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B-adische Teilbarkeitstests im Vergleich

Alfred Schreiber

Alfred Schreiber hat Mathematik, Physik und Philosophie in GieBen und Kdln stu-
diert. Er promovierte 1975 an der Universitdt zu Kéln und habilitierte sich 1981 an
der RWTH Aachen auf dem Gebiet ,.Didaktik der Mathematik™*. Seit 1986 ist er Pro-
fessor am Institut fuir Mathematik und ihre Didaktik der Universitit Flensburg. Seine
Arbeits- und Interessensgebiete umfassen Elementarmathematik, Heuristik und Wis-
senschaftslogik sowie Mathematik in Geschichte, Kultur und Gesellschaft.

Teilbarkeitstests in Stellenwertsystemen liefern Aussagen lber die kleinen Teiler einer
natiirlichen Zahl g, gestlitzt auf die Ziffern von g. In der Zahlentheorie sind solche Krite-
rien ¢her ein Thema am Rande; hingegen spielen sie traditionell eine gewisse Rolle in der
elementaren Arithmetik, vor allem als Hintergrund fiir die Behandlung von Teilbarkeits-
fragen im Mathematikunterricht; typische Beispiele dafiir sind [1] und [3].

Im Folgenden geht es darum, B-adische Teilbarkeitstests in einer einheitlichen und
sinnfalligen Form darzustellen. Davon ausgehend werden die zu Testteilern und Stellen-
wertbasen verfligbaren ‘Teilbarkeitstests (genauer: Testmengen) berechnet und nach be-
stimmten Giitekriterien bewertet.

Dient die ganze Zahl B > 2 als Basis des Stellenwertsystems und sind co, ¢1, ..., Cns
¢n # 0, die (nach steigender Wertigkeit geordneten) B-adischen Ziffern von 4, so wird
wie ublich geschrieben:

n
a=1(Cy...CIC0)B = ZCJ‘BJ. ()
j=0

Teilbarkeitstests in Stellenwertsystemen sind ein klassisches Thema der elementa-
ren Arithmetik im Mathematikunterricht. In der vorliegenden Arbeit wird zunéchst
der Testbegriff abgegerenzt und durch ein allgemeines Reduktionslemma unterlegt.
Dann werden sdamtliche Tests bis zur dritten Ordnung zu Stellenwertbasen bis 16 und
zu Testteilern bis 99 systematisch aufgestellt und vergleichend bewertet. Es ergibt
sich eine Rangtabelle von 17 Testteilern mit mehr als fiinf Tests. Als mit Abstand
hochstbewertete Stellenwertbasis erweist sich 11 (gefolgt von 13 und 9). In der be-
trachteten Testmenge spielen Quersummentests, mit einem Bewertungsanteil von tiber
72%, eine vorherrschende Rolle.
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Um zu priifen, ob a durch einen Testteiler 4 teilbar ist, sucht man eine einfacher zu te-
stende (im allgemeinen kleinere) Zahl @', die zu a kongruent ist: ¢ = ¢’ mod d. In einer
Stellenwertdarstellung liegt es nahe, zunichst die Potenzen der Basis zu reduzieren:

B/ =r;modd.
Mit (1) ergibt sich daraus

n

_ P oy

a=q i= E c;rymodd.
j=0

Die hier rechterhand auftretende ,,verallgemeinerte Quersumme™ (vel. [2]) ist im Prinzip
der Schliissel fiir die B-adischen Teilbarkeitsregeln. Deutlich ist dies aber erst zu erken-
nen, wenn man der Summe g’ von vornherein die charakteristische Form einer Quersumme
hoherer Ordnung gibt. Fiir eine Quersumme der Ordnung s > 1 werden in der B-adischen
Darstellung ¢, ... c1co rechts bei den Einern ¢y beginnend Blocke von jeweils s Ziffern
abgegriffen. Wo dies am linken Ende nicht glatt aufgeht, denken wir uns eine passende
Anzahl fiihrender Nullen ¢ = 0 (k > n) vorgeschaltet. Es gilt dann das folgende allge-
meine Reduktionslemma:

Proposition 1 Besteht zu gegebenen ganzen Zahlen B > 2 (Basis), s = 1 und d = 2

die Kongruenz B* = p mod d fiir ein p € Z, so gilt fiir jede natiirliche Zahl a mit der
B-adischen Darstellung a = (¢ ...C1C0)B

[5]
@ = Z(C(j—i-l)S—l ...Cjs)p - p’ modd. 2)
j=0

Beweis. Wir gruppieren in der B-adischen Darstellunga = (co+c1B+...+cs_1B*~ 19 4
...+ ¢y B" bei co beginnend je s Summanden in einer Klammer. Im Falle j > O steht in
der j-ten Klammer der Term Cpnys— 1 BYTVS =L 4 ¢ BJS. Wir ziehen den Faktor
B/¢ heraus und erhalten:

[%]
a=(Cs—1...C00p + Z(C(j+1)s—1--~cjs)B B modd.
=1

Unter Beachtung von B/ = (B*)/ = p/ mod d liefert dies (mit der Vereinbarung p° = 1
auch fiir den Fall p = 0) die behauptete Kongruenz (2). O

Aus (2) wird sofort ersichtlich, dass eine wirksame Reduktion nur bei p € {0, —1, 1}
zustande kommt. In diesem Fall wollen wir p einen Reduktionsrest nennen (wobei —1 fiir
den Rest d — 1 steht). Fiir p = 0 liefert (2) unmittelbar einen Endstellentest beziiglich
der letzten s Ziffern von q; flir p = 1 und p = —1 ergeben sich Teilbarkeitskriterien
iiber Quersummen bzw. alternierende Quersummen, die mit Ziffernblocken der Linge s
gebildet werden.
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Beispiele (zur Basis B = 10)

(1) Fiir d = 4, 10, 20, 25, 50 liefert das Reduktionslemma mit 102 = 0 mod & den End-
stellentest a = (¢1¢0)1o mod 4.

(2) Fir d = 11 gewinnt man aus 10 = —1 mod d die geldufige alternierende Quersum-
menregel a = (—1)%cy, + ... — c1 + ¢o mod d sowie aus 102 = 1 mod d einen
Quersummentest zweiter Ordnung: a = (¢1¢0) 19 + (€3¢2)10 + (€5C4)19+ ... mod d
(z.B.ist 1071675 durch 11 teilbar, weil 75 + 16 + 7 + 1 = 99 durch 11 teilbar ist).

(3) Der Testteiler d = 7 fiihrt auf eine kaum praktikable Quersumme 6-ter Ordnung
(106 = 1 mod 7), daneben aber auch auf eine alternierende Quersumme dritter Ord-
nung (wegen 10° = —1 mod 7). Obwohl diese brauchbarer erscheint, ist ihr Reduk-
tionseffekt immer noch spiirbar abgeschwicht: 164471104 ist durch 7 teilbar, sofern
104 — 471 + 164 = =203 = 7- (—29). Bemerkenswerterweise gentigt aber auch fiir
d = 37 eine Quersumme dritter Ordnung (10° = 1 mod 4).

Betrachten wir nun allgemein zu gegebenem Testteiler d in einem Stellenwertsystem mit
der Basis B > 2 die Kongruenz

B =pmodd. (3)

Fin Quadrupel (B, d, p, 5), welches (3) gentigt, heille per Definition ein Teilbarkeitstest
(oder kurz: Test) fiir den Testteiler d im Stellenwertsystem zur Basis B, wenn p ein Re-
duktionsrest (|p| < 1)und s > 1 minimal gewihlt ist; in dem Fall wird s Ordnung des
Tests genannt, Ist B eing Menge von Basen, D ¢ine Menge von Testteilern und m > 1 eine
ganze Zahl, so bezeichne

Test,, (B, D)

die Menge aller Teilbarkeitstests (B, d, p, s) mit B € B, d € D und s < m. Bequemlich-
keitshalber mogen einelementige Basen- und Testteilermengen ohne Mengenklammern
notiert werden, also etwa Testz (10, {2, ..., 99}) flir die Menge aller Tests hichstens drit-
ter Ordnung, die es im Dezimalsystem fiir ein- und zweistellige Testteiler gibt.

