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Loi de Benford, relations de récurrence
et suites équidistribuées II
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1 Introduction
Depuis qu’elle a été présentée par F. Benford 1 en 1938, la loi qui régit la répartition
quelque peu inattendue des premiers chiffres significatifs dans un grand nombre
d’ensembles de données numériques a donné lieu à de nombreuses études. Cette loi affirme
que, étant donné une base b 2, pour chaque digit d {1, b - 1}, la proportion de

valeurs dont le premier chiffre significatif est d vaut environ logb(1 + 1/d). Pour une

définition plus précise et générale, voir la définition 2.1 ci-dessous et les remarques qui

1. Bien qu’elle ait été observée 57 ans plus tôt par S. Newcomb

Der wohl bekannteste Spezialfall des Benford-Gesetzes besagt, dass in einer zufälligen
Folge an) positiver Zahlen die Verteilung derführenden Ziffer im Dezimalsystem dem
Gesetz log10(1+ d-1),d 1, 9) folgt. Eine Verallgemeinerung für Basen b 2
lautet

lim
N.8

|{1 n N : Mantisseb(an) < t}|
N

logb(t).

Inzwischen ist bekannt, dass ganze Familien von Folgen dem Benford-Gesetz für ein
geeignetes b genügen. In einem früheren Aufsatz bewies der Autor, dass viele durch
eine lineare Rekurrenzbeziehung definierte Folgen dazu gehören. Hier wird gezeigt,
dass Folgen, die in gewissem Sinne äquivalent zu Folgen der Form nµ. Q(n)) mit
µ R, 0,1) 1,8) und einem nicht konstanten Polynom Q sind, ebenfalls

dem Benford-Gesetz gehorchen. Bekannte Resultate über gleichverteilte Folgen
werden benutzt und detaillierte Beweise derselben werden als Komfort für den Leser
bereitgestellt.
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la suivent.) On peut par exemple consulter les articles [3], [5] ainsi que [6] qui donnent
de bons comptes-rendus de la problématique de la loi de Benford. Récemment, quelques
articles ont été consacrés à la loi de Benford pour certaines suites: dans [1], les auteurs
montrent que des suites réelles xn) définies par xn+1 Tn(xn) où chaque Tn est une

application convenable de R dans lui-même ou d’une partie de R dans elle-même) satisfont

la loi de Benford; dans [2], le résultat principal affirme que des suites obtenues par la
methode´ de Newton la satisfont egalement.´ Plus precis´ ement,´ soit f : I R une fonction
analytique reelle,´ non lineaire,´ et soit x* un zero´ de f Pour x0 dans un voisinage de x*,
considerons´ la suite xn)n=1 definie´ par xn+1 xn-

f xn)
f Alors, pour presque tout x0, les

xn)
suites xn-x*)n=1 et xn+1-xn)n=1 satisfont la loi de Benford par rapport à toute base b.

Dans [7], nous avons considéré des suites de nombres positifs an)n=0 qui satisfont une

relation de récurrence de la forme an+q c1an+q-1+c2an+q-2+. .+cqan où les ci R
et cq 0, et pour laquelle le polynôme caractéristique associé p(x) xq - c1xq-1 -- cq admet une racine distinguée > 1, de multiplicité 1 et telle que > |.| pour
toute autre racine de p(x). Nous avons alors montré que la suite an)n=0 satisfait la loi
de Benford par rapport à la base b > 2 si:

a) logb( est irrationnel,

b) inf an
n : n 1 > 0,

et que le cas échéant, il en est demême de toutes les sous-suites de an) de la forme aQ(n))
pour tout polynôme Q(x) Z[x] tel que Q(n) > 0 pour tout n > 0. Cela généralise des

cas déjà connus tels que la suite de Fibonacci ou la suite 2n)
n=1 par rapport à la base 10.

