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Loi de Benford, relations de récurrence
et suites équidistribuées II

Paul Jolissaint

Paul Jolissaint received his doctoral degree from the University of Geneva in 1987. He
is part time lecturer at the Institute of Mathematics of the University of Neuchitel and
part time professor of mathematics and physics at the Lycée cantonal de Porrentruy
(Jura, CH). His main interests are operator algebras, group actions and ergodic theory.

1 Introduction

Depuis qu’elle a été présentée par F. Benford ! en 1938, Ia loi qui régit la répartition
quelque peu inattendue des premiers chiffres significatifs dans un grand nombre d’en-
sembles de données numériques a donné licu a de nombreuses études. Cette loi affirme
que, étant donné une base » > 2, pour chaque digitd  {1,...,b — 1}, la proportion de
valeurs dont le premier chiffre significatif est d vaut environ log, (1 + 1/d). (Pour une
définition plus précise et générale, voir la définition 2.1 ci-dessous et les remarques qui

1. Bien qu’elle ait été observée 57 ans plus t6t par S. Newcomb

Der wohl bekannteste Spezialfall des Benford-Gesetzes besagt, dass in einer zufilligen
Folge (an) positiver Zahlen die Verteilung der filhrenden Zitfer im Dezimalsystem dem
Gesetz (log (1 + d—1.d =1,...,9) folgt. Eine Verallgemeinerung fiir Basen b > 2

lautet
. |{l =n = N : Mantissep(ay) < t}]
lim = log, (f).
N—=0 N

Inzwischen ist bekannt, dass ganze Familien von Folgen dem Benford-Gesetz fiir ein
geeignetes b gentigen. In einem fritheren Aufsatz bewies der Autor, dass viele durch
eine lineare Rekurrenzbeziehung definierte Folgen dazu gehoren. Hier wird gezeigt,
dass Folgen, die in gewissem Sinne dquivalent zu Folgen der Form (n°&<2™) mit
w e R & € (0,1)U (1, 00) und einem nicht konstanten Polynom ( sind, eben-
falls dem Benford-Gesetz gehorchen. Bekannte Resultate iber gleichverteilte Folgen
werden benutzt und detaillierte Beweise derselben werden als Komfort fiir den Leser
bereitgestellt.
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la suivent.) On peut par exemple consulter les articles [3], [5] ainsi que [6] qui donnent
de bons comptes-rendus de la problématique de la loi de Benford. Récemment, quelques
articles ont été consacrés 4 la loi de Benford pour certaines suites: dans [1], les auteurs
montrent que des suites réelles (x,) définies par x,+1 = 7T,(x,) ol chaque T, est une
application convenable de R dans lui-méme (ou d’une partie de R dans elle-méme) satis-
font 1a loi de Benford; dans [2], le résultat principal affirme que des suites obtenues par la
méthode de Newton la satisfont également. Plus précisément, soit f : I — R une fonction
analytique réelle, non linéaire, et soit x* un zéro de f. Pour xo dans un voisinage de x*,
considérons la suite (X, ),>1 définie par xy4+1 = X5 — ]{c,((’;’;)) . Alors, pour presque tout xp, les

suites (xX; —X™)u>1 €t (Xp41 — Xn n>1 satisfont 1a loi de Benford par rapport a toute base b.

Dans [7], nous avons considéré des suites de nombres positifs (a@,)a>0 qui satisfont une
relation de récurrence de la forme a4 = C1dpt+g—1+C2lptg—2+...+Cqd, OUlES ¢; € R
et ¢g # 0, et pour laquelle le polyndme caractéristique associé p(x) = x9 — ¢1x? =
... — ¢4 admet une racine distinguée & > 1, de multiplicit€ 1 et telle que & > [n| pour
toute autre racine 1 de p(x). Nous avons alors montré que la suite (g, )x>0 satisfait la loi
de Benford par rapport a la base b > 2 si:

(a) log,(&) estirrationnel,

(b) inf{g—ﬁ cn=1) >0,
et que le cas échéant, il en est de méme de toutes les sous-suites de (a,) de la forme (@ g )
pour tout polyndme Q(x) € Z[x] tel que Qn) > 0 pour tout n > 0. Cela généralise des

cas déja connus tels que la suite de Fibonacci ou la suite (2”),>1 par rapport & 1a base 10.
La preuve repose sur le fait quune telle suite (a,) s’exprime 2 ’aide des racines & = &,