Bemerkungen

(1) Die effektive Berechnung von Testmengen ist im Prinzip simpel, jedoch langwie-
rig genug, um sie mittels Computeralgebra zu erledigen (vgl. [4]). Als Kernroutine
bendtigt man daflir eine Funktion, die zu gegebenem Paar (B,d) und m > 1 die
Testmenge Test, (B, d) berechnet, am einfachsien durch Potenzieren von B im Rest-
klassenring Z,. So frith wie moglich sind die dabei aufiretenden Werte zu reduzieren.
Definiert man etwa (in der Sprache von Mathematica) das Produkt ux mod d durch
die Funktion MultMod [d_, u_] [x_] :=Mod [Mod [u, d] *Mod [x,d] , d], so liefert
Drop [NestWhileList [MultMod [d, B] ,Mod[B,d] ,UnsameQ,All],-1] ge-
nau die hier interessierende Liste der verschiedenen Potenzen B/ mod d.

(2) Zahlentheoretische Hilfsmittel sind zur Ermittlung von Testmengen eigentlich nicht
erforderlich und auch nicht sonderlich wirksam. Dennoch mag es lehrreich sein, einige
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Aspekte einmal kurz zu beleuchten. — Sind B, d teilerfremd, so liefert der Satz von FEuler-
Fermat, B#4} = 1 mod d, sofort einen Quersummentest, dessen Ordnung ¢ (d) teilt. Fiir
einen primen Testteiler d > 3 gilt nach dem Euler-Legendre-Kriterium:

B = (2 moda
=\ — ] mo 5
da

Wenn daher B quadratischer Nichtrest modulo d ist, nimmt das Legendre-Symbol den
Wert —1 an und wir erhalten zusitzlich einen alternierenden Quersummentest einer Ord-
nung < (d — 1)/2.

Sind hingegen B, d nicht teilerfremd, so konnen die Reduktionsreste p = £1 gar nicht
erst auftreten. Die Restklasse B und ihre Potenzen sind dann sdmtlich Nullteiler in Z,.
Fiir einen Endstellentest muss B jedoch dariiber hinaus nilpotent in Zy sein. Dies ist nicht
dasselbe wie die Nullteilereigenschaft: z. B. ist 10(= 4) Nullteiler in Zg, wihrend fiir
alle j > 1 gilt: 10/ = 4 mod 6. Allgemein gilt: Fine Restklasse @ ist nilpotent in Zg
genau dann, wenn jeder Primteiler von d auch Teiler von ¢ ist. Einem Beweis (hier als
Ubungsaufgabe) lsst sich bei niherer Betrachtung ein expliziter Ausdruck fiir das kleinste
s > 1 mit ¢ = 0 mod d entnehmen, der nur von g sowie von den Primteilern und ihren
Vielfachheiten in der Primfaktorzerlegung von d = p’f e p'ﬁ’ abhingt. Er gibt die
Ordnung des zugehorigen Endstellentests an und lautet:

l ,
§ = max {ki O bi = —| ;
Izi=rl log GGT(a, p;")

Dabei bezeichnet [x] die kleinste ganze Zahl groer oder gleich x.

Bewertungsfragen

Denkt man hier an den urspriinglichen Zweck eines ziffernbezogenen Teilbarkeitstests, die
schnelle hiindische Uberpriifung einer vorliegenden ganzen Zahl, so erscheint es sinnvoll,
sich auf kleine Bezugsmengen von gebriuchlichen Stellenwertbasen und (dezimal noch
zweistelligen) Testteilern zu beschrinken. Wir legen daher fest:

B:=1{2.3,....16},
Di={deN|2<d~<100}.

