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Elemente der Mathematik

Géométrie plane: Une axiomatique centrée sur la distance

Christoph Soland

Christoph Soland a obtenu en 1972 une licence en mathématiques à l’Université de

Lausanne et enseigne les mathématiques au Gymnase depuis 1979 En 1997 il a écrit
une thèse sur les ovales de Descartes sous la direction de Oscar Burlet. Il s’intéresse

aux fondements des mathématiques, à l’axiomatique et, surtout, à la géométrie.

Introduction

Des points, leurs distances, et rien d’autre! C’est l’objectif que je me suis fixé pour concevoir

une nouvelle axiomatique de la géométrie euclidienne plane. Dans cet esprit, Blumenthal

[2] va beaucoup plus loin: il décrit en détail ce qui différencie les espaces euclidiens
des autres espaces métriques, notamment à l’aide des déterminants de Cayley-Menger.
Mais le cas du plan euclidien nécessite moins de moyens; je propose ici un traitement
léger et rapide.

Je développe le minimum de concepts et de théorèmes permettant de montrer que la
nouvelle axiomatique est équivalente à celle de Hilbert, en mettant l’accent sur l’aire, la
mesure des angles et leur additivité.

J’utilise surtout des fonctions polynomiales ou rationnelles dont les variables sont des

distances: la formule de Héron et sa généralisation, le déterminant de Cayley-Menger, le
théorème du cosinus et la relation de Stewart.

Bekanntlich hat Euklid um300 v.Chr.)alsersterversucht, die Geometrie auf eine
axiomatische Grundlage zu stellen; aber erst mit dem Erscheinen vonHilberts „Grundlagen
der Geometrie“ 1899) lag ein hieb- und stichfestes Axiomensystem vor. Im Gegensatz

zu den Axiomen für algebraische Strukturen sind die Axiome der Geometrie von grosser

Zahl und unübersichtlich. Nach Hilbert sind daher verschiedene andere Ansätze zur
Axiomatisierung versucht worden, so z.B. der Aufbau der Geometrie aus dem
Spiegelungsbegriff oder aus dem Kollineationsbegriff. Unser Autor nimmt im Anschluss an

Blumenthal den Distanzbegriff als Grundlage, und er kommt mit sechs Axiomen aus,
wovon die ersten drei die üblichen Axiome eines metrischen Raumes sind. Die „
quadratische Natur“ der Distanz macht es allerdings nötig, die beim weiteren Fortschreiten
auftretenden Polynome mit Hilfe von Computeralgebra in Faktoren zu zerlegen.
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Le calcul est au service du sens. J’ai donc choisi de laisser la manipulation des expressions
algébriques à un logiciel de calcul formel abrégé LCF dans la suite), dans la mesure où
cette manipulation n’éclaire pas le propos.

Les notations sont classiques pour la plupart: |ab| désigne la distance des points a et

b; abc z) une liste ordonnée de points et {abc z} l’ensemble non ordonné de ces

mêmes points. Enfin 6 : 2 : 8 : 4) 9 : 3 : 12 : 6) dénote deux listes proportionnelles
de nombres.

Je définis dès à présent quelques fonctions des distances mutuelles de trois ou quatre
points. Leur utilité apparaîtra en son temps.

Définition 1 Quelques fonctions)

1. C{abc}, C{abcd}. Ce sont les déterminants de la proposition 1 infra;
2. D(ab,c) := (|ac| + |bc|- |ab|)(|ab| + |bc|- |ac|);
3. abc) := (|ab|

2

+ |bc|
2 - |ac|2)/(2|ab||bc|);

4. S(abc,x) := |bc||ax|
2 - |ca||bx|

2
+ |ab||cx|

2- |bc||ca||ab|.

Genèse des axiomes

Le plan euclidien est d’abord un espace métrique, les trois premiers axiomes sont donc
ceux que vérifie n’importe quelle métrique. Le quatrième axiome est un important
raccourci par rapport à [2] qui rend la droite isométrique à R.

Mes deux derniers axiomes sont:

– quatre points coplanaires déterminent un tétraèdre de volume nul;

– il existe dans le plan un triangle d’aire non nulle axiome de Hilbert HI3).