&, ... &y de plx) et de leurs multiplicités respectives w1 = 1,12, . .., i
m pj—l
an ="+ ) ajn'e
j=2 k=0

ol « est un réel positif & cause de la condition (b), et ou les «; x dépendent des condi-
tions initiales ao, .. .,dy—1. Quelques simulations numériques nous ont convaincu que
I’hypothese sur la multiplicité de la racine particuliere & devait étre superflue, et le but
initial du présent article était d’établir ce fait. Nous allons démontrer le résultat général
suivant (cas particulier du théoréme 2.4):

Theorem 1.1 Si (a,)n>1 est une suite de nombres réels positifs tels qu’il existe a > 0,

nweReté = 0tels que
ay

lim
x—too pHER

et sib > 2 est un entier tel que log, (§) € R\ Q, alors, pour tout polyndme non constant
Q(x) a coefficients dans Z tel que Q(n) > 0 pour tout n > 0, la suite (A gpn))n=1 Satisfait
la loi de Benford en base b.

On voit donc que c’est le comportement asymptotique de la suite qui implique le fait
qu’elle satisfait la loi de Benford.



Loi de Benford, relations de récurrence et suites équidistribuées II 23

A titre d’exemple, si a, > 0 est de la forme

an =Y P (Qm)EL"

j=1

ol @ est comme dans le théoreme, &; > |&;] pour 2 < j < m, P;j(x) € R[x] pour
tout j et P1(x) > O pour tout x > 0 assez grand, alors la suite (a,),>1 satisfait la loi
de Benford pour toute base b pour laquelle logy, (§1) est irrationnel. C’est le cas de toute
suite (dp)n>1 C Ri qui satisfait une relation de récurrence du type dy+g = C1dp+q-1 +
C2lp+g—2+. . .+Cqa, et dont le polyndme caractéristique p(x) = x9—cyx?1—. . —Cq =
(x =& - .- (x — &p)Hm possede une racine & = & > O telle que & > |&; ] pour tout
2 < j < m et qui satisfait 1a condition (b) ci-dessus.

La preuve du théoréme principal de [7] utilise le théoréme de Weyl sur I’équidistributivité
des suites (P (#))y=>1 00 P est un polyndme dont un coefficient au moins est irrationnel.
Certains lecteurs de [7] ont exprimé le souhait de lire une preuve compléte du théoréme.
C’est pourquoi nous donnons ici une preuve compléte des résultats que nous utiliserons
sur les suites équidistribuées. LLa plupart proviennent de [8].

Le paragraphe suivant rappelle les définitions importantes et contient I’ énoncé du théoréme
principal, ainsi que sa preuve, conséquence de théoremes d’équidistributivité tirés de [8].
Dans la section 3, nous établissons une version probabiliste de la loi de Benford pour les
suites indexées par des nombres aléatoires, et les deux dernieres sections sont consacrées
aux démonstrations des criteres d’équidistributivité utilisés ici.

2 Loi de Benford et suites équidistribuées

Dans tout Iarticle, b désigne un entier supérieur ou €gal a 2. Comme la demi-droite réelle
(0, + o0) admet la partition

0, + 00y = | ]ip*,p*1),
keZ,

tout x > 0 s’écrit de facon unique
X = Mp(x) - ho™)
ou Mp(x) € [1,b) est la mantisse de x en base b et o0l ep(x) € Z.
Par exemple, en base 10 (dix), on a Mo(;r) = 7, mais aussi Mlo(%) = % = 54/2.

Pour tout nombre réel x, on note |x | sa partie entiére et {(x) = x — | x] sa partie fraction-
naire. La partie entiére | Mp(x)| € {1, ...,b — 1} est appelée le premier chiffre significatif
de x (par rapport 4 la base b).

La définition ci-dessous, tirée de [1], précise la définition originale: on regarde la réparti-

tion des valeurs de la mantisse des nombres au lieu de celle du premier chiffre significatif
(cf. [7], définition 1.1), qui, lui, correspond & la partie entiere de la mantisse.
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Definition 2.1 Soit (a,)s=1 C (0, + 00) et soit b comme ci-dessus. On dit que (dn)n=1
satisfair la loi de Benford en base b si, pour tout ¢ € [1,b), on a:

im {1l <n <N : Mpla,) <t}
N—oo N

= log, ().

