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1 Introduction

Throughout this article, we let [x] denote the integer part of a given real number x; also,
we let (pn),en denote the sequence of all prime numbers and we set Apy, := puy1 — Pa
for any n € N. Further, if A is a subset of R and x is a real number, we will let A + x
denote the subset of R definedby A+ x:={a+x | a € A}.

In [4], Mills proved the existence of an absolute constant A > 1 for which [A3n] is a prime
number for any positive integer # and in [6], Wright proved the existence of an absolute
constant & > O for which the infinite sequence [«], [2¥], [22&], ... is composed of prime
numbers. Let us describe the method used by these two authors. They start from an upper
bound for Apy, as a function of p,. Such an upper bound allows to construct an increasing
function & (more or less elementary, according to the used upper bound of Ap,) such that

Ein klassisches Problem der Zahlentheorie ist die Suche nach einfachen Formeln zur
Erzeugung von Primzahlen. So bewies W.H. Mills im Jahr 1947, dass eine Konstante
A > 1 existiert, so dass die natlirliche Zahl [A3n] fiir alle positiven natiirlichen Zahlen
n eine Primzahl ist; hierbei bedeutet [x] den ganzzahligen Anteil der reellen Zahl x.
Vier Jahre spiter wies der Zahlentheoretiker E.M. Wright die Existenz einer Konstan-
ten « > 0 nach, so dass die Folge [«], [2%], [22&], ... aus lauter Primzahlen besteht. In
dem nachfolgenden Beitrag gelingt es dem Autor, unter der Annahme der Cramérschen
Vermutung zu vorgegebenem & > 1 jeweils eine reelle Zahl A = A(§) > 1 zu kon-
struieren, so dass die Grisse [A”g] fiir alle n € N, n > 0, eine Primzahl ist. Das In-
teressante an dieser Konstruktion ist, dass die auf diese Weise erzeugte Primzahlfolge
deutlich langsamer als die von Mills und Wright gegebenen Folgen wichst.
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between any two consecutive terms of the sequence (i(n)),, there is at least one prime
number. Setting f, = h o ... ok (where i is applied n times), they deduce from the
last fact, the existence of a real constant A for which the sequence ([ f, (A)]), consists of
prime numbers.

With this method, Wright used the upper bound Ap, < py, which is nothing else than
Bertrand’s postulate, and Mills used Ingham’s upper bound Ap, < pg/ 8+8, which is valid
for any n sufficiently large depending on the given ¢ > 0. The functions 7, which are
derived from these upper bounds, are #(x) = 2° for Wright and h(x) = x° for Mills.
Then, the theorems of [4] and [6] follow.

Notice that the more the upper bound of Ap, is refined, the more the function i will
be smaller and the more the obtained sequence of prime numbers will grow slowly (for
instance, the sequence of Mills grows more slowly than Wright's one). From this fact, in
order to have a sequence of prime numbers which grows even more slowly, we must use
more refined upper bounds for Ap,. But up to now even the powerful Riemann hypothesis
gives only the estimate Ap, = 0(p,1/ . log pn). A famous conjecture (which is a little
too strong compared with the last estimate) states that between two consecutive squares,
there is always a prime number (see [2]). So, according to this conjecture, the function
hix) = x2 is admissible for the method described above, which permits to conclude the
existence of a constant B > 1 for which [B2"] is a prime number for any positive integer
n. We thus obtain (assuming this conjecture), a sequence of prime numbers growing more
slowly than Mills™ one.

Based on heuristic and probabilistic arguments, Cramér [1] was led to the conjecture that
Apy = 0(log2 Pn); note that it is known that Ap, = O(log py) cannot hold (see [5]).
Thus, by taking for the method described above fi(x) = clogzx (¢ > 0), we obtain
(via Cramér’s conjecture) sequences of prime numbers having an explicit form and grow-
ing much more slowly than Mills’ one. The inconvenience of this application is that the
explicit form in question [ f(A)] is not elementary, because f;, does not have a simple
expression as a function of ».

To overcome this problem, we were led to generalize Mills’ method by considering instead
of one function £, a sequence of functions (4, ), and, hence, in this situation f, is rather
the composition of # functions fig, . .., hy—1. This allows to give for f;, the form which we
want, and if we set iy, := fut10 fn_l, we have only to check whether it is true that for any
n and any x sufficiently large (relative to n), the interval [h,(x), i, (x + 1) — 1[ contains
at least one prime number or not. In the affirmative case, we will deduce the existence
of a real number A for which the formula [ f; (A)] gives a prime number for any positive
integer n (see Theorem 1 and its proof).

