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Aufgaben

Neue Aufgaben

Losungen sind bis zum 10. Mai 2009 erbeten. Sie kdnnen auf postalischem Weg (bevor-
zugt) an

Dr. Hansruedi Widmer, Boldistrasse 52, Rieden, CH-5415 Nussbaumen

gesandt werden. In einem gingigen Format abgefasste I.osungen konnen auch als Attach-
ment iiber die E-Mail-Adresse h.widmer@alumni.ethz.ch eingereicht werden.

Aufgabe 1260: Unter den natiirlichen Zahlen #, deren Dezimalschreibweise aus 174174
Stellen besteht, betrachten wir jene mit folgender Eigenschaft: Es gibt eine nattirliche Zahl
g > 1, so dass die Dezimaldarstellung von g - n aus jener von n dadurch entsteht, dass
man die letzte Zitfer an den Anfang transferiert. Wie viele solche Zahlen gibt es?

(Beispielsweise besitzt die zwolfstellige Zahl 179487179487 die gewtinschte Eigenschatt,
denn 4 - 179487179487 = 717948717948.)

Panagiotis Cheilaris, Athen, GR

Aufgabe 1261: Zeige, dass es keine zweimal differenzierbare Funktion f gibt, welche auf
[0, o0) definiert ist und die den Ungleichungen

f(x)>0 flir x>0, Fx) - ") +1=<0 fir x>0,

geniigt.
Vicentiu Ridulescu, Craiova, RO

Aufgabe 1262 (Die einfache dritte Aufgabe): Zwei Gegenkanten eines Tetraeders sind
orthogonal, wenn eine bestimmte Bezichung zwischen den Lingen der anderen vier Kan-
ten besteht.
a) Finde diese Bezichung.
b) Welche Hochstsymmetrie (grosste Ordnung der Symmetriegruppe) kann ein Tetra-
eder haben, falls es genau zwei orthogonale Gegenkanten besitzt?

Karl Wirth, Ziirich, CH
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Losungen zu den Aufgaben in Heft 4, 2007

Aufgabe 1248. Esseiz e Cundn € N (n > 2). Beweise:
2 51 [ ) 2 et
l+z4+274+...4+2 ‘ <{1+4]z| +nT1?R(z)

Mihaly Bencze, Brasov, RO

Auswertung der eingesandten Losungen. Es sind 6 Losungen eingetroffen, ndmlich von
Peter Bundschuh (Kéln, D), Friedhelm Gotze (Jena, D), Frieder Grupp (Schweinfurt, D),
Walther Janous (Innsbruck, A), Joachim Klose (Bonn, D) und Albert Stadler (Meilen, CH).

Die einfachsten Losungen stammen von Albert Stadler und Friedhelm Goize, die erkannt
haben, dass es sich bei der zu beweisenden Ungleichung um eine Folgerung aus der
Ungleichung zwischen dem geometrischen und dem arithmetischen Mittel handelt. Wir
bentitzen folgende Bezichungen:
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Mit ihnen folgt
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In der Ungleichung zwischen dem geometrischen und dem arithmetischen Mittel besteht
genau dann Gleichheit, wenn alle an der Mittelbildung beteiligten Zahlen libereinstimmen.
Das ist genau dann der Fall, wenn alle n — 1 Betrége |z — e b gleich sind, wenn also
z in der komplexen Ebene von den n — 1 Einheitswurzeln ¢?™ /" (¢ = 1,2, ...,n — 1)
gleich weit entfernt ist. FFiir n = 2 ist das trivialerweise fiir alle z erfiillt; fiir » = 3 haben
genau die Punkte der reellen Achse die gewlinschte Eigenschaft, und fiir n > 4 erfiillt
einzig z = 0 die Abstandsbedingung.
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Aufgabe 1249, Mit den Fibonacci-Zahlen f1 = fo =1, f = fu—1 + fu—2 (& = 3)
bilden wir im ebenen (x, y)-Gitter einen Streckenzug S, wie folgt: Wir starten in (0, 0),
gehen um f1 nach oben, um f> nach rechts, ..., um f2,—1 nach oben und schliesslich um
J2n» nach rechts. Der Streckenzug S, die x-Achse und die Parallele zur v-Achse durch
den Endpunkt von S, begrenzen ein Gitterpolygon P,. Bestimme die Anzahl i, der Git-
terpunkte im Innern von P,.

Jany C. Binz, Bolligen, CH

Auswertung der eingesandten Losungen. Es sind 13 Zuschriften eingegangen, ndm-
lich von André Ammann (Yverdon, CH), Peter Bundschuh (Kéln, D), André Calame
(Sauges, CH), Friedhelm Gotze (Jena, D), Frieder Grupp (Schweinfurt, D), Walther
Janous (Innsbruck, A), Dieter Koller (Ziirich, CH), Pritz Siegerist (Kiisnacht, CH), Albert
Stadler (Meilen, CH), Hans Heiner Storrer (Greifensee, CH), Walter Vetsch (St. Gallen,
CH), Michael Vowe (Therwil, CH) und Roland Wyss (Flumenthal, CH).

Wir folgen Hans Heiner Storrer: Das Gitterpolygon P, besteht aus #n aneinanderge-

fiigten auf der x-Achse stehenden Quadraten (q, ..., O, mit den Seitenldngen f>, fa,
J65 - --, fon. FUr die Anzahl i,, der Gitterpunkte im Innern von Py gilt die Rekursionsfor-
mel

in =in-1+ (fan2 — D+ (f2n — 1 n =2, (3)

mit i1 = 0. Beim Anfligen des Quadrates (0, (mit der Seitenléinge f»,) an Py,_1 kommen
namlich die (foy — 1)2 Punkte im Innern von (, sowie die f2,—» — 1 Punkte an der
gemeinsamen Begrenzungslinie von ¢J,—1 und (J, hinzu. Die ersten Werte sind i; = 0,
i» =4, i3 = 55.

