. Die allgemeine Formel für die Lage des Grenzpunktes relativ zum Mittelpunkt

einer Seite in Satz 2.4 und die gesamte Untersuchung zu Höchstentfernungen im
Abschnitt 3 kommen in früheren Arbeiten nicht vor. Der Grenzpunkt H8 eines Dreiecks
ist noch nicht als ein Kimberling Center Xn erfasst Encyclopedia of Triangle Centers).

Die vorliegende Arbeit ist in drei Abschnitte unterteilt. Zunächst wird die Existenz des

Grenzpunktes nachgewiesen, und Formeln für seine Lage werden hergeleitet. Im nächsten

Abschnitt wird die Entfernung des Grenzpunktes zu bestimmten Punkten des Ausgangsdreiecks

untersucht. Der letzte Teil behandelt schließlich die Folgendreiecke an sich, und
zwar in Bezug auf ihre Innenwinkel.
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2 Die Folge der Höhenfußpunktdreiecke

Zuerst soll der Begriff Grenzpunkt“ einer Dreiecksfolge festgelegt werden. Wir nennen”einen Punkt P Grenzpunkt der Dreiecksfolge AnBnCn), falls die drei Eckpunktfolgen
An), Bn) und Cn) allesamt gegen P konvergieren. Ggf. nennen wir die Dreiecksfolge

konvergent. Wir führen nun die zentrale Dreiecksfolge dieser Arbeit ein.

Definition 2.1. Sei ein nichtrechtwinkliges Dreieck. Das durch die Verbindung seiner
drei Höhenfußpunkte entstehende Dreieck heißt das Höhenfußpunktdreieck von Eine
Dreiecksfolge H0, H1, H2, bei welcher Hk+1 das Höhenfußpunktdreieck von Hk für
jedes k ist, heißt eine Folge von Höhenfußpunktdreiecken. Mit Ak+1, Bk+1 bzw. Ck+1

wird diejenige Ecke von Hk+1 bezeichnet, die in Hk auf der der Ecke Ak, Bk bzw. Ck
gegenüberliegenden Seite liegt.

C0

A0 B0

C0
A1

A1

B1

B1

C1 A0 C1 B0

Fig. 1 Zwei Folgen von Höhenfußpunktdreiecken

Eine solche Folge bricht ggf. irgendwann mit einem rechtwinkligen Dreieck ab, da dann

zwei Höhenfußpunkte zusammenfallen. Das Fortsetzbarkeitskriterium, das wir im
Abschnitt 4 beweisen werden, besagt, dass dies genau dann passiert, wenn einer der
Innenwinkel des Ausgangsdreiecks die Form k

2n p mit ganzen k und n hat.

Satz 2.2. Jede unendliche Folge von Höhenfußpunktdreiecken ist konvergent.

Beweis. Sei On der Umkreismittelpunkt und rn der Umkreisradius des n-ten
Folgendreiecks Hn. Aus der Elementargeometrie ist bekannt, dass der Umkreisradius des

12

Hohenfußpunktdreiecks¨ gleich der Halfte¨ des Umkreisradius des ursprunglichen¨ Dreiecks
ist der Umkreis des erstgenannten Dreiecks ist der Feuerbach-Kreis des anderen), d.h.

rn+1 rn. Mit r := r0 folgt hieraus induktiv

rn
r

2n
2.1)
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In jedem Folgendreieck Hn liegt der Fußpunkt der Höhe auf eine längste Seite stets auf
dieser Seite, d.h. Hn+1 und Hn und damit auch die entsprechenden Umkreise schneiden
sich. Der Abstand d(On, On+1) ihrer Mittelpunkte ist folglich höchstens gleich der Summe

ihrer Radien, d.h.

d(On, On+1) rn + rn+1
3r

2n+1

Hieraus folgt leicht, dass On) eine Cauchy-Folge ist, womit limn.8 On existiert. Wegen

rn 0 ist dies auch der Grenzpunkt der drei Eckpunktfolgen.

Der Begriff des Grenzpunktes“ kann aber auch auf die abbrechenden Folgen von”Höhenfußpunktdreiecken sinnvoll erweitert werden. Falls nämlich das n-te Folgendreieck

Hn rechtwinklig ist, so definieren wir den Grenzpunkt dieser Folge als diejenige Ecke
von Hn, bei der der rechte Winkel ist. Wir werden später sehen, dass dies eine durchaus
natürliche Definition ist.

Somit besitzt also jede Folge von Höhenfußpunktdreiecken, ob abbrechend oder nicht,
einen Grenzpunkt. Die folgenden zwei Sätze geben für ein gegebenes Ausgangsdreieck
die genaue Lage des n-ten Folgendreiecks und die des Grenzpunktes relativ zum
Umkreismittelpunkt sowie zu der Mitte einer Seite an. Die euklidische Ebene wird dabei mit

der komplexen Zahlenebene identifiziert abkürzend werden wir-P-1.P2 := P2 - P1 für den

Vektor von P1 nach P2 schreiben). Es seien O und r der Umkreismittelpunkt und -radius
des Ausgangsdreiecks; a, ß, seien die Richtungswinkel der Vektoren vom Umkreismittelpunkt

zu den drei Ecken, d.h. so dass A O + reia, B O + reiß, C O+rei.. Die
entsprechenden Großen¨ des n-ten Folgendreiecks Hn werden mit dem Index n versehen.

Der Grenzpunkt wird mit H8 bezeichnet. Schließlich setzen wir := a+ß+ und3

.n := + (-2)n a- .n := + (-2)n
ß - .n := + (-2)n -

Satz 2.3. Es gilt

H8 O + r
8

n=0

(-1)n

2n+1
ei.n + ei.n + ei.n

Falls Hn existiert, ergibt der Abbruch der Reihe nach n Gliedern On und es gilt

An On + r (-1)n

2n
ei.n Bn On + r (-1)n

2n
ei.n Cn On + r (-1)n

2n
ei.n.