Under a conjecture weaker than Cramér’s one, we derive from this generalization two new
types of explicit formulae giving prime numbers. We also give other applications of our
main result (outside the subject of prime numbers) and we conclude this article by some
open questions related to the results which we obtain.
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2 Results

The main result of this article is the following theorem.

Theorem 1 Let I =la, b[ witha,b € R, a < b) be an open interval of R, no a non-
negative integer and ( fu),>,, @ Sequence of real functions, which are differentiable and
increasing on I.

Assume that the functions f, 41/ 1, (n > no) are non-decreasing on I and that for all
x € I, the sequence ( [u(X)),5p, IS increasing. Further assume that there exists a real
Sfunction g, non-decreasing on R and verifving

f/
(0 fur1)(X) < ’}—tl(x) (¥n > ng, Vx € I). (1
n
Then, for any sequence of integers (uy ), verifving lim sup u, = 4o,
A—=400
Une1 — Un < &Un) — 1 (Vn = n1), (2)

and for which at least one of the terms u, belongs to fu,(I) N (fu, (1} — 1), there exists a
real A € 1, for which the sequence ([ fu(A)]) gy, IS an increasing subsequernce of (in)y.

Proof . By shifting, if necessary, the sequence of functions (fy),>,,, We may assume that
no = 0 and by shifting, if necessary, the sequence (uy),,, we may assume that we have

Untl — Up < 2(ty) — 1 (Vn € N). 2"
We begin the proof by some remarks and preliminary notations which allow to simplify
the situation of the theorem.

Since the function f, for given n € N is assumed to be differentiable (hence continuous)

and increasing on I =Ja, b[, it is a bijection from I onto fu (1) =Ikn, pnl, where x, =

}gl_rgl fn(x) and py = lirri fa(x) (Ay and p, belong to R). Now, let us introduce the
xX—

following functions

By Vs pin] — Vg1, itnr1[ defined by hy, := fuy10 f,1 (Y e N).

Since the functions f, and fy41 for given n € N, are differentiable and increasing on I,
the function fi,, is differentiable and increasing on |&,, uy[. Further, the hypothesis of the
theorem concerning the growth of the sequence ( f, (x)), (x € I} amounts to

hu(x) > x (Vn e N, Vx € i, ual). 3)

Next, let us show that for any #n € N, the function kj, is convex on |i,, pn[. To do this,
we check that the derivative /1, (n € N) is non-decreasing on the interval L., pu,[. Given
n € N, we have

_ _ IR MRS P
hy= o 7 =Y fupofy ' = 22— =22 o g
Jnotu In
Since the function f,ﬁ 41 /f, is non-decreasing on [ and the function fn_1 is increasing
on fu(I) =]k, pul the function hjl (as a composite of two non-decreasing functions), is
non-decreasing on iy, uy[. So the function A, is effectively convex on [y, fe,[.
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The rest of the proof consists of the following three steps:

1% Step:  We are going to show that we have
@ohn)(¥) =ha(Y+ 1D —ha(y)  (VneN, Vy €lhy, pn — 1. (4)

In fact, we will see later that the interval |A,, p, — 1[ is never empty. Let n € N and
vV €lhy, 1y — 1[ be fixed and set x := fn‘l(y). The convexity of i, on JA,, p,[, proved
above, implies that we have

hn(u) = Iy, (0 — 1) + ha(t) (1,1 €lhn, pinl).
By taking in this last inequality ¢ = y and u = y + 1, we obtain

Ra(y + 1) — Ba(¥) = by (3)

— (f’}—';)(x) (because nl, = f”TZl o f;ylandx = fn_l(y))
> (go fur1)(X) (from hypothesis (1) of the theorem)

= (g0 fur10 fy D)

= (8 0 }(¥).

The relation (4) now follows.

e Step:  We are going to construct an increasing sequence (ky),cn Of non-negative
integers such that the subsequence of (u,), with general term v, = ug, satisfies

Un € |An, g — 11,

(Vn e N).
Nop(vp) = vpg1 < Mplvp +1)—1

We proceed by induction as follows:

e We pick ko € N such that ug, € fo(I) N (fo(I) — 1) =]ko, o — 1[. Notice that the
existence of such an integer kg is a hypothesis of the theorem.

e If, for some n € N, an integer k, € N is chosen such that g, €li,, uy — 1[, let

Xy :={keN|k > kyand ux > hy(ug,)} .