On dit que (an)n>1 satisfait la loi de Benford forte si elle satisfait 1a loi de Benford en base
b pour tout b > 2.
Remarques

(1) Dans [1], la limite dans la définition 2.1 est remplacée par

. {1 =n <N : Mpa) <t}
lim = log, (f)
N—oo N

pour tout ¢ € [1,b). Or, les deux définitions sont équivalentes. Cela suit en effet de
la continuité de la fonction logy, et des inégalité évidentes:

[{n < N Mplap) <1} < |[{n <N : Mp(an) <t}
<|{n <N : Mp(a,) <t + 8}

pour tout t € [1,D), pour tout & > O tel que ¢ + & < b et pour tout entier positif N.
(2) La définition 2.1 implique celle de [7], par exemple, qui est classique: en effet, en

notant d(x) = |[Mp(x)|,onad(x) = d sietseulementsid < Mp(x) < d+ 1.
Ainsi, si la suite (a,) satisfait la définition 2.1, on a pour toutd € {1,...,bh — 1}:
l{in <N :d{ay) =d}| =|{n <N :.d < Mp(ay) < d+ 1}
=|{n < N : Mp(an) <d +1}|
—|{n < N : Mp(an) < d}|,

ce qui implique que

l<n<N:da)=d 1
lim 1L =1 Gn) = B _ oo, (d + 1) — 1og, (d) = log, (1+—).
N—oo N ad

(3) Nous ne considérerons ici que des suites de nombres positifs. Néanmoins, on définit
également la 1oi de Benford pour les suites réelles non nécessairement positives de
la fagon suivante (cf. [11): (@n)n>1 C R satisfait la loi de Benford en base D si la
suite des valeurs absolues (|a,|)n>1 1a satisfait.

Nous allons utiliser une caractérisation de la loi de Benford qui s’ appuie sur la notion de
suite équidistribuée; pour cela, rappelons la définition 1.1 de [8], qui, 4 I origine, est due a
H. Weyl [9]:

Definition 2.2 Soit (a,),>1 une suite réelle. On dit qu’elle est équidistribuée modulo 1 si,
pourtousO <c<d <1l,ona

) Hl <n <N :c<l{a,) <d}|
lim =

d—c¢
N—oo N
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Le résultat suivant permet d’utiliser de nombreux résultats sur les suites équidistribuées.
Il est di & P. Diaconis (théoréme 1, p. 74 de [4]), et est basé sur 1’observation suivante:
pour tout x > 0, on a log,(x) = log,(Mp(x)) + ep(x), et puisque log, (Mp(x)) € [0,1),1l
s’ensuit que log, (Mp(x)) = (log,(x)).

Proposition 2.3 Si (du)n>1 C (0, + 00) ef si b > 2 est un entier, alors elle satisfait
la loi de Benford en base b si et seulement si la suite des logarithmes (108, () )n=1 €st
équidistribuée mod 1.

Voici le résultat principal de I article; il généralise le théoréme 1.2 de [7].

Theorem 2.4 Soient ¢ > 0, & > 0 et i des nombres réels, et soit une fonction Q, définie
sur [1, + o0), qui satisfait:
(a) il existe un entier k = 1 et un nombre réel xo = 1 tels que () est k fois dérivable sur
('XO’ + OO);
(b) xlgréo Q(k) (x) existe et est un nombre rationnel non nul.

Soit (ap)n=1 € (0, + 00) une suite telle que

i ay _

noo prEQmM &
Alors pour tout entier b = 2 tel que 1og, (&) € R\ Q, la suite (an)n>1 Satisfait la loi de
Benford en base b. En particulier, si, pour tout entier positif m, €™ n’est pas entier, alors
(an)n=1 satisfait la loi de Benford forte.

La preuve repose sur I’exercice 3.7, p. 31 de [8]; nous allons en donner une démonstration
a la section 5.

Theorem 2.5 Soient k > 1 un entier; 6 € R un nombre irrationnel et f : [1,+o0) > R
une fonction pour laguelle il existe un nombre xo > 1 tel que [ soit k fois dérivable sur
(X0, 4+ 00). Silimy_s oo £ (x) = 0 alors la suite (f (n))n=1 est équidistribuée mod 1.