Beweis. Wir zeigen zuerst die zweite Aussage des Satzes über die Lage der
Folgendreiecke. Die Dreiecke H0 bis Hm mögen existieren. Aus der elementaren Geometrie
ist bekannt, dass die drei Höhenfußpunkte von Hn, d.h. die Ecken von Hn+1, auf dem
Feuerbach-Kreis k liegen zusammen mit den drei Seitenmittelpunkten), dessen Mittelpunkt

12

F der Mittelpunkt der Strecke OnP ist, wenn P den Hohenschnittpunkt¨ bezeichnet;

der Radius von k ist außerdem r rn. Der Satz von Hamilton [3] besagt aber
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-O-n.P -O-n-A.n +-O-n-.Bn +-O-n-C.n, so dass zusammen folgt

On+1 F On +
-O-n-A.n +-O-n-.Bn +-O-n-C.n

2
2.2)

Mit den Bezeichnungen in der Skizze für den Fall eines spitzen Dreiecks Hn, der andere

Fall geht analog) ist OnS McCn+1 2RCn+1 und OnCn rn 2r 2Cn+1F, d.h.

die beiden Dreiecke OnSCn und Cn+1RF sind ähnlich, also RCn+1F SOnCn.

ei( n +1+
ei n

ei n
ei n

O

An Mc

P

F
S

n

Cn

Cn+1 Bn

R

k

Fig. 2 Skizze zum Beweis von Satz 2.3

Der Vektor C--n-+-1.F geht also aus dem Vektor-O-n-C.n durch Spiegelungan einer Senkrechten
zu AnBn und Stauchung) hervor. Die Differenzen zwischen den Richtungswinkeln von

-O-n-C.n und-O-n-.Bn bzw. -O-n-A.n und-C-n-+-1.F müssen damit modulo 2p übereinstimmen siehe

Fig. 2 links), d.h.

n - ßn an - n+1 + p) bzw.
n+1 an + ßn - n + p.

Analoge Rekursionsgleichungen ergeben sich auch für an+1 und ßn+1. Von diesen ausgehend

beweist man leicht mit vollständiger Induktion

an + (-2)n a - + np, ßn + (-2)n
ß - + np,

n + (-2)n - + np,

d.h. an .n + np und mit 2.1) also An On + rneian On + r (-1)n

2n
ei .n usw. Mit

2.2) liefert das insgesamt die zweite Aussage des Satzes.

Im Fall einer unendlichen Folge haben wir im Beweis des Existenzsatzes gesehen, dass

die Umkreismittelpunkte On gegen H8 konvergieren. Nach dem soeben Gezeigten
konvergieren sie aber auch gegen die im Satz angegebene Reihe.
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Sei nun ein Folgendreieck Hm rechtwinklig. Der rechte Winkel liege o.B.d.A. bei Cm. Zu
zeigen ist, dass die Reihe des Satzes gegen Cm konvergiert. Nach dem Satz von Thales

verlauft¨ die Seite Am Bm durch den Umkreismittelpunkt, womit die Vektoren-O-m--A. und

-O-m-B.
m

m offenbar entgegengerichtet sind, d.h. am ßm + p modulo 2p). Wegen am

.m +mp, ßm .m + mp und .n+1- .n+1 (-2)n+1(a-ß) -2(.n- .n) folgt also

.m .m + p sowie .n .n fur¨ n > m beides modulo 2p). Fur¨ alle n > m definieren
wir nun On als O addiert zu den ersten n Gliedern der Reihe des Satzes und An, Bn, Cn

durch die im Satz angegebenen Gleichungen fur¨ n m sind die entsprechenden Punkte
nach dem ersten Teil des Beweises durch die gleichen Formeln gegeben). Mit On+1

n
On +r (-1)

2n+1
ei.n + ei.n + ei.n und .n+1 .n + .n - .n ist dann

An+1 On + r (-1)n

2n+1
ei.n + ei.n + ei.n - ei(.n+.n-.n

und eine einfache Rechnung ergibt

An+1- Cn r (-1)n

2n+1
e-i.n ei.n - ei.n ei.n + ei.n

Mit .m .m + p modulo 2p) folgt hieraus Am+1 Cm; genauso ist auch Bm+1 Cm.
Analog gelten die beiden Gleichungen

An+1 - Bn r (-1)n

2n+1 e-i.n ei.n - ei.n ei.n + ei.n

Bn+1 - An r (-1)n

2n+1 e-i.n ei.n - ei.n ei.n + ei.n

aus welchen An+1 Bn, Bn+1 An für alle n > m wegen .n .n modulo 2p)
abgelesen werden kann. Folglich ist An Bn Cm für alle n > m. Die Punkte On, die
als Grenzpunkt die Reihe des Satzes haben, konvergieren somit nach Definition der An
auch gegen Cm und der Satz ist vollständig bewiesen.

Der Grenzpunkt wird somit sowohl bei unendlichen als auch bei abbrechenden Folgen
durch eine gemeinsame Formel beschrieben, in der die beiden Fälle nicht mehr unterschieden

werden. Auch wird er dadurch zu einer stetigen Funktion der drei Ecken bei festem
Umkreis).

Satz 2.4. Bezeichnet Mc den Mittelpunkt der Seite c AB, so gilt

H8 Mc +
c

2

8

n=0

sin2 2n.
(-1)n

2n sin
ei .+(-2)n(.-

Falls Hn existiert, ergibt der Abbruch der Reihe nach n Gliedern den Mittelpunkt Mn der
Seite AnBn von Hn.