Le déterminant de Cayley-Menger [1], qui décrit le n-volume du simplexe de Rn en fonction

des distances mutuelles de ses sommets, traduit ces axiomes en termes de distance. Je

précise cette description pour les dimensions 2 et 3:

Proposition 1

1. L’aire s{abc} du triangle de sommets a, b, c est donnée par

s2
{abc} -

1

16C{abc},

où

C{abc}

0 1 1 1
1 0 |ab|

2
|ac|

2

1 |ba|
2 0 |bc|

2

1 |ca|
2

|cb|
2 0

(|ab| + |ac| + |bc|)(|ab|- |ac|- |bc|)
· -|ab| + |ac|- |bc|)(-|ab|- |ac| + |bc|).
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2. Le volume s{abcd} du tétraèdre de sommets a, b, c, d est donné par

s2
{abcd} -

1

288C{abcd},

où

C{abcd}

0 1 1 1 1
1 0 |ab|

2
|ac|

2

|ad|
2

1 |ba|
2 0 |bc|

2
|bd|

2

1 |ca|
2

|cb|
2 0 |cd|

2

1 |da|
2

|db|
2

|dc|
2 0

La preuve se trouve dans [1].

Si le premier déterminant de la proposition 1 se factorise aimablement et conduit mutatis
mutandis) à la formule de Héron bien connue s{abc} vp( p- a)(p- b)(p - c), le
second, polynôme irréductible, se présente désagréablement comme une somme de vingtdeux

monômes de degré six. Le LCF rend cependant sa manipulation facile.

Enoncé des axiomes

Soit P un ensemble et

distance : ab) |ab|
une application de P2 dans R. Les distances deux à deux des points arbitraires a, b, c, d
vérifient les relations suivantes:

1. |ab| 0 si, et seulement si a b.

2. |ab| |ba|.
3. |ac| |ab| + |bc|. L’inégalité triangulaire.)
4. L’application x |ax| restreinte à n’importe quelle demi-droite d’extrémité a est

une surjection de cette demi-droite sur R 0. Je n’utilise pas cet axiome avant la
définition de la demi-droite déf. 3).)

5. C{abcd} 0.

6. Il existe trois points p, q, r tels que C{pqr} 0.

Alignements

Le deuxième concept après la distance est celui d’alignement qui caractérise les triples de

points réalisant l’égalité dans l’inégalité triangulaire.

Définition 2 Un triple ordonné abc) de points distincts est un alignement si |ab|+|bc|
|ac|. On dit que b est situé entre a et c. Trois points a, b, c sont colinéaires si l’une des

permutations de abc) est un alignement.

Dans un alignement abc), l’ordre des points est important. Si abc) est un alignement,
cba) en est un aussi, mais les autres permutations de abc) n’en sont pas. Les trois points

sont en effet distincts et le système |ab|+|bc|-|ac| |ac|+|bc|-|ab| 0 par exemple)
donne |bc| 0 et b c axiome 1).
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Trois points a, b, c sont colinéaires si leurs distances mutuelles annulent l’un des facteurs
de C{abc}. J’utilise ces facteurs pour définir la droite et ses intervalles.

Définition 3 Etant donné deux points a et b,

1. la droite Dab est l’ensemble des points x tels que C(abx) 0,
2. la demi-droite fermée) D[ab8 d’extrémité a passant b est l’ensemble des points x

tels que D(ab,x) 0,

3. le segment S[ab]
est constitué de a, b et de l’ensemble des points x situés entre a et b.

L’axiome 4 se place logiquement ici. La restriction de l’application distance à une
demidroite est en fait bijective. La preuve de cette proposition illustre l’emploi du LCF.

Proposition 2 L’application x |ax| restreinte à une demi-droite d’extrémité a est
injective.

Preuve. Soit x et y deux points de la demi-droite D[ab8
tels que |ax| |ay|. On élimine

|ay|, |bx| et |by| dans le système

C{abxy} 0 axiome5),

D(ab,x) 0, D(ab,y) 0 x,y D[ab8),

|ax|- |ay| 0 hypothèse),

ce qui donne |ab|
2

|xy|
4 0. Donc |xy| 0 et l’on termine avec l’axiome 1.

On a donc une bijection de D[ab8 sur les réels non négatifs, qui s’étend naturellement à

une bijection de Dab sur l’ensemble des réels.

Définition 4 Soit Dab une droite et x un point arbitraire de Dab. J’appelle coordonnée
linéaire de x relativement au repère ab), notée x(ab) ou simplement x, le nombre réel

|ax|/|ab| si x D[ab8, le nombre -|ax|/|ab| sinon.

Une demi-droite est déterminée par son extrémité et l’un de ses points, n’importe lequel.
De même, une droite est déterminée par deux quelconques de ses points.

Proposition 3

1. Si c, c a, appartient à la demi-droite D[ab8, alors D[ab8 D[ac8.
2. Si c, c a, appartient à la droite Dab, alors Dab Dac.