From the hypothesis imsup,,_, 4, 4, = -+o0, the subset X, of N is non-empty, it thus
admits a smallest element which we call k,+1. So, we have

Kn1 > Kn, Mk, = o),  and  Kep1 — 1 € X,
We claim that the facts “ky,+1 > k7" and “ky41 — 1 € X, imply

Uk, 1 —1 < Rnlig,). (&)
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Indeed, either ky+1 = ky + 1, in which case we have ug, ,—1 = ug, < Nylug,) from
(3), or kyg1 > ky + 1, thatis kyq41 — 1 > k. But since k41 — 1 € X,,, we must have

Uk, —1 < Np(ug,), as required. It follows

Uhyyy < Uk, —1 + 8k, —1) — 1 (from (2'))
< hp(g,) + (g o hp)ug,) — 1 (using (5) and since g is non-decreasing)
< hnlutg, +1) =1 (from (4)).

Hence, we have
Uk, < hn(ug, +1) =1,

and thus
Hn(tig,) < Mg,y < Bpfug, +1) — 1.

Since the function h, takes its values in |A,+1, pas1l, the last inequality shows that
Uk,., €lrn+1, pnr1 — 1[0 This ensures that the induction process works and gives the
required sequence (k,),. Notice also that the subsequence (vy,), of (#y),, which we have

just constructed, is increasing because we have v,41 > A, (vy) > v, by (3) foranyn € N,

g Step: 'To conclude the proof, we will show the existence of a real A € I, for which
we have v, = [ f,(A)] for any n € N. To do this, we introduce two real sequences (x,),,
and (vn),, with elements in 7, which we define by

Xoi= f ) and v, = £l +1) (YneN).

Since the functions f, are increasing, we have x, < v, for all # € N. We claim that the
sequence (x,), is non-decreasing and that the sequence (vy),, is decreasing. Indeed, for
any n € N, we have

Xn = [y n) = (F 0 ha)(n) < fri (Ungl) = Xntl

and
Y= fi o+ D=7 o) n + 1) > £l Wagt + 1) = Yo

In these last relations, we have just used the facts that fnjrll is increasing and h,(v,) <
Upt1 < RHy(vg + 1) — 1. The intervals [x,, v,] (n € N) are thus nested intervals of R.
Consequently, their intersection is non-empty according to Cantor’s intersection theorem.
Pick A an arbitrary real number belonging to this intersection, i.e., x, < A < y, for all
n € N, in particular A € I. In fact, A verifies even

Xn <A < vy (Vn € M),

because if A = v, for some m € N, we will have, since the sequence (y, ), decreases,
A > ¥ym41, contradicting the inequality A < yyu41. It follows from the growth of the
functions f, that we have

Jn(xn) < fa(A) < fu(yn) (Vn e N),
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that is
Uy < (A < v+ 1 (Yn € N).

Then, since v, is an integer for all # € N, we conclude
[fn(A)] = Up (Vn € N)
This completes the proof. O

Remarks. Mills” theorem [4] can be recovered by applying Theorem 1 for I =]1, +00[,
no =0, L) =x" @ eN,x el),glx)=x%ifx > Oand g(x) = 0,ifx <0,
and (1), the sequence of prime numbers. In this application, we check relation (1) of
Theorem 1 by simple calculus and we deduce relation (2) from Ingham’s estimate quoted
in the introduction. The remaining hypotheses of Theorem 1 are immediately verified.

Wright’s theorem [6] can also be recovered, by applying Theorem 1 for I =]0, 400l
np = 0, (f»), the sequence of functions which is defined on I by fo = Idy and fu4+1 = 27
(n e N), g(x) = (log2)x (Vx € R), and (u, ), the sequence of prime numbers. In order to
check relation (1) of Theorem 1, note that we have f,;H/f,; = (log2) fu+1 forany n € N,
Relation (2) is a consequence of the prime number theorem, but it can be obtained by using
elementary arguments due to Chebyshev (see [3]). The remaining hypothesis of Theorem
1 is immediately verified.

N.B. In the above two applications of Theorem 1, the sequence of functions (i), in-
troduced in the proof is constant. Indeed, for the first application, we have A, (x) = x3
(n € N) and for the second one, we find h,(x) = 2* (n € N). As explained in the intro-
duction, the possibility of taking (4, ), not constant is the crucial point of our approach. In
the following, we are going to give some applications of Theorem 1 in which the sequence
(M), is not constant, If we admit the following conjecture (which is weaker than Cramér’s
one [1]), we obtain two new types of explicit sequences of prime numbers, which grow
much more slowly than the ones of Mills and Wright.