Preuve du théoréme 2.4. On écrit pour tout n > 1:
dn

_ aheQn)
n =178 g Q0

de sorte que log,(dn) = plogy(n) + Q) logy(§) + nn avec 1y, = log, (,WQ’T) —=*
log; () lorsque n — o0. Puisque la suite (n,) est convergente, il suffit de démontrer
que la suite (ulog,(n) + log,(§)Q(n))s=1 est équidistribuée mod 1 (voir par exemple
le lemme 3.1 de [7] ou le théoreme 1.2 de [8]). Puisque log, (&) est irrationnel et que
0" (x) — g € Q*, on a, puisque k > 1,
dk
Am .~ (10gy () +10g, () Q(x)

L o (=D — 1) . B
(log(b) ’ I + log,(§) U (X)) = g log, (&)

qui est irrationnel par hypothese. Le théoréme 2.5 s’ applique donc. O

X—=0
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Remarques

(1) Soit P(x) = axx* + ax_1x*~' + ... + a1x + aop un polyndme non constant i coef-
ficients réels et tel que g soit irrationnel. Le théoréme 2.5 implique immédiatement
que la suite (P (n))x>1 est équidistribuée mod 1 (théoréme de Weyl).

(2) Une classe typique de fonctions @ qui satisfont les hypothéses du théoreme 2.4 est
constituée des fonctions rationnelles O = P/R ou P et R sont des polyndmes a
coefficients rationnels, R(x) # 0 pour tout x > 1, avec deg(P) > deg(R) car,
par division euclidienne de P par R, il existe deux polyndmes ¢ et r a coefficients
rationnels tels que P/R =g +r/Retr = 0Qoudeg(r) < deg(R). Sik > lestle
degré de ¢, on a

a* re)\ @ 7 (x)
7 {10+ i) =0+

pour des polyndmes convenables ri et Ry tels que deg( Ry ) > deg(ry ), et q(k) () =
gr estun rationnel non nul. Enfin, si P et R sont comme ci-dessus, toute fonction de
la forme Q(x) = P(x)/R{x) + c1x® + c2 log(x), ou B € R, par exemple, satisfait
encore les hypotheses du théoréme.

Une preuve complete du théoréme 2.5 sera présentée dans les deux derniers paragraphes
ou nous allons rappeler les criteres de Weyl et le théoréme des différences de Van der
Corput.

3 Suites indexées par des nombres aléatoires

On considere une suite (14(n))p>1 C [0,1] qui est équidistribuée mod 1. Pour tout entier m
assez grand, on considere également N < m variables aléatoires indépendantes et identi-
quement distribuées (abrégées désormais .i.d.) X1 m, .. ..Xnvm + & — {1,...,m} telles
que,pourtout 1 <i < Nettoutl <k <m,

1
PXim=k) = —.
m

Par exemple, on peut prendre 2 = {1,...,m}"

forme:

muni de la mesure de probabilité P uni-

1
P{wy,...,0on)}) = m_N Yiw,...,on) € 82,

et X, » estla projection sur la n-ieme coordonnée. Cela constitue un modele de tirage de
N nombres aléatoires dans {1, ...,m}. On va démontrer:

Proposition 3.1 Avec les hypothéses ci-dessus, pour fous 0 < ¢ < d < 1, la suite de
variables aléaioires (% Z,Zivzl Xie,d (U (Xnm))) N m converge en moyenne vers d — ¢

N
. : 1
Nh—>moo (mh—>moo E(‘N };X[Cvd)(u(Xn,m)) —(d - C)D) = 0.
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Preuve. Posons Zy m = Xie,a){1(Xn,m)) pour tous 7 et m; ce sont €galement des variables
al€atoires i.i.d. et Z,%ym = Zy m puisqu’elles sont a valeurs dans {0, 1}. On a:

E(Zn,m):/ Z,l}m(a))dp(w)
Q
- Z[ Xie,d)(u(k))d P(w)
k=1 Xn,mzk

1
= — Zx[ad)(u(k)) =: up(c.d).
" k=1

Par hypothese, ., (c,d) — d — ¢ lorsque m — o< puisque (#(n)),>1 est équidistribuée.
Calculons encore la variance de Z,

Vel B ) = Bl i — B Fna)
= E(Z5 ) = 2EZpmEZnm)) + E(Znm)*
= E(Znm) — E(Zym)* = pm(c,d) — pm(c.d)?

car Z,%’m = Zum. En particulier, comme la moyenne, elle est indépendante de n. On
obtient alors, par I'indépendance des Z, .