La preuve repose sur le fait qu’une telle suite an) s’exprime à l’aide des racines .1,
.2, .m de p(x) et de leurs multiplicités respectives µ1 1,µ2, µm:

an a.n
+

m

j=2

µj-1

k=0
aj,knk nj

où a est un réel positif à cause de la condition b), et où les aj,k dépendent des conditions

initiales a0, aq-1. Quelques simulations numériques nous ont convaincu que

l’hypothèse sur la multiplicité de la racine particulière devait être superflue, et le but

initial du présent article était d’établir ce fait. Nous allons démontrer le résultat général
suivant cas particulier du théorème 2.4):

Theorem 1.1 Si an)n=1 est une suite de nombres réels positifs tels qu’il existe a > 0,

µ R et > 0 tels que

lim
x.+8

an

nµ.n
a

et si b 2 est un entier tel que logb( R \Q, alors, pour tout polynôme non constant
Q(x) à coefficients dans Z tel que Q(n) > 0 pour tout n > 0, la suite aQ(n))n=1 satisfait
la loi de Benford en base b.

On voit donc que c’est le comportement asymptotique de la suite qui implique le fait
qu’elle satisfait la loi de Benford.
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À titre d’exemple, si an > 0 est de la forme

an

m

j=1

Pj Q(n)) Q(n)
j

où Q est comme dans le théorème, .1 > | j | pour 2 j m, Pj x) R[x] pour
tout j et P1(x) > 0 pour tout x > 0 assez grand, alors la suite an)n=1 satisfait la loi
de Benford pour toute base b pour laquelle logb(.1) est irrationnel. C’est le cas de toute
suite an)n=1 R*+ qui satisfait une relation de récurrence du type an+q c1an+q-1 +
c2an+q-2+. .+cqan et dont le polynôme caractéristique p(x) xq-c1xq-1-. .-cq
x - .1)µ1

· · x - .m)µm possède une racine .1 > 0 telle que > | j| pour tout
2 j m et qui satisfait la condition b) ci-dessus.

La preuve du th éorème principal de [7] utilise le théorème de Weyl sur l’équidistributivité
des suites P(n))n=1 où P est un polynôme dont un coefficient au moins est irrationnel.
Certains lecteurs de [7] ont exprimé le souhait de lire une preuve complète du théorème.
C’est pourquoi nous donnons ici une preuve complète des résultats que nous utiliserons
sur les suites équidistribuées. La plupart proviennent de [8].

Le paragraphe suivant rappelle les définitions importantes et contient l’énoncé du théorème

principal, ainsi que sa preuve, conséquence de théorèmes d’équidistributivité tirés de [8].
Dans la section 3, nous établissons une version probabiliste de la loi de Benford pour les

suites indexées par des nombres aléatoires, et les deux dernières sections sont consacrées

aux démonstrations des critères d’équidistributivité utilisés ici.

2 Loi de Benford et suites équidistribuées

Dans tout l’article, b désigne un entier supérieur ou égal à 2. Comme la demi-droite réelle

0,+8) admet la partition

0,+8)
k.Z

[bk bk+1

tout x > 0 s’écrit de façon unique

x Mb(x) ·
beb(x)

où Mb(x) [1,b) est la mantisse de x en base b et où eb(x) Z.

Par exemple, en base 10 dix), on a M10(p) p, mais aussi M10( 1
v2

10
v2

5v2.

Pour tout nombre réel x, on note x sa partie entière et x x - x sa partie fractionnaire.

La partie entière Mb(x) {1, b- 1} est appelée le premier chiffre significatif
de x par rapport à la base b).

La définition ci-dessous, tirée de [1], précise la définition originale: on regarde la répartition

des valeurs de la mantisse des nombres au lieu de celle du premier chiffre significatif
cf. [7], définition 1.1), qui, lui, correspond à la partie entière de lamantisse.
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Definition 2.1 Soit an)n=1 0,+8) et soit b comme ci-dessus. On dit que an)n=1
satisfait la loi de Benford en base b si, pour tout t [1,b), on a:

lim
N.8

|{1 n N : Mb(an) < t}|
N

logb(t).

On dit que an)n=1 satisfait la loi de Benford forte si elle satisfait la loi de Benford en base

b pour tout b 2.