Beweis. Falls die gegebene Folge mit Hm abbricht, so definieren wir An, Bn, Cn und On

für n > m auf die im Satz 2.3 angegebeneWeise. Unabhängigdavon, ob die Folgeabbricht
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oder nicht, ist dann sicherlich Mn H8. Mit dem Satz 2.3 gilt

An+1 + Bn+1 An + Bn
Mn+1 - Mn

2 - 2

On+1 + r (-1)n+1

2n+2
ei.n+1

+ ei.n+1 - On - r (-1)n

2n+1
ei.n + ei.n

r (-1)n+1
ei.n+1 ei.n+1 2ei.n

2n+2 + -
r (-1)n+1

2n+2
2 cos .n+1-.n+1

2
ei .n+1+.n+1

2 - 2ei.n

Zum einen ist .n+1+.n+1
2 - (-2)n(a + ß -2.) - (-2)n(3.- -2.) .n

und zum anderen .n+1-.n+1
2 -(-2)n(a - ß) (-2)n+1(± + kp), da a - ß

x2

±2. + 2kp mit einem bestimmten ganzen k nach dem Peripherie-Zentriwinkelsatz gilt.
Mit 1- cos x 2 sin2 und r c erweiterter Sinussatz) ist also

2sin.

Mn+1 - Mn r (-1)n+1

2n+2
2cos(2n+1 ei.n - 2ei.n

c

2sin. · -1)n
1- cos 2n+1.

2n+1
ei.n

c sin2 2n.
· -1)n

2 2n sin
ei.n

Der Satz folgt nun sofort unter Beachtung des Ausdrucks für .n.

y C

Mc

H

A B
x

Fig. 3

p2

Legen wir

p2

das Ausgangsdreieck speziell so ins Koordinatensystem, dass seine Seite AB
parallel zur reellen Achse verlauft¨ diese Situation ist in Fig. 3 dargestellt; es ist dann

a 3p - ß - +2 + a - ß nach dem Peripherie-Zentriwinkelsatz), so

wird die Formel im letzten Satz zu

-M-c-H-.8 i
c

2

8

n=0

sin2 2n.
(-1)n

2n sin
ei 1-(-2)n+1

3 a-ß)

Der Fall a ß verdient dabei besonders hervorgehoben zu werden.
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Satz 2.5. Sei ABC ein gleichschenkliges Dreieck mit der Basis c und dem Winkel bei
C. Dann liegt der Grenzpunkt H8 auf der Symmetrieachse von ABC und seine Hohe¨

hH8 uber¨ der Basis ist

hH8
c
2

8

n=0

sin2 2n.
(-1)n

2n sin
2.3)

Wie sich herausstellt, ist die durch die Reihe 2.3) dargestellte Funktion von natürlich
bis auf die Stellen kp, k Z, an welchen sie gar nicht definiert ist)
erstaunlicherweise eine überall stetige aber nirgendwo differenzierbare Funktion! Die Nicht-
Differenzierbarkeit ergibt sich aus dem in [6] bewiesenen Korollar 4.6:

Satz 2.6. Sei b > 1 und B {bn, n Z \ {0}}. Ferner seien a1, am, m 1,

positive reelle Zahlen mit der Eigenschaft ak
al B für alle k,l 1, m mit k l.

Dann ist für jede Funktion g(x) c1 cos(a1x) + + cm cos(amx) mit nicht gleichzeitig
verschwindenden Koeffizienten c1, cm die zugehörige Funktion

f x)
8

n=0

g(bnx)
bn

stetig aber nirgendwo differenzierbar.

Mit sin2 x 1-cos 2x
2 lässt sich die den Grenzpunkt beschreibende Funktion als

f
c
2

8

n=0
(-1)n sin2 2n.

2n sin

c
2 sin.

8

n=0

(-1)n

2n

1

2 -
cos 2n+1x

2

c

2 sin.
1

3 - cos +
8

n=0
(-1)n cos2n.

2n

0(-1)n cos2n.umschreiben. Die Funktion 8n 2n kann man dabei auch als

8

k=0

1

4k
cos 4k -

cos(2 · 4k.
2

8

k=0

g(4k.
4k

mit g(x) := cos x - 12 cos2x schreiben, so dass diese nach dem oben zitierten Satz 2.6

53

stetig und nirgendwo differenzierbar ist. Wegen der obigen Beziehungmuss das notwendig
auch auf f zutreffen die Stellen kp, k Z, ausgenommen).

3 Lagebeziehungen des Grenzpunktes

In diesem Abschnitt werden wir einige Resultate beweisen, die den Hochstabstand¨ des

Grenzpunktes zu speziellen Punkten des Ausgangsdreiecks betreffen.

Satz 3.1. Der Abstand des Grenzpunktes H8 zum Umkreismittelpunkt O ist kleiner oder
gleich r wobei r der Umkreisradius ist.
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Beweis. Falls die gegebene Folge endlich ist, definieren wir die Punkte On wie in Satz

2.3. Wir bestimmen als ersten Schritt das Maximum von OO2
r Wir setzen o.B.d.A. :=

-a - ß, also .n (-2)na, .n (-2)nß und .n (-2)n. -.n - .n. Mit den

Abkürzungen y a+ß
2

und x a-ß
2 folgt nach Satz 2.3

-O-O.
2

r

eia + eiß + e-i(a+ß)

2 -
e-2ia + e-2iß

+ e2i(a+ß)

4
3.1)

2 cosx eiy + e-2iy

2 -
2 cos2x e-2iy

+ e4iy

4

eiy cos x + sin2 x e-3iy -
1

4
e3iy

Betrachtet man OO2
r als Funktion von 3y mit dem Parameter x, so ergibt eine einfache