N 2
1 Z 1 Z 1 Min (C,d) — pm(C,d)
Var(ﬁ n=>0 Zn)m) - m ' Var( n Zn)m) B WN ’ Var(Zl7m) B N

qui tend vers 0 lorsque N et m tendent vers 0o, Pour N < m fixés, on a

1 N
E(‘N’;ZM _ —c)D

A

N
E(\% > Zum — um@,d)\) + lm(e.d) — (d — o)
n=1

[A

£((5 S Zo = i ed))" + limte.d) - @ o)
n=1

1 1/2
_ Var(ﬁ > Zum) "+ limled) — @ = o)

n=0
— 2
_ \/Mm(c,di/ﬁﬂm(ad) + | (c,d) — (d — ¢)|
= \/LN + lm(c.d) = (d = 0]

car um (¢,d) — pn(c.d)* < pm(c.d) < 1 pour tout #1.
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Ainsi, si e > 0 est fixé, il existe M > 0 tel que, pour tout m > M, on ait |y, (c,d) — (d —
¢)| < €/2. Enprenant N > 4/¢2, on obtient

N

1
E ‘— Z —d—c‘ . [
(Nl; am — ( ))<5

Soit maintenant un entier b > 2 et $oit (Gp)n>1 C Ri une suite telle que la suite des
parties fractionnaires u(n) = (log,(a,)) soit équidistribuée mod 1. Par la proposition 2.3,
la suite (an)n>1 satisfait la loi de Benford en base b. Si (X, m)1<a<ny €St comme dans la
proposition précédente, on a:

Proposition 3.2 Avec les hypotheses ci-dessus, la suite de variables aléatoires (ax,,,)
satisfait la loi de Benford en movenne. Plus précisément, on a pour tout t € [1,b):

l<n<N : Mpa <t
lim ( lim E( l=n= b@x,p) < —logb(I)D) — 0.
N—oo \ —00 N

En particulier, 1a proposition s”applique lorsque a, = £" ol & est un nombre réel supérieur
a 1 tel que log, (&) soit irrationnel. A titre d’exemple, le programme Mathematica®© ci-
dessous illustre le cas de & = 2 etde b = 10 avec m = 107 et N = 10°. On constate que
la loi de Benford est relativement bien vérifiée puisque 30 349 valeurs commencent par 1,
17655 par 2, etc. et 4 648 par 9.

4 Les criteres de Weyl

Dans ce paragraphe, on ne considére que des suites a valeurs dans 'intervalle [0,1]. Rap-
pelons qu’une telle suite (a,),>1 C [0, 1] est équidistribuée mod 1 si, pour tout intervalle

I c[0,1],ona
l<n<N :a,€l
lim JLE7= n = T — 4(I)
N—o0 N
ou £(1) désigne la longueur de /. Le critere suivant est da & H. Weyl [9]; comme indiqué

dans I'introduction, nous allons en donner une preuve détaillée.

Theorem 4.1 Soit (a,)n=>1 C 10,1]. Les trois conditions suivantes sont équivalenies:
(1) la suite (an)n=1 est équidistribuée;
(2) pour toute fonction continue | sur [0,1], on a:

N 1
1
Sn(f) ‘:ﬁi f(an)—>f0 fxdx
n=1

lorsque N — 00,
(3) pouritout entier k #£ 0, on a:

lorsque N — 0.
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<< Statistics DataManipulation’

<< Graphics Graphics”

aleaben[n_, m_] := Module[{},
vall = Table[Random[Integer, {1, 104n}], {104m}];
val2 = Table [N[FractionalPart[vall « Log[10, 2]]]]:

freq = RangeCounts[val2, {0.301, 0.477, 0.602, 0.699,
0.778, 0.845, 0.903, 0.954}];

BarChart [freq]]
aleaben[7, 5]
freq

30000¢
25000

20000

15000¢

10000¢

5000

{30349, 17655, 12387, 9534, 7810, 6712, 5845, 5060, 4648}

Fig. 1

Faisons quelques observations qui seront utiles dans la preuve du théoréme ci-dessus.
Fixons une suite (@, )y>1 C [0,1]. Pour une famille F de fonctions intégrables sur [0, 1],
convenons que F satisfait la condition (E) par rapport & (dy)p>1 Si

1
SN(f)—>f fxydx YfeF
0

lorsque N — o, ou, rappelons-le, Sy (f) = % Zflv:l f(an).