Remarques

1) Dans [1], la limite dans la définition 2.1 est remplacée par

lim
N.8

|{1 n N : Mb(an) t}|
N

logb(t)

pour tout t [1,b). Or, les deux définitions sont équivalentes. Cela suit en effet de

la continuité de la fonction logb et des inégalité évidentes:

|{n N : Mb(an) < t}| |{n N : Mb(an) t}|
|{n N : Mb(an) < t + d}|

pour tout t [1,b), pour toutd > 0 tel que t + d < b et pour tout entier positif N.
2) La définition 2.1 implique celle de [7], par exemple, qui est classique: en effet, en

notant d(x) Mb(x) on a d(x) d si et seulement si d Mb(x) < d + 1.

Ainsi, si la suite an) satisfait la définition 2.1, on a pour tout d {1, b - 1} :

|{n N : d(an) d}| |{n N : d Mb(an) < d + 1}|
|{n N : Mb(an) < d + 1}|

- |{n N : Mb(an) < d}|,
ce qui implique que

lim
N.8

|{1 n N : d(an) d}|
N

logb(d + 1)- logb(d) logb 1 +
1

d

3) Nous ne considérerons ici que des suites de nombres positifs. Néanmoins, on définit
également la loi de Benford pour les suites réelles non nécessairement positives de

la façon suivante cf. [1]): an)n=1 R satisfait la loi de Benford en base b si la
suite des valeurs absolues (|an|)n=1 la satisfait.

Nous allons utiliser une caractérisation de la loi de Benford qui s’appuie sur la notion de

suite équidistribuée; pour cela, rappelons la définition 1.1 de [8], qui, à l’origine, est due à

H. Weyl [9]:

Definition 2.2 Soit an)n=1 une suite réelle. On dit qu’elle est équidistribuée modulo 1 si,
pour tous 0 c < d 1, on a

lim
N.8

|{1 n N : c an < d}|
N

d - c.
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Le résultat suivant permet d’utiliser de nombreux résultats sur les suites équidistribuées.

Il est dû à P. Diaconis th éorème 1, p. 74 de [4]), et est basé sur l’observation suivante:
pour tout x > 0, on a logb(x) logb(Mb(x)) + eb(x), et puisque logb(Mb(x)) [0,1), il
s’ensuit que logb(Mb(x)) logb(x)

Proposition 2.3 Si an)n=1 0, + 8) et si b 2 est un entier, alors elle satisfait
la loi de Benford en base b si et seulement si la suite des logarithmes logb(an))n=1 est

équidistribuée mod 1.

Voici le résultat principal de l’article; il généralise le théorème 1.2 de [7].

Theorem 2.4 Soienta > 0, > 0 et µ des nombres réels, et soit une fonction Q, définie
sur [1,+8), qui satisfait:

a) il existe un entier k 1 et un nombre réel x0 1 tels que Q est k fois dérivable sur

x0,+8);
b) lim

x.8
Q(k)(x) existe et est un nombre rationnel non nul.

Soit an)n=1 0,+8) une suite telle que

lim
n.8

an

nµ. Q(n) a.

Alors pour tout entier b 2 tel que logb( R \ Q, la suite an)n=1 satisfait la loi de

Benford en base b. En particulier, si, pour tout entier positif m, .m n’est pas entier, alors
an)n=1 satisfait la loi de Benford forte.

La preuve repose sur l’exercice 3.7, p. 31 de [8]; nous allons en donner une démonstration
à la section 5.

Theorem 2.5 Soient k 1 un entier, R un nombre irrationnel et f : [1,+8) R
une fonction pour laquelle il existe un nombre x0 1 tel que f soit k fois dérivable sur

x0,+8). Si limx.8 f k)(x) alors la suite f n))n=1 est équidistribuée mod 1.