Rechnung für ihre Extremwerte | sin2 x - 14 ± cos x| 54 sowie | sin x| +
1

4| sinx|
unter

der Bedingung sin2 x- sin2 x - 14 | cos x| 0. Durch Betrachtung der Ableitungen stellt

man unschwer fest, dass |sin x|+
1

4| sin x|
54 für p

10 x p - p
10 ist und die Bedingung

für den zweiten Extremwert für die übrigen Werte von x aus [0,p] nicht erfüllt ist. Also

gilt stets OO2 54
2n da der Vektor -O-n-O-n-.+2 die Formr Hieraus folgt OnOn+2 54 ·
r

3.1) mit .n, .n anstatt a, ß sowie dem Vorfaktor (-1)n

2n hat. Also ist schließlich OH8
n=0,2,4,... OnOn+2 53r

Intensive Computerberechnungen sprechen sehr für die Richtigkeit der folgenden

Vermutung 3.2. Der Abstand von H8 zu O ist sogar 43r mit Gleichheit genau für die

Anfangswinkel p7
2p
7

4p
7

Einige anfängliche Folgendreiecke für dieses heptagonale“ Ausgangsdreieck sind in”Fig. 1 rechts dargestellt siehe [4] für eine umfangreiche Zusammenstellung seiner
geometrischen Eigenschaften).Wie am Ende des obigen Beweises würde das aus OO6 21

16r

1r

folgen; diese Relation wird ebenso durch massive Computerberechnungen gestutzt.¨ Dafur¨
spricht auch, dass die Große¨ OO6 fur¨ das angegebene Dreieck ein relatives Maximum

besitzt z.B. als Funktion von a und ß mit :=-a-ß füra 2p
7 ß 4p

7 ); dabei ist
anzumerken, dass das zweite Folgendreieck H2 aus H0 durch Streckung mit Faktor 1/4
hervorgeht und sein Umkreismittelpunkt O2 auf dem Umkreis von H0 liegt, so dass die
Vektoren-O-0-O.2,-O-2-O.4, alle gleichgerichtet sind und Längenr, r

4
r
42

haben. Für spitze

Ausgangsdreiecke folgt die Vermutung OH8 OO1+O1H8 12r+ 53 ·
r
2

43 r mit dem
soeben bewiesenen Satz, da der Höhenschnittpunkt P innerhalb des Umkreises liegt und
O1 der Mittelpunkt zwischen O und P ist. Der beste Vorfaktor nur für spitze Ausgangsdreiecke

ist vermutlich 1,04752. angenommen für die Anfangswinkel 3
56p,

26
56p,

27
56p;

interessanterweise ist hier H3 das heptagonale Dreieck von oben.

Satz 3.3. Der Abstand von H8 zu der Mitte einer Seite des Ausgangsdreiecks ist kleiner

als 12 8n=-8
sin2(2np/3)

2np/3 1,213 multipliziert mit der Länge dieser Seite.
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Beweis. Unter Benutzung von Satz 2.4 ist

McH8
c

2

8

n=0

sin2 2n.
2n sin =:

c

2
f

Für m 0 ist nach einer einfachen Umformung zunächst

f
2m 2m sin 2m

m

n=1

2n
sin2

2n +
8

n=0

sin2 2n.
2n.

3.2)

Für alle 0 < p2 ist weiter

f
8

n=0

1
2n sin

2

sin

sin 2

1- cos 2 1 + cos 2 cos 2
<

sin
2

1- cos 2

da 1 + cos
2

cos
2

auf [0, p2 ] monoton fällt und bei p2 den Wert 12 +
1v2 > 1 hat.

Die Beziehung

f
2

sin
2 +

8

n=1

sin2 2n
2

2

sin
2n sin 2 +

sin

2 sin 2

f sin
2 + cos

2
f

führt damit zu f 2 - f > 0 bzw. f < f 2 und iterativ auch f
2m < f

2k

für 0 m < k. Mit 3.2) bedeutet das

f
2m < lim

k.8
f

2k

8

n=1

2n
sin2

2n +
8

n=0

sin2 2n.
2n.

g( +
h(

für alle m 0, 0 < p2 mit g(x) := 8n 1
2n

x
sin2 x

2n und h(x) := 8n 0
sin2 2n x

2n

Im Folgenden werden wir g( +
h( g( p3 +

h(p/3)
p/3 8n=-8

sin2(2np/ 3)
2np/3 =: für

p4 p2 zeigen. Variiert dann im Intervall [ p4 p2 ], so variiert 2m für m 0, 1, 2,
im Intervall [ p4 p2 ], [ p8 p4 ], [

p
16 p8 ] usw., d.h. insgesamt wird so f < für 0 < p2

p312

nachgewiesen werden. Mit der leicht nachprufbarenRelation¨ f p- f ergibt dies
gerade die Behauptung des Satzes.

Fur¨ alle x gilt offenbar die Beziehung h(x) sin2 x + h(2x) speziell folgt h( 32

wegen h(x) h(p - x)) und mit dieser auch h(x) sin2 x + 12 sin2 2x + 14 h(4x).

1412

Nimmt also die Funktion h an einer Stelle x0 ihr Maximum M an, so folgt M h(x0)
sin2 x0 + sin2 2x0 + M, d.h.