Conjecture 2 There exists an absolute constant k > 1 such that
Apyp = O ((10g pn)k) .
Under this conjecture, we obtain by applying Theorem 1, the following two corollaries.

Corollary 3 Assuming Conjecture 2, there exists for all real numbers & > 1, a real num-

ber A = A(&) > 1, for which the sequence ([A”g]),,zl is an increasing sequence of prime
numbers.

Proof. Let & > 1 be fixed, k > 1 an admissible constant as in Conjecture 2, anda > 1 a
real number such that

(log )"t < x1/2 (Yx > a), (6)
n+ 1 <2 (¥n = 1) (7)
Such an a exists because

lim (logx)¥*'/xY2=0 and lim (n+ D20
X——+00 H—00
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We apply Theorem 1 for I =Ja, +oo[, np = 1, fu(x) = o n=1xel)gkx) =
(log O ifx > 1, and gx)=0,if x <1, and (u4,), the sequence of prime numbers.
Let us check the hypotheses of Theorem 1.

The functions f, are clearly increasing and differentiable on 1. We have f, (x) = néx" i

therefore

/
n—+1\4%
Tutt (v (L) X oy > 1 Ve e D),
In n

We thus see that the functions f,; 41 /f, (n > 1) are non-decreasing on I. Further, if x
is a fixed real in I, the sequence { fn (x)),> is clearly increasing. Now, we have for any
integer n > 1 and for any real x € I:

go fir1(x) = (4 DEFFD(og x)F+1
< gfnt 212 (from (6) and (7))
< g (because x > g and Enf =1 > 1)
< xr+Di-nt (because £nf 1 < (n + 1)§ —nf)
Sor1
< —(x)

Relation (1) of Theorem 1 now follows. Next, relation (2) of Theorem 1 follows immedi-
ately from Conjecture 2. Finally, f,,(I)N(fu (1) —1) =la, 40o0[ contains prime numbers
as large as we want. The hypothesis of Theorem 1 are thus all satisfied, so we can apply
this latter to the present situation. Corollary 3 follows from this application. U

Corollary 4 Assume that Conjecture 2 is true and let k > 1 De an admissible consiant
in this conjecture. Then, for any positive real number g, there exists an integer np =
no(e, k) > 1 and a real number B = B(g, k) > 0 such that the sequence ([ B ~n!k+8])nzn0
is an increasing sequence of prime numbers.

Proof . Let € be a fixed positive real number. From Conjecture 2 (applied with the constant
k > 1), there exists a positive real number ¢ for which we have

Pt — pu < celog p)*  (¥n e N). (8)

We apply Theorem 1 for I =]1, 2[, no = 2 an integer (depending on k and &) which we
pick large enough such that

a(k+e)n+ Dlogn+ D +log2 +1 <+ DM (n=no), (9

and f,(x) = nktex n=np,xel),gx)= ck(logx)k + 1,ifx > 1,and g(x) = 1,
if x <1, and (uy,), the sequence of prime numbers. In this situation, we can easily check
that the hypotheses of Theorem 1 are all satisfied. We just note that relation (1) follows
from (9), relation (2) follows from (8), and the last hypothesis of Theorem 1 concerning
the sequence (i), = (pPn), 15 a consequence of Bertrand’s postulate. Corollary 4 follows
from this application. O
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Apart from the context of the prime numbers, we have the following

Corollary 5 Let (1), be a sequence of integers such that

I < limsup(uu41 — tip) < +00.
n——+oo

Then, we have:

(1) For any positive real number A, there exists a real number A > 1, for which the
sequence ([LA"]),> is an increasing subsequence of (Un)y,.

(2) For any real number A > limsup,_ ., (Upt1 — ity) + 1, there exists a positive
real number X, for which the sequence ([AA"1),= is an increasing subsequence of
(Un)p.

Some open problems related to the preceding study:

We ask (with or without Cramér’s conjecture) the following questions:

(1) Does there exist a real number A > 1 for which [A”] is a prime number for every
positive integer n? (This corresponds to the case & = 1 which is excluded from
Corollary 3.)

(2) More generally than (1), does there exist a couple of real numbers (A, A), with
A > 0, A > 1, for which [AA"] is a prime number for every positive integer n?
('This is related to Corollary 5.)

(3) Does there exist a real number B > 1, for which [B - n?]is a prime number for
every sufficiently large non-negative integer n? (This is related to Corollary 4.)
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