Preuve du théorème 2.4. On écrit pour tout n 1:

an nµ Q(n)
·

an

nµ.Q(n)

de sorte que logb(an) µlogb(n) + Q(n) logb( + .n avec .n logb
an

nµ. Q(n)

logb(a) lorsque n 8. Puisque la suite .n) est convergente, il suffit de démontrer
que la suite µ logb(n) + logb( Q(n))n=1 est équidistribuée mod 1 voir par exemple
le lemme 3.1 de [7] ou le théorème 1.2 de [8]). Puisque logb( est irrationnel et que

Q(k)(x) q Q*, on a, puisque k 1,

lim
x.8

dk
µlogb(x) + logb( Q(x)

dxk

lim µ

x.8 log(b) · -1)k-1(k- 1)!
xk + logb( Q(k)(x) q logb(

qui est irrationnel par hypothèse. Le théorème 2.5 s’applique donc.
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Remarques

1) Soit P(x) akxk + ak-1xk-1
+ + a1x + a0 un polynôme non constant à coef¬

ficients réels et tel que ak soit irrationnel. Le théorème 2.5 implique immédiatement
que la suite P(n))n= 1 est équidistribuéemod 1 théorème de Weyl).

2) Une classe typique de fonctions Q qui satisfont les hypothèses du théorème 2.4 est

constituée des fonctions rationnelles Q P/R où P et R sont des polynômes à

coefficients rationnels, R(x) 0 pour tout x 1, avec deg(P) > deg(R) car,

par division euclidienne de P par R, il existe deux polyn ômes q et r à coefficients
rationnels tels que P/R q + r/R et r 0 ou deg(r) < deg(R). Si k 1 est le
degré de q, on a

dk

dxk
q(x) +

r x)
R(x)

q(k)(x) +
rk x)
Rk x)

pour des polynômes convenables rk et Rk tels que deg(Rk) > deg(rk et q(k)(x) =:
qk est un rationnel non nul. Enfin, si P et R sont comme ci-dessus, toute fonction de

la forme Q(x) P(x)/R(x) + c1xß + c2 log(x), où ß R, par exemple, satisfait
encore les hypothèses du th éorème.

Une preuve complète du théorème 2.5 sera présentée dans les deux derniers paragraphes
où nous allons rappeler les critères de Weyl et le théorème des différences de Van der
Corput.

3 Suites indexées par des nombres aléatoires

On considère une suite u(n))n=1 [0,1] qui est équidistribuée mod 1. Pour tout entier m
assez grand, on considère également N < m variables aléatoires indépendantes et
identiquement distribuées abrégées désormais i.i.d.) X1,m, XN,m : {1, m} telles
que, pour tout 1 i N et tout 1 k m,

P(Xi,m k)
1

m

Par exemple, on peut prendre {1, m}
N muni de la mesure de probabilité P

uniforme:

P({(.1, .N )})
1

mN .1, .N

et Xn,m est la projection sur la n-ième coordonnée. Cela constitue un modèle de tirage de

N nombres aléatoires dans {1, m}. On va démontrer:

Proposition 3.1 Avec les hypothèses ci-dessus, pour tous 0 c < d 1, la suite de

variables aléatoires 1N
N

n=1 .[c,d)(u(Xn,m)))N,m converge en moyenne vers d- c:

lim
N.8

lim
m.8

E
1

N

N

n=1
.[c,d)(u(Xn,m))- d - c) 0.
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Preuve. Posons Zn,m .[c,d)(u(Xn,m)) pour tous n et m; ce sont également des variables
aléatoires i.i.d. et Z2n,m Zn,m puisqu’elles sont à valeurs dans {0,1}. On a:

E(Zn,m) Zn,m( dP(

m

k=1 Xn,m=k .[c,d)(u(k))dP(

1

m

m

k=1
.[c,d)(u(k)) =: µm(c,d).

Par hypothèse, µm(c,d) d - c lorsque m .8 puisque u(n))n=1 est équidistribuée.