M
4

3
sin2x0 +

2

3
sin2 2x0

4

3
sin2x0 +

8

3
sin2x0 cos2x0

3

2 -
8

3
sin2x0-

3

4

2

Also ist h(x) 32 h( p3 für alle x und zudem h(x) sin2 x + 12h(2x) sin2 x + 34
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Die Funktion d1(x) := sin2 x + 34 - x 13
p2 x erfüllt d1( p42p - 6 d1( p3 0 und ist

auf I1 := [ p4 p3 ] wegen d1 x) 2 cos2x +
12
p2 > 0 konvex. Folglich ist d1(x) 0 auf

I1, d.h. 1x sin2 x + 34
13
2p - 6

p2 x. Weiterhin ist d2(x) :=
3

2x auf I2 := [ p3 p2 ] wegen

d2 x) 3
x3 > 0 konvex, kann also nach oben durch die lineare Funktion, welche mit d2

in den Endpunkten übereinstimmt, d.h. 15
2p - 9

p2
x abgeschätzt werden.

Wir haben somit g(x)+
h( x)

x
g(x)+

13
p2

x auf I1 und g(x)+
h(x)

2p - 6
x

g(x)+
15
2p - 9

p2
x

auf I2, wobei für x p3 offenbar jeweils Gleichheit eintritt. Es gilt

g x)
8

n=1

1

x
sin

x

2n-1 -
2n

x2
sin2

x
2n

sinx
x +

1

x

8

n=1

sin
x
2n -

sin2 x
2n

x
2n

wegen 0 < sin t - sin2 t
t < t 1- t-t3/6

t sin t 1- sin t
t

t3

6 für 0 < t < p also

g x) >
sin x

x

sin p3

p3

3v3

2p >
6

p2
auf I1,

g x) <
sin x

x +
1

x

8

n=1

x
2n

3

6

sin x

x +
x2

42

sin p3

p3 +
2

42

p2

<
9

p2
auf I2.

Damit ist g(x) +
13
2p - 6

p2
x monoton wachsend auf I1 und g(x) +

15
2p - 9

p2 x monoton
fallend auf I2, d.h. die beiden Funktionen werden jeweils für p3 mit dem gemeinsamen

Wert g( p3 )+
h(p/3)

x g( p3)+
h(p/3)

p/3 maximal, womit insgesamt g(x)+
h(x)

p/3 auf I1 I2

[ p2 ] gezeigt ist.

Der kleinste Vorfaktor fur¨ die Aussage des Satzes liegt vermutlich nah bei 0,785786 dies
ist derWert fur¨ 2,69446565

p4

210 a-ß 0,6328764878).DiesenWert zu finden ist deutlich
schwieriger als beim Abstand zum Umkreismittelpunkt: Während man für jenes Problem
ein Anfangsdreieck angebenkonnte, das höchstwahrscheinlich) zuroptimalenKonstanten
führt, scheinen hier die größerenWerte von McH8/c Computerexperimenten zufolge erst

bei sehr kleinenWerten von vorzukommen.Die Funktion im Satz 2.4 verhält sich jedoch
gerade in diesem Bereich – obwohl mit scheinbar periodischen Mustern – höchstgradig
chaotisch.

Satz 3.4. Der Abstand von H8 zu der Ecke A ist kleiner als .r | cos a| mit 1 +
8n=-8

sin2(2np/3)
2np/3 3,426 und entsprechend für die anderen Ecken).

Beweis. Für spitzes ABC der andere Fall lässt sich analog behandeln) entnimmt man
der Skizze ACH b cosa AH cos( p2 - ß) AH sinß, d.h. mit dem Sinussatz

AH b cosa
sin ß 2r cosa. Da das Dreieck ABH offensichtlich das gleiche

Höhenfußpunktdreieck wie ABC hat, ist der Grenzpunkt H8 für beide Ausgangsdreiecke

der gleiche. Für den Abstand von H8 zu der Mitte M der Seite AH gilt

MH8 < .-1
2 AH nach Satz 3.3. Mit AH 2r cos a folgt somit

AH8 AM + MH8
1

2
AH + MH8 <

1

2
AH + - 1

2
AH .r cos a.
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A

M

C

H
H

BH

2

A BCH

Fig. 4 Skizze zum Beweis von Satz 3.4

Besitzt das Ausgangsdreieck also einen fast rechten Winkel, so liegt der Grenzpunkt stets
sehr nahe an der entsprechenden Ecke, was nochmals für die Natürlichkeit unserer
Definition des Grenzpunktes für abbrechende Folgen spricht. Der Herleitung zufolge ist der
kleinste Vorfaktor für diesen Satz vermutlich genau 1+ 2., wenn der kleinste Vorfaktor
für den Satz 3.3 ist.

4 DieWinkel der Folgendreiecke

4.1 Die Verhältnisgrößen

Mit dem letzten Abschnitt beenden wir die Untersuchung des Grenzpunktes und wenden
uns nunmehrden Folgendreiecken an sich, und zwar ihren Innenwinkeln an, ßn, .n zu. Als
Erstes werden wir das wichtige Fortsetzbarkeitskriterium und die expliziten Formeln für
die n- ten Winkel herleiten, daneben stellen wir auch einige weitere interessante Resultate
rund um die Winkel der Folgendreiecke zusammen.

Die Innenwinkel a, ß, unseres Ausgangsdreiecks H0 ABC schreiben wir in der
Form a ap, ß bp und cp. Die Verhältnisgrößen a, b, c liegen dann zwischen
0 und 1 und erfüllen a + b + c 1. Die Binärdarstellung dieser Zahlen wird für uns im
Folgenden zu einem äußerst mächtigen Hilfsmittel werden:

a 0,a0a1a2a3 b 0,b0b1b2b3 c 0,c0c1c2c3

Die Zählung der Nachkommaziffern fangen wir dabei bei 0 an. Wenn wir im Folgenden

eine endliche oder unendliche Entwicklung aufschreiben, so meinen wir damit immer
die Binärdarstellung der entsprechenden Zahl. Die Periode 1 wird ausgeschlossen. Die
Verhältnisgrößen von Hn für n 0,1,2, werden wir mit a(n),b(n), c(n) bezeichnen.