Eine explizitere Formel, in der allerdings immer noch die Fibonacci-Zahlen vorkom-
men, ist

1
in = 3 (fant2 = S5fony2+9—2n), n>1 4)

Wir beweisen die Formel (4) mit Induktion. Fiir n = 1 ist
1 1
g(f6—5f4+9—2)=§(8—5~3+9—2):O,
was korrekt ist. Gilt nun fiir n — 1, wie behauptet,

1 1
n-1= 3 (fan—2—=5fum +9—-2(n—1)) = 3 (fan— — Sfon + 11 = 2n),

so folgt auf Grund der Rekursionsformel (3):

1
in == (fan—2 — Sfan + 11 = 2n) 4+ (fan—2 — D)+ (fan — 1)?

5
1

= <(fin2 =5 fon + 11 =20+ 5(fon2 = D) o+ 520 = 1)?%)
1

= < (573 + fu-2+ 2 =5 B = fun2)+9 = 2n).

Fany2 fans2
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Werden noch die bei den Unterklammerungen beniitzten Beziehungen

font2 =320 — fou—2, (5)
513, = fantz — fan—2 —2 (6)

bewiesen, ist der Induktionsbeweis gefiihrt.

Fiir den Beweis von (5) beachten wir, dass fiir alle £ > 2 die Formel 3 f¢y = fr—2 + fi+2
gilt. (Wie iiblich setzt man fp = 0.) Die Formel gilt ndmlich fiir £ = 2, 3 und somit wegen
der Rekursionsformel f, = f,—1 + fu—p fiir alle £ > 2. Fiir den Beweis von (6) beniitzt
man zweckmissigerweise die Binet-Formel:

V5fp=0am—p" (m=0,1,2,..) mita=

L+5 ,_1=+5
P
Aus ihr folgt
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= (@2 —a e — (g = g ) —2(-1)"
— —— — —’

NG
NG —5
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= fom+2 — fom—2 — 2(=1)".

Setzt man jetzt m = 2n, so ist der Nachweis von (6) erbracht.

Aufgabe 1250 (Die einfache dritte Aufgabe). Gegeben seien drei Zahlenfolgen (ay).
(by) und (cy), welche alle einer Rekursion vom Typr, = 3ry—1 —3rp—p+rn—3 (n > 4)
gentiigen. Thre Anfangswertesind a1 = 7, ax = 39, az = 95, by = 24, b, = 80, by = 168,
c1 =125, cp = 89 und ¢3 = 193. Zeige, dass alle Tripel (ay, by, ¢y) pythagoreisch sind.
Jany C. Binz, Bolligen, CH

Auswertung der eingesandten Losungen. 15 Personen haben Losungen eingesandt:
Peter Bundschuh (Koln, D), André Calame (Sauges, CH), Francesco Cavalli (Verscio,
CH), Albert Ghenzi (Ziirich, CH), Friedhelm Gotze (Jena, D), Frieder Grupp (Schwein-
furt, D), Walther Janous (Innsbruck, A), Dieter Koller (Ziirich, CH), Miklds Lévai
(Tata, HU), Fritz Siegerist (Kiisnacht, CH), Albert Stadler (Meilen, CH), Hans Heiner
Storrer (Greifensee, CH), Walter Vetsch (St. Gallen, CH), Michael Vowe (Therwil, CH)
und Roland Wyss (Flumenthal, CH).

Fast alle Einsender argumentieren wie Michael Vowe und Irieder Grupp : Das charakte-
ristische Polynom der vorliegenden Rekursion r, = 3r,—1 — 3ry—2 + rp—3 ist (A — 1B,
Nach den bekannten Methoden wird danach

fm=a+pn— 1+ yn—1)7

wobei die «, 8, y geeignete Konstanten sind.
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Firay =7, ax = 39, az = 95 ergebensiche =7, 8 =20, y =12
an =7+20n — 1)+ 12(n — )2 = 12n% — 4n — 1.
Fiir by = 24, by = 80, b3 = 168 ergebensicho =24, B =40,y =16
by = 24 +40(n — 1) + 16(n — 1)* = 16n% + 8n.
Fiir ¢1 = 25, ¢ = 89, ¢3 = 193 ergeben sich ¢« =25, f =44, y =20
en =25+44(n — 1) +20(n — 1)* = 20n° + 4n + 1.
Man rechnet leicht nach, dass
az+ b2 =(12n% —4n — )% + (16n% + 8n)? = 200 + 4n + 1)2 = 2

gilt; somit sind alle Tripel (ay, by, ¢n) pythagoreisch.

Peter Bundschuh zeigt zusitzlich, dass alle Tripel (dy, by, ¢) primitiv sind, dass also
geT(ay, by, cp) = 1 fiir alle n gilt: Ist ndmlich p eine b, = 8n(2n + 1) teilende Primzahl,
so gilt entweder p|2n oder p|(2n + 1). Im ersten Fall kann p evidenterweise nicht in der
Zahl a, = 3(2n)? — 2 - 2n — 1 aufeehen; dasselbe erkennt man im zweiten Fall an der
Darstellung a, = 3(2n + 0% —8(@n 4+ 13 + 4.
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