Calculons encore la variance de Zn,m:

Var(Zn,m) E((Zn,m - E(Zn,m))
2

E(Z2n,m) - 2E(Zn,m E(Zn,m)) + E(Zn,m)
2

E(Zn,m) - E(Zn,m)
2

µm(c,d)- µm(c,d)2

car Z2n,m Zn,m. En particulier, comme la moyenne, elle est indépendante de n. On
obtient alors, par l’indépendance des Zn,m:

Var
1

N

N

n=0

Zn,m
1

N2 ·Var
n

Zn,m
1

N2
N ·Var(Z1,m)

µm(c,d)- µm(c,d)2

N

qui tend vers 0 lorsque N et m tendent vers8. Pour N < m fixés, on a

E
1

N

N

n=1

Zn,m - d - c)

E
1

N

N

n=1
+ |µm(c,d)- d - c)|Zn,m - µm(c,d)

E
1

N

N

n=1

2

Zn,m - µm(c,d)
1/2

+ |µm(c,d) - d - c)|

Var
1

N

N

n=0

Zn,m
1/ 2

+ |µm(c,d)- d - c)|

µm(c,d)- µm(c,d)2

vN + |µm(c,d)- d - c)|

1

vN + |µm(c,d)- d - c)|

car µm(c,d)- µm(c,d)2
µm(c,d) 1 pour tout m.
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Ainsi, si e > 0 est fixé, il existe M > 0 tel que, pour tout m M, on ait |µm(c,d)- d-
c)| < e/2. En prenant N > 4/e2, on obtient

E
1

N

N

n=1

< e.Zn,m - d - c)

Soit maintenant un entier b 2 et soit an)n=1 R*+ une suite telle que la suite des

parties fractionnaires u(n) logb(an) soit équidistribuée mod 1. Par la proposition 2.3,
la suite an)n=1 satisfait la loi de Benford en base b. Si Xn,m)1=n=N est comme dans la
proposition précédente, on a:

Proposition 3.2 Avec les hypothèses ci-dessus, la suite de variables aléatoires aXn,m
satisfait la loi de Benford en moyenne. Plus précisément, on a pour tout t [1,b):

lim
N.8

lim
m.8

E |{1 n N : Mb(aXn,m) < t}|
N - logb(t) 0.

En particulier, la propositions’applique lorsquean .n où est un nombre réel supérieur
à 1 tel que logb( soit irrationnel. A titre d’exemple, le programme Mathematica c

cidessous illustre le cas de 2 et de b 10 avec m 107 et N 105. On constate que

la loi de Benford est relativement bien vérifiée puisque 30 349 valeurs commencent par 1,

17 655 par 2, etc. et 4648 par 9.

4 Les critères deWeyl
Dans ce paragraphe, on ne considère que des suites à valeurs dans l’intervalle [0,1].
Rappelons qu’une telle suite an)n=1 [0,1] est équidistribuée mod 1 si, pour tout intervalle
I [0,1], on a

lim
N.8

|{1 n N : an I}|
N I

où I désigne la longueur de I. Le critère suivant est dû à H. Weyl [9]; comme indiqué

dans l’introduction, nous allons en donner une preuve détaillée.

Theorem 4.1 Soit an)n=1 [0,1]. Les trois conditions suivantes sont équivalentes:

1) la suite an)n=1 est équidistribuée;

2) pour toute fonction continue f sur [0,1], on a:

SN f :=
1

N

N

n=1

f an)
1

0

f x)dx

lorsque N .8;3) pour tout entier k 0, on a:

1

N

N

n=1

e2ipkan 0

lorsque N .8.
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Statistics`DataManipulation`
Graphics`Graphics`

aleaben n_, m_ : Module
val1 Table Random Integer, 1, 10^n 10^m ;
val2 Table N FractionalPart val1 Log 10, 2 ;
freq RangeCounts val2, 0.301, 0.477, 0.602, 0.699,

0.778, 0.845, 0.903, 0.954 ;
BarChart freq

aleaben 7, 5

freq

1 2 3 4 5 6 7 8 9

30000

25000

20000

15000

10000

5000

30349, 17655, 12387, 9534, 7810, 6712, 5845, 5060, 4648

Fig. 1

Faisons quelques observations qui seront utiles dans la preuve du théorème ci-dessus.

Fixons une suite an)n=1 [0,1]. Pour une famille F de fonctions intégrables sur [0,1],
convenons que F satisfait la condition E) par rapport à an)n=1 si

SN f
1

0

f x)dx f F

lorsque N .8, où, rappelons-le, SN f 1N
N

n=1 f an).