Alors, on observe que les conditions (1), (2) et (3) sont des conditions (E) pour certaines
familles de fonctions. En effet,

(a) 1'assertion (1) est la condition (E) pour la famille F; constituée des fonctions ca-
ractéristiques d’intervalles x;y ou I est un intervalle de [0,1]; en effet, Sy (x7) =
=¥ @) =[{1<n <N : a, eI}|/N;

(b) (2)est la condition (E) pour la famille JF, de toutes les fonctions continues sur [0,1];
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(¢) enfin, (3) est la condition (E) pour la famille des fonctions exponentielles complexes
Fz={ex : ex(x) = eX ™) car, pourk # 0, 0ona fol ex(x)dx =0, et pour k = 0,
ona fol eo(x)dx = 1 = Sy(ep) pour tout N. Remarquons que F3 C 7.

Le lemme suivant sera utile dans la preuve du théoreme:

Lemma 4.2 Soient ( fi)i=1 et | des fonctions intégrables sur [0,1] telles que:

(a) la suite ( f1)1=1 satisfait la condition (E) par rapport a une suite (dp)n=1 C [0,1];
(b) fi — [ uniformément sur [0,1] lorsque | — oc.

Alors la fonction f satisfait également la condition (E) par rapport d (dp)n>1.

Preuve. Soit e > 0 fixé. Il existe [ = 1 tel que

sup | () — £ < %
x€[0,1]

Comme f; satisfait (E), il existe Ny tel que, pour tout N > Np, on ait:

1
‘SN(fl) —/ fz(X)dx‘ < %
0

Comme | fi — f| < ¢/3 sur [0,1], on obtient en particulier
LN
ISV = ST = 5| X Gilan) = Fian |
n=1

1 e
<—-N-sup |[filx)—fO)] <3
N x€[0,1] 3

pour tout N = Np. Enfin, si N = Ny,
1 1 1
\SNm—[O = |SN(f>—SN(ﬁ>|+\SN(fz)—fO fz\+[0 fi—fl<e O

Preuve du théoréeme 3.1. (1) = (2): Si f : [0,1] — C est continue, elle est limite uniforme
de fonctions en escaliers, ¢’est-a-dire de la forme

m
8= ZCkXIk
k=1

ouly = [km;l, %). Par hypothése, chaque fonction g comme ci-dessus satisfait la condition
(E), donc par le lemme, il en est de méme de f.

(2) = (3): banal car toute fonction ¢ est continue.
(3) = (1): La condition (3) implique que tout polyndme trigonométrique

q
p(x): Z CkQZiJTk.X

k=—m
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satisfait la condition (E). Or, par le théoréme de Weierstrass, toute fonction continue pério-
dique de période 1 est limite uniforme sur [0, 1] de tels polyndmes. Donc toute fonction
continue périodique de période 1 satisfait également (I£). C’est le cas pour toute fonction
affine par morceaux J comme dans les figures ci-dessous:

Fig. 2

Fig. 3

Fixons alors un intervalle I C [0,1] et & > 0. Choisissons deux fonctions continues affines
par morceaux f et ¢ telles que f(0) = f(1), ¢(0) = ¢(1), et enfin

&

1
O<g<yr<f<l e f(f(x)—g(x))dx<5.
0

Fig. 4
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On a:
1 1
Sn(g) = Sv(xr) < Sn(f) VYN et [0 gx)dx < () < /o fx)dx.

On choisit alors Ny assez grand pour que

1
\[ gdx = Sy(@)| < £ VN = Mo
0

1
| [ reax = s
0
On obtient pour tout N > Np:

0<Snv(f)=Snvx1) = Sn(f) — Sn(g)
1 1 1 3
<fsvin - [ rmad+ [ oo - ewnar+] [ emar-swie| < 3

Par suite, on apour N = Ny:

1 1
oD = 5wl = [ o —aeondx+ | [ raar— |+ s - svoo)

) 8+38
<2 .-+ —==0c¢.
5 5

Cela démontre le théoréme. [l

Rappelons un exemple typique de suite équidistribuée mod 1:

Exemple 4.3 Soit ¢ € R un nombre irrationnel. Alors la suite (n),>1 est équidistribuée
mod 1.