Wir bemerken zunächst das folgende einfache aber grundlegende Ergebnis aus der
Elementargeometrie: Ist Hn spitz, so ist an+1 p -2an, ßn+1 p- 2ßn, .n+1 p- 2.n.
Ist Hn hingegen stumpf, so ist an+1 2an, ßn+1 2ßn, .n+1 2.n - p, wenn der
stumpfe Winkel bei Cn liegt und entsprechend für die anderen Ecken).
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In die Verhältnisgrößen übersetzt“ bedeutet das: a(n+1), b(n+1), c(n+1) entstehen aus a(n),”b(n), c(n) durch das Vorrücken des Kommas um eine Stelle nach rechts, sowie durch eine
anschließende Ziffernumkehrung im Falle a n)

0 b n)
0 c n)

0 Nullen werden zu Einsen
gemacht und umgekehrt). Iterativ ergibt sich hieraus auch die folgende allgemeine Regel,
mit der sich die Verhältnisgrößen von Hn und damit auch die entsprechenden Innenwinkel
direkt berechnen lassen.

Satz 4.1. Sind H0, Hn-1 nichtrechtwinklig, so ergeben sich die Binärentwicklungen
von a(n), b(n), c(n) aus denen von a, b, c jeweils durch Vorrücken des Kommas um n Stellen
nach rechts, wobei anschließend die Ziffern umgekehrt werden, falls die Anzahl der Stellen
0 i n- 1 mit ai bi ci ungerade ist.

Beispiel. Gegeben seien z.B. a 15
34p, ß 1134p, 4

17p und gesucht die Innenwinkel
von H5. Es ist

01 2 3 4

34 0, 0111000011110. a(5) 0, 00011110. 2a 15
17

34 0, 0101001011010. und damit b(5) 0, 01011010. 6b 11
17

17 0, 0011110000111. c(5) 0, 10000111. 9c 4
17

denn unter den ersten 5 Stellen i gibt es genau 2 mit jeweils drei gleichen Ziffern; da 2
gerade ist, rucken¨ wir das Komma um 5 Stellen nach rechts ohne anschließend die Ziffern
umzukehren. Also ist a5 17p,2

ß5 17p
6 und .5 17p.9

Satz 4.2 Fortsetzbarkeitskriterium). Eine Folge von Höhenfußpunktdreiecken ist genau
dann unendlich, wenn keine der drei Binärentwicklungen von a, b, c abbricht.

Beweis. Ist keine der Entwicklungen von a, b, c abbrechend, so ist insbesondere keine
dieser Größen gleich 0,1 und H0 nichtrechtwinklig. Mit Satz 4.1 brechen auch die
Entwicklungen von a(1), b(1), c(1) nicht ab und H1 ist nichtrechtwinklig usw. Damit ist kein
Folgendreieck rechtwinklig.

Sind umgekehrt z.B. in der Binärentwicklung von a höchstens die ersten n Ziffern von 0
verschieden, würde Satz 4.1 den Widerspruch a(n) 0 oder a(n) 1 ergeben, wenn die
Folge keine rechtwinkligen Dreiecke enthalten würde.

Satz 4.1 erlaubt uns auf direkte Weise die allgemeine Gestalt der Verhältnisgrößen a, b, c

aufzudecken:

Satz 4.3. Bei unendlichen Folgen stehen an den Stellen mit drei gleichen Ziffern mit 0
beginnend abwechselnd 0 und 1, die übrigen Stellen enthalten genau eine 1, wenn sie

direkt nach dem Komma oder einer Stelle mit drei Einsen folgen, bzw. genau eine 0, wenn
sie nach einer Stelle mit drei Nullen folgen, also etwa

a 0, 100. .100 0 101. .010 1 100. .100 0 101. .010 1

b 0, 010. .010 0 111. .101 1 010. .010 0 111. .101 1

c 0, 001. .001 0 010. .111 1 001. .001 0 010. .111 1

4.1)
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Verhältnisgrößen endlicher Folgen entsprechen der obigen Beschreibung, wenn man sie

mit Periode 1 aufschreibt.

Beweis. Im Fall einer unendlichen Folge H0, H1, H2, sei nämlich n 0 und gn

die Anzahl der Stellen 0 i n - 1 mit ai bi ci Nach Satz 4.1 ist dann
a n)

0 b n)
0

c
n)

0 an,bn, cn für gerades gn und a n)
0 b n)

0 c n)
0 1 - an, 1 -

bn, 1 - cn für ungerades gn. Bei spitzem Hn ist a(n)
0

b(n)
0

c(n)
0 0 und somit

an bn cn 0 für gn gerade und an bn cn 1 für gn ungerade. Bei stumpfem

Hn ist z.B. a n)
0 b n)

0 c n)
0 1,0,0), wenn der stumpfe Winkel bei An liegt, also

an, bn,cn) 1, 0, 0) für gn gerade und an, bn, cn) 0, 1, 1) für gn ungerade.
Die obige Beschreibung 4.1) ergibt sich, wenn wir jetzt nacheinander die Stellen n mit
gn 0, 1, 2, betrachten. Bei Folgen, die mit einem rechtwinkligen Dreieck Hn0
abbrechen, ist die Begründung für die Stellen n < n0 genau wie oben und für n n0 ganz
analog.