Alors, on observe que les conditions 1), 2) et 3) sont des conditions E) pour certaines
familles de fonctions. En effet,

a) l’assertion 1) est la condition E) pour la famille F1 constituée des fonctions ca¬

ractéristiques d’intervalles .I où I est un intervalle de [0,1]; en effet, SN .I
1N

n .I an) |{1 n N : an I}|/N;
b) 2) est la condition E) pour la famille F2 de toutes les fonctions continues sur [0,1];
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c) enfin, 3) est la condition E) pour la famille des fonctions exponentielles complexes

F3 {ek : ek x) e2ipkx }, car, pour k 0, on a 1
0 ek(x)dx 0, et pour k 0,

on a 1
0 e0(x)dx 1 SN e0) pour tout N. Remarquons que F3 F2.

Le lemme suivant sera utile dans la preuve du théorème:

Lemma 4.2 Soient fl l=1 et f des fonctions intégrables sur [0,1] telles que:

a) la suite fl l=1 satisfait la condition E) par rapport à une suite an)n=1 [0,1];
b) fl f uniformément sur [0,1] lorsque l .8.

Alors la fonction f satisfait également la condition E) par rapport à an)n=1.

Preuve. Soit e > 0 fixé. Il existe l 1 tel que

sup

x.[0,1]
| fl x) - f x)| <

e
3

Comme fl satisfait E), il existe N0 tel que, pour tout N N0, on ait:

SN fl -
1

0
fl x) dx <

e

3

Comme | fl - f | < e/3 sur [0,1], on obtient en particulier

|SN fl - SN f )|
1

N

N

n=1

fl an)- f an))

1

N · N · sup

x.[0,1]
| fl x) - f x)| <

e
3

pour tout N N0. Enfin, si N N0,

SN f -
1

0

f |SN f - SN fl)| + SN fl -
1

0
fl +

1

0
| fl - f | < e.

Preuve du théorème 3.1. 1).(2) : Si f : [0,1] C est continue, elle est limite uniforme
de fonctions en escaliers, c’est-à-dire de la forme

g

m

k=1

ck.Ik

où Ik [k-1
m

km Par hypothèse,chaque fonction g comme ci-dessus satisfait la condition
E), donc par le lemme, il en est de même de f

2).(3): banal car toute fonction ek est continue.

3).(1): La condition 3) implique que tout polynôme trigonométrique

p(x)
q

k=-m

cke2ipkx
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satisfait la condition E). Or, par le théorème deWeierstrass, toute fonction continue p ´
eriodique de période 1 est limite uniforme sur [0,1] de tels polynômes. Donc toute fonction
continue périodique de période 1 satisfait également E). C’est le cas pour toute fonction
affine par morceaux f comme dans les figures ci-dessous:

1

1

f

Fig. 2

1

1

f

Fig. 3

Fixons alors un intervalle I [0,1] ete > 0. Choisissons deux fonctions continues affines
par morceaux f et g telles que f 0) f 1), g(0) g(1), et enfin

0 g .I f 1 et
1

0
f x)- g(x))dx <

e

5

1

1

f

I

g

Fig. 4
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On a:

SN g) SN .I SN f N et
1

0
g(x) dx I

1

0
f x)dx.

On choisit alors N0 assez grand pour que

1

0
f x) dx - SN f

1

0
g(x) dx - SN g) <

e
5

N N0.

On obtient pour tout N N0:

0 SN f - SN .I SN f - SN g)
1 1

SN f - f x) dx +
0 0

f x)- g(x))dx +
1

0
g(x) dx - SN g) <

3e

5

Par suite, on a pour N N0:

| I - SN .I)|
1

0
f x)- .I x))dx +

1

0
f x) dx - SN f + SN f - SN .I

< 2 ·
e

5 +
3e

5
e.

Cela démontre le théorème.

Rappelons un exemple typique de suite équidistribuée mod 1:

Exemple 4.3 Soit R un nombre irrationnel. Alors la suite n.)n=1 est équidistribuée

mod 1.

Preuve. Il suffit de montrer que la suite des parties fractionnaires an)n=1 := n. n=1
satisfait la condition 3) du théorème. Fixons donc un entier k 0 et posons z e2pik.