Ferner sollen ausschlieBlich Tests héchstens dritter Ordnung als brauchbar in Betracht ge-
zogen werden. Eine solche Grenzziehung ist rein pragmatisch (und nie ganz ohne Willkiir),
doch vor allem soll ein Test ja die ihm innewohnende Divisionsaufgabe erleichtern, was
bei Ordnungen > 3 fraglich ist (obgleich eine alternierende Quersumme gelegentlich ein
einstelliges Ergebnis hervorbringen kann).

Die hier vorgeschlagene Bewertung eines Tests (B, d, p, s) € Testz (B3, D) orientiert sich
ausschlieflich an seiner Ordnung. Wir definieren dazu die Funktionen g1(s) := 1 und
22(8) := % fiir s € {1, 2, 3}. Die Bewertung einer Testmenge mittels g; bestimmt demzu-
folge ihre Anzahl, mittels g» hingegen eine Summe, in der ein Test umgekehrt proportional
zu seiner Ordnung gewichtet wird. Basen-Teiler-Paare werden dann durch die Funktionen

fi(B.d) = > gi(s)

(B.d,p,5)€Test3(B,D)
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(i = 1,2) bewertet; in beiden Argumenten lassen wir auch Mengen (von Basen oder
Teilern) zu, Giber welche dann jeweils die Einzelwerte f; (B, d) zu summieren sind.

Bemerkung

Der hier als ferminus technicus eingefiihrte Begriff ,, Teilbarkeitstest™ und auch der spe-
ziellere Begriff des ,brauchbaren” Tests umfassen offensichtlich nicht alle in der Praxis
gebriuchlichen und sinnvollen Priitmdglichkeiten, z. B. das Kombinieren mehrerer Tests
(Teilbarkeit durch 6 aus der Teilbarkeit durch 2 und 3) oder das Reduzieren durch iterierte
Quersummenbildung (etwa fiir die Testteiler 9 und 11). Andererseits wiirde die systema-
tische Test-Bewertung, auf die unsere Definition zugeschnitten ist, um einiges verwickel-
ter, wollte man solche abgeleiteten Tests mit berticksichtigen; auch wére die Abgrenzung
Lbrauchbarer” Tests in plausibler Weise auf dieses erweiterte Feld auszudehnen.

Es folgt nun eine Bewertung von Testteilern und Stellenwertbasen, wobei die dabei ge-
machten Aussagen sich auf Berechnungen griinden, die explizit in [4] durchgefiihrt sind;
dort findet man auch einen Uberblick iiber sdmtliche 327 Elemente von Tests (B, D).

Bewertung von Testteilern

Zunichst eine Aussage zu den Testteilern im Dezimalsystem:

Proposition 2 Im Dezimalsystem gibt es f1(10, D) = 21 brauchbare Tests fiir hochstens
zweistellige Teiler. Diese sind genau die Zahlen 2, 3,4, 5,7, 8,9, 10, 11, 13, 20, 25, 27, 33,
37, 40, 50, 77, 91, 99. Der Teiler 11 hat (als einziger) zwei Tests. Es gibt 78 Teiler ohne
brauchbaren Test; die fiinf kleinsten von ihnen sind 6, 12, 14, 15, 16.

Zieht man alle Basen aus B in Betracht, so gibt es immerhin noch 26 Teiler ohne einen
brauchbaren Test; die fiinf kleinsten von ihnen lauten: 22, 23, 44, 46, 47. Interessanter ist
die umgekehrte Frage nach den Teilern mit der grof3ten Testanzahl. Eine Antwort gibt die

Proposition 3 Es gilt f1(B,d) > 5 fiir genau 17 Testteiler d. Diese belegen die ersten
zehn Rangpliitze wie folgi:

Rang 1 21 3 4| 5] 6/ 7| 8 91 10
Testanzahl 22120 (191 18 [ 17 | 16| 11 8 7 6

Testteiler d 2 3 4 5 7 9113 6|10 ] 15
8 14 | 12 | 18
16 [ 27 | 24

Abb. 1 stellt die Testanzahlen im Histogramm dar.