Preuve. Demi-preuve de 1. En éliminant |bc| et |bx| dans le système

C{abcx} D(ab,c) D(ab,x) 0,

on obtient |ab|2D2(ac,x) 0. Donc D[ab8 D[ac8.
Demi-preuve de 2. En éliminant |bc| et |bx| dans le système

C{abcx} C{abc} C{abx} 0,

on obtient |ab|4C2{acx} 0. Donc Dab Dac.

Les inclusions réciproques se démontrent de la même façon.
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Angles, triangles, mesures

Le troisième concept important est celui d’angle et celui de sa mesure. Viennent ensuite le
triangle et son aire.

Définition 5 J’appelle angle de sommet b tout triple ordonné abc) de points distincts et

triangle de sommets a, b, c tout triplet non ordonné {abc} de points distincts.

Je suppose connues les fonctions trigonométriques définies par leurs séries), leurs
inverses, ainsi que leurs propriétés élémentaires. [5] est une bonne réference. Je définis la
mesure des angles via le théorème du cosinus [1].
Je m’assure d’abord que ces mesures sont des réels positifs, comme il se doit:

Lemme 4

1- 2 abc) -C{abc}

4|ab|
2
|bc|

2
0.

Preuve. L’égalité résulte d’un calcul avec le LCF, l’inégalité de l’axiome 3 et de la
factorisation de C{abc}.

Définition 6 La mesure de l’angle abc), notée µ(abc), est le nombre réel arccos( abc)).

Puisque -1 abc) 1 lemme 4), les mesures d’angle appartiennent à l’intervalle

[0,p]. Pour toute fonction f j’abrégerai au besoin f µ(abc)) par f abc).

Du point de vue axiomatique, c’est l’inégalité triangulaire qui rend non positif le déterminant

C{abc}, ouvrant la voie à la définition de l’aire.

Définition 7 L’aire du triangle {abc}, notée s{abc}, est le nombre réel 14(-C{abc})
1/2.

On pourrait à ce stade traiter toute la trigonométrie du triangle et les cas d’isométrie de

deux triangles. N’en faisons pas trop.

Proposition 5

cos(abc) abc) |ab|
2

+ |bc|
2 - |ac|

2

2|ab||bc|
sin(abc) (-C{abc})

1/2

2|ab||bc|
Preuve. Ces formules résultent de la définition 6 et du lemme 4.

Théorème 6 Soit {abc} un triangle. Alors

1. |ac|
2

|ab|
2

+ |bc|
2- 2|ab||bc|cos(abc) théorème du cosinus);

2. µ(cab) + µ(abc) + µ(bca) p somme des angles du triangle).

Preuve. Le point 1. est une conséquence immédiate de la proposition 5.

Preuve de 2. La proposition 5 et une factorisation par le LCF donnent

cos(cab) cos(abc) + cos(bca) sin(cab) sin(abc).

Le théorème d’addition du cosinus donne alors

cos(µ(cab) + µ(abc))= -cos(bca)

ou encore µ(cab) + µ(abc) p -µ(bca).
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Additivité des mesures

Les propriétés fondamentales de l’aire et des mesures d’angle se résument en une configuration

que j’appelle configuration de Stewart Fig. 1), constituée d’un alignement et d’un
quatrième point. J’ai besoin d’un lemme:

Lemme 7 Soit abc) un alignement et x un quatrième point. Alors S(abc,x) 0.

Preuve. On élimine |ac| dans le système C{abcx} 0, |ab|+|bc|-|ac| 0, ce qui donne
S2(abc,x) 0.

x

a b c

Fig. 1

Théorème 8 Soit abc) un alignement et x un quatrième point. Alors

1. µ(bax) µ(cax).

2. µ(abx)+ µ(cbx) p µ(abc).

3. µ(axb)+ µ(bxc) µ(axc).

4. s{axb}+ s{bxc} s{axc}.

Preuve de 1. et 2. Les numérateurs de cos(bax)-cos(cax) et de cos(abx)+cos(cbx) sont

±S(abc,x). Ils sont donc nuls, puisque abc) est un alignement.

Preuve de 3. La somme des angles des triangles abx et cbx vaut 2p. Comme µ(abx) +
µ(cbx) p, on en déduit que µ(axb) + µ(cxb) p -µ(bax)-µ(bcx). La somme des

angles dans le triangle acx donne µ(axc) p - µ(cax) - µ(acx). On termine avec le
point 1. de ce théorème: µ(bax) µ(cax) et µ(bcx) µ(acx).

Preuve de 4. Avec la relation de Stewart S(abc,x) 0, j’élimine séparément 1) |ax|2, 2)

|cx|
2 et 3) |bx|

2 dans le numérateur de cos(axb)cos(bxc)- cos(axc).