Observons que z 1 quel que soit k 0 puisque est irrationnel.

Comme e2pikan e2pikn. zn pour tout n, on a:

1

N

N

n=1

e2pikan
z

N

N-1

n=0

zn
1

N

zN+1 - z

z - 1
0

lorsque N .8.
5 Une preuve du théorème 2.5

Ce dernier paragraphe est consacré à la preuve complète du théorème 2.5. L’un des ingr´
edients est le théorème des différences de Van der Corput, cf. [8], Theorem 3.1, dont nous
reproduisons la preuve.

Theorem 5.1 Van der Corput) Soit xn)n=1 une suite de nombres réels telle que, pour
tout entier positif h, la suite des différences xn+h - xn)n=1 soit équidistribuée mod 1.

Alors la suite xn)n=1 est équidistribuée mod 1.
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Preuve. Elle repose essentiellement sur l’inégalité suivante que nous d émontrons d’abord
inégalité fondamentale de van der Corput, [8], Lemma 3.1): soient u1,u2, uN des

nombres complexes et 1 H N un entier; alors

H2
N

n=1

un
2

H(N+H-1)
N

n=1
|un|

2

+2(N+H-1)
H-1

h=1
H-h)

N-h

n=1

un ūn+h

On pose un 0 pour n 0 ou n > N. On observe que

N+H-1

p=1

H-1

h=0

up-h H
N

n=1

un.

En effet, se demontre´ par recurrence´ sur H 1: c’est banal pour H 1, et si c’est
vrai pour H, on a

N+H H N+H-1 H-1 H

u p-h up-h + up-H + uN+H-h

p=1 h=0 p=1 h=0 h=0

H
N

n=1

un +
N+H-1

p=H+1

up-H + uN H
N

n=1

un +
N-1

q=1

uq + uN H + 1)
N

n=1

un.

Cela achève la d émonstration de

Démontrons alors En appliquant l’inégalité de Cauchy-Schwarz à on obtient

H2
N

n=1

un
2

N + H - 1)
N+H-1

p=1

H-1

h=0

u p-h
2

N + H - 1)
N+H-1

p=1

H-1

r=0

u p-r
H-1

s=0

ū p-s

N + H - 1)
N+H-1

p=1

H-1

h=0
|up-h|

2
+ 2(N + H - 1)

N+H-1

p=1

H-1

r,s=0,s<r

up-r ū p-s

: N + H - 1)( 1 + 2 2)).

Par 1 H N

n=1 |un|2. Enfin, tout élément up-r ūp-s apparaissant dans 2 est

de la forme un ūn+h pour une paire n,h) {1, N} × {1, H - 1}. Soit alors A

{( p,r,s) : 1 p N + H - 1,0 r,s H - 1,s < r,p- r N} et soit f : A

{1, N}×{1, H-1} l’application définie par f(p,r,s) p-r,r-s). Pour n,h)
fixé, on a f-1(n,h) {(n +h + s,h +s,s) : 0 s H - h- 1} car r h + s H - 1.

Ainsi, pour toute paire n,h), il y a exactement H - h triples p,r,s) A qui satisfont
up-r ū p-s un ūn+h On obtient donc 2 H-1

h=1 H -h) N-h

n=1 un ūn+h puisque uk
0 pour k > N. Cela démontre que nous allons utiliser pour démontrer le théorème 5.1.
Soit une suite xn)n=1 qui satisfait les hypothèses du théorème: pour tout entier h 1, la
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suite xn+h - xn) est équidistribuée mod 1. Pour montrer que xn) l’est aussi, nous allons
utiliser le critère 3) du théorème de Weyl. On fixe donc un entier non nul k, et on pose

un e2ipkxn En appliquant on a

H2
N

n=1

un
2

H(N + H - 1)N + 2(N + H - 1)
H-1

h=1

H - h)
N-h

n=1

un ūn+h

H(N + H - 1)N + 2(N + H - 1)
H-1

h=1

H - h)
N-h

n=1

e2ipk(xn-xn+h

pour 1 H N. En divisant par H2N2, on a

1

N

N

n=1

un
2 N + H - 1

HN

+ 2
H-1

h=1

N + H - 1)(H - h)(N - h)
H2N2

1

N - h

N-h

n=1

e2ipk(xn-xn+h

Si e > 0 est fixe,´ on choisit d’abord H assez grand pour que 1/H < e/3. Il existe alors
N0 H assez grand pour que, pour tout N > N0, on ait N+H-1 < 2e/3 etHN