Preuve. 11 suffit de montrer que la suite des parties fractionnaires (a,)p>1 = ((n@)),?zl
satisfait la condition (3) du théoréme. Fixons donc un entier k # 0 et posons z = 27,
Observons que z #~ 1 quel que soit k £ 0 puisque @ est irrationnel.

Comme e — o27ikn8 — 27 pour tout 7, on a:

N N-—1
1 2wika < n 1ZN+1_Z
— YT == F=e"— 50

n=1

lorsque N — 0. U

5 Une preuve du théoreme 2.5

Ce dernier paragraphe est consacré a la preuve compléte du théoréeme 2.5. L'un des ingré-
dients est le théoréme des différences de Van der Corput, cf. [8], Theorem 3.1, dont nous
reproduisons la preuve.

Theorem 5.1 (Van der Corput) Soit (Xp)n>1 une suite de nombres réels telle que, pour
tout entier positif h, la suite des différences (Xy4n — Xn)n>1 S0il équidistribuée mod 1.
Alors la suite (Xp)n=1 est équidistribuée mod 1.
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Preuve. Elle repose essentiellement sur 1’inégalité suivante que nous démontrons d”abord
(inégalité fondameniale de van der Corput, [8], Lemma 3.1): soient uy,uz, ..., uy des
nombres complexes et 1 < H < N un entier; alors

() H?| Z n

Onposeu, =0pourn <0oun > N.On observe que

N—h

? H(N—I—H—I)Z i +2(N+H—1) Z(H h)%( 3 unum)

n=1

N+H-1H-1
) Zuph_HZun
p=1 h=0

En effet, (3*) se démontre par récurrence sur H > 1: ¢’est banal pour H = 1, et si ¢’est
vrai pour H, on a

N+H H N+H-1 H-1 H
ZZup—hZ Z (Zup—h+up—H)+ZuN+H—h
p=1 h=0 p=1 h=0 h=0
N+H-1
—HZunJr > upo H+MN_HZMn+Zuq+MN_(H+1)ZMn
p=H+1

Cela achéve la démonstration de ().
Démontrons alors (x). En appliquant I'inégalité de Cauchy-Schwarz A (), on obtient

HZ‘Zun

N+H-1 H-1

<(N+H-1) Z \Zup S

N+H-1 H-1

—(N+H-1) 2 ( ip f)(HZ”P s)

r=0 5=
N+H-1H-1 N+H-1 -
—(N+H-D Y Z|up_h|2+2(N+H—1)§R( Z Z Upriip s)
p=1 h=0 p=1l rs=0,5<r

= (N + H — 1)(Zy + 2R(Zy)).

Par Gex), ¥ = HZ;]1V=1 |u,|2. Enfin, tout élément Up—riip—g apparaissant dans X est
de la forme u,li,4p pour une paire (n,h) € {1,...,N} x {1,...,H — 1}. Soit alors A =
{(pr,sy : 1<p<N+H-10<rs<H-1ls<r,p—r <N}etsoitgd : A -
{1,....N}x{1,...,H — 1} I'application définie par ¢ (p,r,s) = (p —r,r —s). Pour (n,h)
ﬁxé,ona¢_1(n,h) ={n+h+sh+s58):0<s<H-h—-1}carr=h+4+s<H—1.
Ainsi, pour toute paire (n,h), il y a exactement H — h triples (p,r,s) € A qui satisfont
Up—rip—s = Upilygpn. On obtient donc Xy = Z,‘?:_ll(H —h) ijz_lh Uplptp DUISQUE 1y =
Opourk > N. Cela démontre (%), que nous allons utiliser pour démontrer le théoréme 5.1.
Soit une suite (X, )n>1 qui satisfait les hypotheses du théoréme: pour tout entier 7 > 1, 1a
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suite (xy+n — Xp) est équidistribuée mod 1. Pour montrer que (x,) ’est aussi, nous allons
utiliser l_e critere (3) du théoréme de Weyl. On fixe donc un entier non nul k, et on pose
Uy = 2™ En appliquant (*), on a

H-1 N—-h
Hz‘Zun2<H(N+H—1)N+2(N+H—1)Z(H h)m(Zunun+h)
n=l1 h=1 n=1
H-1 N—-h
<HWN+H-UON+2N+H-1) Z(H —h)‘ Z 2k —nvh)
h=1 n=1

pour 1 < H < N.En divisant par H*N?, on a

2 N+H—1
HN

H-1 N—h
42 Z (N+H-1)(H—-—h)N —h) 1 Z 2= ) |
H?2N? N —nh —_

Sie > 0 est fixé, on choisit d’abord H assez grand pour que 1/H < g/3. 1l existe alors
No > H assez grand pour que, pour tout N > Np, on ait N+H < 2e/3el