Drei beliebige nach dieser Vorschrift konstruierte Zahlen a, b, c, erf üllen umgekehrt, wie
man leicht feststellt, automatisch die Bedingung a + b + c 1, so dass sie im Fall
0 < a, b,c < 1 Verhältnisgrößen eines Dreiecks darstellen. Damit haben wir eine ganz
bequeme Methode, um alle möglichen Belegungen für die jeweils ersten n Stellen zu
ermitteln, was z.B. im Abschnitt 4.3 von Nutzen sein wird.
Betrachten wir die jeweils aus den ersten n Ziffern entstehenden ganzen Zahlen u
a0 an-1, v b0 bn-1 und w c0 cn-1, so offenbart uns die Darstellung 4.1)
im Falle der Existenz von Hn sogleich, dass die Summe s u + v + w entweder gleich
11 11 2n-1 oder 11 10 2n-2 jeweils n Ziffern) ist, je nach dem, ob gn gerade

oder ungerade ist. Die Entscheidungsgröße gn im Satz 4.1 ist also gerade oder ungerade,
je nach dem, ob s ungerade oder gerade ist und wir gewinnen zusammen mit Kriterium
4.2 den folgenden bemerkenswerten Satz, der uns die n-ten Verh ältnisgr ößen direkt und
ohne die Kenntnis der jeweiligen Bin ärdarstellungen oder sonstige Fallunterscheidungen
liefert x ist der ganzzahlige und {x} x - x der gebrochene Anteil von x):

Satz 4.4. Für n > 0 sind die Verhältnisgrößen von Hn gegeben durch

12 + (-1)s
12 - {2na} 12 + (-1)s

12 - {2nb} 12 + (-1)s
12 - {2nc}

mit s 2na + 2nb + 2nc falls {2na}, {2nb}, {2nc} > 0. Ansonsten existiert Hn
nicht.

Die bei Hobson [7] sowie in der Erlauterung¨ von Hatzipolakis zur Folge A001045 in [10]
n

angegebenen Formeln 2)
an 1-(- p + (-2)na usw. sind nicht richtig, worauf im ersten

3

Fall schon Kingston und Synge [8] hingewiesen haben.)

4.2 Spitze und stumpfe Folgendreiecke

In der Tat haben wir im letzten Abschnitt sogar mehr bewiesen als eine Beschreibung, wir
haben auch die Bedeutung der Ziffern erfasst:
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Satz 4.5. Wenn Hn existiert und nichtrechtwinklig ist, ist Hn spitz genau dann, wenn an

bn cn, und stumpf bei An genau dann, wenn an, bn, cn) 1,0,0) oder an,bn, cn)
0, 1, 1) und entsprechend für Bn und Cn).

Damit können wir nicht nur zu gegebenen a, b, c sofort das Spitz-Stumpf-Verhalten
ablesen, sondern wir können verblüffenderweise auch umgekehrt zu fast jeder Vorgabe der
Spitz-Stumpf-Eigenschaft für jedes n wird vorgegeben, ob Hn spitz oder stumpf bei An,
Bn oder Cn sein soll; oder aber nur für n < n0 und dass Hn0 rechtwinklig sein soll)
ein Ausgangsdreieck finden, welches diese Vorgabe erfüllt. Wir müssen die Ziffern von
a, b, c bloß so entsprechend dem obigen Satz wählen, dass die allgemeine Struktur 4.1)
gewährleistet ist. Bei abbrechenden Folgen sind alle Vorgaben realisierbar, sogar so, dass

alle drei Verhältnisgrößen die Form k
2n p haben. Bei unendlichen sind nur diejenigen

ausgenommen, die zu Perioden 0 oder 1 führen, d.h. Vorgaben mit nur endlich vielen spitzen

Dreiecken und bei denen zusätzlich der stumpfe Winkel ab einem gewissen n0 nicht
mehr bei An, Bn bzw. Cn liegen soll. Mehr noch: Im Fall einer unendlichen Folge ist
das Ausgangsdreieck durch eine realisierbare Vorgabe der Spitz-Stumpf-Eigenschaft
aller Folgendreiecke offenbar eindeutig bestimmt! Diese Korrelation ist das Hauptresultat
von Alexander [1] und führt zu der eingangs erwähnten Kodierung. Wenn man aber nur
vorschreibt, ob Hn spitz oder stumpf sein soll, ist jede solche Vorgabe realisierbar, bei
unendlich vielen stumpfen Dreiecken sogar auf überabzählbar viele Weisen!

Wir bemerken speziell, dass die ersten n Folgendreiecke H0, H1, Hn-1 genau dann
alle spitz sind, wenn die Entwicklungen von a, b, c wie folgt anfangen:

a 0,01010

n Ziffern

anan+1

b 0,01010

n Ziffern

bnbn+1

c 0,01010

n Ziffern

cncn+1

Äquivalent kann man auch - p
3·2n-u < a - p3 ß - p3 - p3 < p

3 ·2n-v mit u,v)
0, 1) für gerades n und u, v) 1,0) für ungerades n fordern, wie man leicht mit Hilfe

der am Anfang bemerkten Rekursionsformeln für die Innenwinkel zeigt. Sind also alle
Folgendreiecke spitz, so ist das Ausgangsdreieck H0 gleichseitig, d.h. fängt eine Folge von
Höhenfußpunktdreiecken mit einem nichtgleichseitigen Dreieck an, so kommt in ihr auf
jeden Fall ein stumpfes Dreieck vor.

4.3 Periodische Folgen

Wir nennen eine Folge von Höhenfußpunktdreiecken n-periodisch n 1), falls das nte

Folgendreieck Hn zum Anfangsdreieck H0 ähnlich ist. Im speziellen Falle an a,
ßn ß, .n nennen wir die Folge streng n-periodisch. Bei periodischen Folgen
wiederholen sich also immer die gleichen Dreiecke bis auf Ähnlichkeit: Hn ist zu H0
ähnlich, Hn+1 zu H1, Hn+2 zu H2 usw.
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Die Ziffern der untereinander aufgeschriebenen Binärentwicklungen der Verhältnisgrößen
a, b, c fassen wir zu Blöcken von jeweils n Spalten zusammen:

a 0, a0 a1 a2 an-1 an an+1 a2n-1 a2n

b 0, b0 b1 b2 bn-1 bn bn+1 b2n-1 b2n

c 0, c0 c1 c2 cn-1

erstern-Block

cn cn+1 c2n-1

zweiter n-Block

c2n

Der folgende Satz, welcher sich auf eine einfacheWeise mit dem Satz 4.1 beweisen lässt,

gibt ein notwendiges und hinreichendes Kriterium für die n-Periodizität.