2
H-1

h=1

N + H - 1)(H - h)(N - h)
H2N2

1

N - h

N-h

n=1

e2ipk(xn-xn+h < e/3

puisque chaque suite xn+h - xn) est équidistribuée mod 1. Cela achève la démonstration
du théorème de Van der Corput.

La proposition ci-dessous est le premier pas dans la preuve du théorème 2.5; c’est le
théorème 3.3 de [8].

Proposition 5.2 Soit xn)n=1 R une suite telle que la suite des différences xn :=
xn+1- xn tende vers une limite R \ Q. Alors xn)n=1 est équidistribuée mod 1.

Preuve. On fixe un entier non nul h et on va montrer critère de H. Weyl) que

lim
N.8

1

N

N

n=1

e2iphxn 0.

Soit q un entier positif. Par hypothèse, il existe un entier M > 0 assez grand tel que

| xN - .|
1

q2
pour tout N M. Par suite, on a pour tout N M:

|xN - xM - N - M).| |(xN - xN-1) + xN-1 - xN-2) + .+
+ xM+1- xM)- N - M) |
N-1

j=M

x j -
N - M

q2
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Par le théorème des accroissements finis, on a pour tous u,v R, |e2ipu - e2ipv |
2p|u - v|, donc

|e2iphxN - e2iph(xM+(N-M)
.)| 2p|h||xN - xM - N - M) |

2p|h|(N - M)
q2

et ainsi

M+q-1

n=M

e2iphxn
M+q-1

n=M

e2iphxn - e2iph( xM+(n-M)
.)+

+
M+q-1

n=M

e2iph(xM+(n-M)

M+q-1

n= M

e2iphxM · e2iph. n-M +
2p|h|

q2

M+q-1

n= M

n- M).

Or, on a

M+q-1

n=M

e2iphxM · e2iph. n-M
M+q-1

n=M

e2iph. n-M 2

|e2iph. - 1|

1

sin(p|h|

et
M+q-1

n= M

n - M)
q-1

k=0

k
q2

2

Par conséquent, on obtient

M+q-1

n=M

e2iphxn
1

sin(p|h|
+

2p|h|
q2 ·

q2

2 =: K.

Ainsi, on a pour tout entier positif H:

M+Hq-1

n=M

e2iphxn H · K,

et finalement, si N M,

1

N

N

n=1

e2iphxn
M - 1

N +
N - M

qN
K +

q

N

qui peut être rendu arbitrairement proche de K/q, et comme q peut être aussi grand qu’on
veut, on a le résultat.
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Preuve du théorème 2.5. Rappelons que f x) est définie pour x 1, qu’elle est k fois
dérivable pour x assez grand et que

lim
x.8

f k)(x) R \ Q.

On procède par récurrence sur k. Pour k 1, on a f n) f n + 1) - f n) f an)
pour n < an < n + 1 convenable. Ainsi, f n) lorsque n.8.On applique alors
la proposition précédente.

Supposons le théorème vrai pour k et soit une fonction f telle que

lim
x.8

f k+1)(x) R \ Q.

Par le théorème de Van der Corput, il suffit de montrer que pour tout entier h 1 fixé, la
suite f n + h)- f n))n=1 est équidistribuée mod 1. Posons donc, pour h fixé, gh(x) :=
f x + h)- f x). On a

g(k)
h x) f k)(x + h)- f k)(x) f k+1)(.x,h)

pour x < .x,h < x + h convenable, et ainsi

lim
x.8

g k)
h x) lim

x.8
f k+1)(.x,h)

Par hypothèse de récurrence, la suite gh(n))n=1 est équidistribuée mod 1, ce qui achève

la preuve du théorème.
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