Den hier aufgelisteten 17 ergiebigsten Testteilern entsprechen insgesamt 203 Tests, das
sind etwa 62% der Menge Testz (53, D); in Bezug auf die Bewertung (mittels g,) liegt ihr
Anteil sogar etwas tiber 72% von f2(B, D) = %
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Abb. 1 Testanzahlen zu Testteilern

Bewertung der Stellenbasen

Kommen wir nun zu der Frage, welche Stellenwertbasis die meisten bzw. hochstbewer-
teten Teilbarkeitstests ermoglicht; sie ist eher von grundsitzlichem Interesse und befriedigt
natiirlich nur die theoretische Neugierde und keinerlei realen praktischen Bedarf. Selbst
bei ungiinstigem Abschneiden des Dezimalsystems ist der Zweck solcher Tests zu margi-
nal, um e¢ine in vieler Hinsicht unpraktikable Umstellung auf ein anderes Stellenwertsy-
stem zu rechtfertigen.

In vergleichenden Betrachtungen liegt gelegentlich ein besonderes Augenmerk auf FEnd-
stellentests. In [3] gelten sie als Vorzug der Basen 6 und 10 (wobei allerdings nur die
Testteiler 2 bis 10 in Betracht kommen), wihrend sie nach [1] vor allem die Basis 12 als
vorteilhaft erscheinen lassen. Diese Einschitzung berticksichtigt zu wenig, dass mit einem
Endstellentest hoherer Ordnung immer noch eine Divisionsaufgabe verbunden bleibt, de-
ren Losung u.U. nicht auf der Hand liegt. Die in [1] gemachte Aussage, wonach ,.die Wahl
der Basiszahl 10 nicht die glinstigste’ ist, trifft zwar zu, muss jedoch auf eine breitere
Vergleichsgrundlage gestellt werden. Dabei zeigt sich, dass die Basis 10 noch schlechter
abschneidet als vielleicht befiirchtet, andererseits aber auch, dass die Basis 12 bei keinem
Bewertungsverfahren auf den ersten drei Rangplitzen erscheint.

Proposition 4 Die Funktionen B — f;(B, D) (i = 1, 2) nehmen auf B ihr Maximum bei
B = 11 an, die nidchstkleineren Werte bei B = 13 und B = 9.

Am unteren Ende der Rangfolge finden sich die Basen 10, 8,6,4,3,2; in der f»-
Bewertung rangiert 8 noch vor 10. In der folgenden Tabelle wurden diese unterdurch-
schnittlichen Basen (mit Ausnahme von 10) weggelassen. Zusidtzlich zu den Wertverldufen
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von f1 (Anzahl) und /> (Bewertung, auf eine Nachkommastelle gerundet) sind die je-
weils am hiufigsten auftretenden Testtypen gemil dem Reduktionsrest p angegeben (E fiir
p=0,Aflitp=-1,Qflirp=1).

Basis B 5 7 9 10 | 11| 12 13 14 15 16
1B, D)y || 23 25 [ 27 21 |33 | 26 P &1 21 23
HB,D)y (| 13148 16| 12,2 119 | 152 | 17,3 | 13,2 | 15,3 | 13,8
Testtyp A Q Q E Q E Q E Q Q

Abb. 2 zeigt die Rangfolge aller Basen bez. der f>-Bewertung; die mittlere Bewertung pro
Basis (13,0444) ist als Gerade eingezeichnet.

17.5¢}
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12.5¢

10

11 13

9 LB L2
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5 8 10

Abb. 2 Rangfolge von Stellenwertbasen
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4 3

2

Die Bewertung der ergiebigsten Stellenbasen ldsst vermuten, dass Quersummentests ei-
ne vorherrschende Rolle spielen. Dies wird bestétigt, wenn man die Verteilung der neun
moglichen Testtypen in der Menge Testz (B, D) betrachtet:

Typ || Ord. 1 | Ord.2 | Ord. 3 by
E 34 38 19 91
A 34 24 35 93
Q 30 66 47 143
X 98 128 101 327
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