Satz 4.6. Eine Dreiecksfolge ist genau dann n-periodisch, n 1, wenn jeder n-Block aus
dem vorhergehenden durch irgendeine, für jeden n-Block die gleiche Vertauschung der
drei Zeilen, sowie durch die Ziffernumkehrung, falls die Anzahl der Stellen 0 i n - 1
mit ai bi ci ungerade ist, hervorgeht. Für strenge Periodizität ist die Zeilenvertauschung

wegzulassen.

Beispiel. Für die Anfangswinkel a p7 ß 2p
7

4p
7

ist

a 17 0,001001001

b 27 0,010010010

c 47 0,100100100

Die entsprechende Folge ist also 1-periodisch und streng 3-periodisch dieser Folge
begegneten wir schon im Abschnitt 3).

Um eine n-periodische Folge zu erhalten, müssen wir also bloß beliebig die Ziffern an

den jeweils ersten n Stellen gemäß dem Aufbau 4.1) vorgeben sowie irgendeine
Zeilenpermutation wählen, mit der dann auch die übrigen Ziffern entsprechend dem obigen Satz
bestimmt werden. Die eventuell periodischen Folgen, d.h. solche, bei denen erst nach
einer anfänglichen Verzögerung von d Schritten die mit Hd beginnende Folge periodisch
ist, konnen¨ offensichtlich ganz analog beschrieben und auch konstruiert werden, indem
der erste n-Block erst ab Spalte d begonnen wird.

Wir bemerken, dass nach obigem Satz jede n-periodische Folge auch streng 6n-periodisch
ist. Da sich in den Entwicklungen von a, b, c immer die gleichen Ziffern von n-Block zu

n-Block ggf. bis auf Ziffernumkehrung wiederholen, kann man auch die entsprechenden
Darstellungen als gewohnliche“¨ Bruche¨ x

” y angeben. Wegen

0, a0a1a2. an-1 a0a1a2 an-1 a0
p

2n - 1
und

0, a0a1a2. an-1 a0a1a2 an-1 a0
p + 1
2n + 1

mit ai := 1- ai und p := a0a1a2 an-1 folgt z.B.: Eine Dreiecksfolge ist genau dann
streng n-periodisch, wenn die Anfangswinkel a, ß, die Form a

p
2n-1p, ß

q
2n-1p,
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2n-1p oder die Form a
pr

2n+
1p, ß

q

2n+
1p, r

2n+1p mit ganzen p, q, r
haben. Anf änglicheVerzögerung von d Schritten wird mit dem Nenner 2d 2n±1) erreicht.
Die analogen Ausdrücke für n-periodische, aber nicht streng n-periodische Folgen lassen

sich zwar ebenso ohne M ühe gewinnen, jedoch haben sie eine etwas unübersichtlichere
Gestalt diesbezüglich sei auf [14] verwiesen).

Mit Satz 4.6 sehen wir, dass es unendlich viele periodische Folgen mit paarweise nicht
ähnlichen Ausgangsdreiecken gibt. Für ein festes n sind es aber nur endlich viele, und
zwar insgesamt 2n(2n - 1) n-periodische und davon 4n + 2)/6 streng n-periodische; das

bekommt man z.B. mit Burnsides Lemma nach einer längeren Rechnung in [14] ist u.a.
eine andere nur elementare kombinatorische Überlegungen benutzende Herleitung der
ersten Formel zu finden). 1-periodische Folgen sind die mit den Anfangswinkeln p3 p3 p3

und p7 7
4p
7 die erste davon streng periodisch); 2-periodische Folgen sind die mit2p

den Anfangswinkeln p3 p3 p3 p5 p5
5 p5

3p
5

2p
5 p7

2p
7

4p
7

p
13

3p
13

9p
13

2p

2p
13

5p
13

6p
13

p3
2p
15

8p
15

2p
3

p
15

4p
15 p5

p
15

11p
15

2p
5

2p
15

7p
15

p
21

4p
21

16p
21

und 2p
21

8p
21

11p
21 die ersten drei davon streng periodisch).

Schließlich lassen sich zu drei vorgegebenenWinkeln a0, ß0, .0 mit 0 a0, ß0, .0 p,
a0 + ß0 + .0 p stets solche periodischen Folgen finden, deren Anfangswinkel sich
von diesen beliebig wenig unterscheiden, d.h. die periodischen Folgen liegen dicht“. Fur¨”
|a-a0|, |ß-ß0|, |.-.0| < p

2n ist dasmit Periode n zu erreichen: Die ersten n Binärstellen

p
ß
p p

und die übrigen gemäß einerder Verhältnisgrößen setze man gleich denen von a

p
ß
p bzw.Variante aus Satz 4.6, mit der keine Periode 0 oder 1 entsteht; ggf. schreibe man a

p zuvor mit Periode 1.

Ich möchte mich bei Frau Prof. Dr. Irmtraud Stephani FSU Jena), die mir bei der Erstellung

dieser Arbeit stets hilfreich zur Seite stand, sowie bei Herrn Prof. Dr. Hans-Jürgen
Schmeißer FSU Jena) für die wertvollen Kommentare und Ratschläge herzlich bedanken.
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