H-1 N—h
5 Z (N+H-1)H-h)(N-h)| 1 Z TR —%4n)
h=1

e/3
H2N? N—h = <e/

puisque chaque suite (xX,+p — X») est équidistribuée mod 1. Cela achéve la démonstration
du théoreme de Van der Corput. U

La proposition ci-dessous est le premier pas dans la preuve du théoréeme 2.5; c’est le
théoréme 3.3 de [8].

Proposition 5.2 Soit (x,)s>1 C R une suite telle que la suite des différences Ax, =
Xn+1 — Xy tende vers une limite 8 € R\ Q. Alors (Xu)n>1 est équidistribuée mod 1.

Preuve. On fixe un entier non nul 2 et on va montrer (critére de H. Weyl) que

lim — Z €2wrhxn —

N—oco N

Soit ¢ un entier positif. Par hypothése, il existe un entier M > 0 assez grand tel que
|[Axy — 0| < q% pour tout N > M. Par suite, on a pour tout N > M:

lxy —xm — (N —M)0| = |(xy —xn—1)+ Xy—1 —Xnv—2)+...+
+ (Xp1 — xm) — (N — M)0|

N-1
N-M
= | Y ax-0)| = ———
. g
j=M
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Par le théoréme des accroissements finis, on a pour tous u,v € R, |27 — 27V| <
2m|u — v|, donc
|62iJT/’lXN . eZiJTh(xM+(N—M)9)| = 27T|h||XN — Xy — (N o M)6|
2w |h|(N — M)
< 2
q
et ainsi
M+g—1 M+g—1
‘ Z e2wrhxn _ ‘ Z (eZUThxn . eZwrh(xM+(n—M)8)_|_
n=M n=M
M+qg—1
I Z e2wrh(xM+(n—M)(9)‘
n=M
M+g-1 M+g-1
. . 2w |h
S‘ Z o2y (€2mh9)n—M‘ n |2 | Z n — M).
Or,ona
M4g—-1 M+tqg—1 5 1
2irh 2iThd\n—M 2iThO\n—M
‘ Z e=ITIM | (P ThONR ‘:‘ Z Vs ‘5 |€2iﬂh9—l| :sin(n'|h|9)
n=M n=M
ct
M+qg-1 g—1 q2
n—M)= k< —.
) D k=
n=M k=0
Par conséquent, on obtient
M+q-1
4 1 2m|h| g2

< + — =K.
~ sin(wr|h|@) g2 2

‘ Z o2imhn
n=M

Ainsi, on a pour tout entier positif H:

M+Hg—1

Z eZi;rhxn

n=M

SH'Ka

et finalement, si N > M,

M—-1 N-M q
< + K+1
N gN N

qui peut étre rendu arbitrairement proche de K /g, et comme ¢ peut étre aussi grand qu’on

veut, on a le résultat.

O
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Preuve du théoréme 2.5. Rappelons que f(x) est définie pour x > 1, qu'elle est k fois
dérivable pour x assez grand et que

Jim P =0 <R\Q

On procéde par récurrence sur k. Pourk = l,ona Af(n) = f(n+ 1) — f(n) = f'(an)
pourn < oy < n+ 1 convenable. Ainsi, Af (n) — 6 lorsque n — cc. On applique alors
la proposition précédente.

Supposons le théoréme vrai pour k et soit une fonction f telle que
lim 5V (x) =6 e R\ Q.
X— 00

Par le théoreme de Van der Corput, il suffit de montrer que pour tout entier iz > 1 fixé, la
suite (f(n 4+ h) — f(#1))n>1 est équidisiribuée mod 1. Posons donc, pour £ fixé, gp(x) =
Jx+h)— f(x).Ona

eBxy = P+ h) — fR@ = 5D E )

pour x < &, < X + h convenable, et ainsi
. k .
lim g (x) = lim = fé*Dg ) = 6.
X—C0 X—00

Par hypothese de récurrence, la suite (g, (n)),>1 est équidistribuée mod 1, ce qui acheéve
la preuve du théoréme. U
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