J’obtiens

1) cos(axb) cos(bxc)- cos(axc)
4 |ab|

|ax||bx|
2
|cx|

* |bc| *
s2

{bcx},

2) cos(axb) cos(bxc)- cos(axc)
4 |bc|

|ax||bx|
2
|cx|

* |ab| *
s2

{abx},
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3) cos(axb) cos(bxc)- cos(axc)
4

* |ab||bc| s
2

|ax||bx|
2
|cx| |ac|

2 * {acx}.

En comparant les membres de droite de ces expressions, qui sont égaux, on voit que

s {abx} : s{bcx} : s{acx}) (|ab| : |bc| : |ac|) (|ab| : |bc| : |ab| + |bc|)
s {abx} : s{bcx} : s{abx} + s{bcx}).

Comme µ(abc) est indépendant du choix de a D[ba8 et de c D[bc8, on peut définir
l’angle des demi-droites D[ba8, D[bc8 et sa mesure µ(abc).

Retour à l’axiomatique

Pour valider la nouvelle axiomatique, j’ai vérifié que ses axiomes impliquent les quinze
axiomes plans de [4] traduits en annexe. Je laisse de côté la réciproque.

Tous les axiomes de Hilbertconcernant les alignements, c’est-à-dire les axiomes HI1, HI2,
HI3, HII1, HII2 et HII3 se prouvent à l’aide de la coordonnée déf. 4).
Je démontre l’axiome de Pasch HII4 comme corollaire du théorème de Ménélaüs,
luimême corollaire d’un théorème sur les aires. Il faut pour cela généraliser le théorème du
cosinus sans preuve) et définir le rapport de section.

Lemme 9 Soit deux droites B, C ayant un point commun a, repérées respectivement par
ab) et ac), et soit := µ(bac). Si p est un point de B de coordonnée p p(ab) et q un

point de C de coordonnée q q(ac), alors

|pq|
2 p2|ab|

2
+ q2 |ac|

2 - 2pq|ab||ac| cos..

Définition 8 Soit Dab une droite de repère ab) et p, q, r trois points distincts de Dab.

Alors le rapport de section ou rapport) de r relativement au couple pq), noté pq,r), est

le nombre réel

pq,r) :=
r - p

r - q

Relevons que le rapport pq,r) ne dépend pas du choix du repère de Dab et qu’il est négatif
exactement si prq) est un alignement.

Théorème 10 de Ménélaüs généralisé) Soit {abc} un triangle, p, q, r trois points situés
respectivement sur les droites Dbc, Dca, Dab, et soit := bc,p), µ := ca,q), :=
ab,r) les rapports de section respectifs que les points p, q, r déterminent avec les côtés du

triangle {abc}. Alors l’aire du triangle {pqr} vaut

s{pqr} s{abc}
|.µ. - 1|

| - 1||µ- 1|| - 1|

Preuve. ([3]) On exprime successivement en fonction des côtés du triangle {abc}:
– les cosinus des angles du triangle {abc},
– la coordonnée linéaire de p relativement au repère bc) et relativement au repère

cb):
p1 ./( - 1), p2 1/(1 -
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– de même, les coordonnées linéaires de q relativement à ca) et relativement à ac)
et celles de r relativement à ab) et à ba),

– avec le théorème du cosinus généralisé, |pq|2, |qr|
2 et |rp|2,

– C{pqr} |qr|
4

+ |rp|
4
+ |pq|

4- 2|rp|
2

|pq|
2 - 2|pq|

2

|qr|
2- 2|qr|

2
|rp|2.

On trouve avec le LCF.

C{pqr} C{abc}
.µ.- 1)2

- 1)2(µ- 1)2( - 1)2

Corollaire 11

1. Les points p, q, r sont colinéaires si, et seulement si .µ. 1 le théorème de

Ménélaüs).

2. Les côtés du triangle {abc} coupent une droite ne contenant aucun de ses sommets
en 0 ou 2 points l’axiome de Pasch).

Preuve. On contemple le facteur .µ. - 1), et les signes de µ, si .µ. 1.

Les axiomes HIII1, HIII2 et HIII3 se prouvent en définissant la longueur d’un segment
comme la distance de ses extrémités et en remplaçant la congruence par l’égalité des
longueurs.

L’axiome HIII4 est plus difficile; il faut définir le demi-plan [4].

Définition 9 Soit D une droite et a un point hors de D. Le demi-plan fermé de frontière D
ne contenant pas a est l’ensemble des points x tels que le segment fermé S[ax]

coupe D.

Si l’on remplace dans cette définition a par un point du même côté de D, les demi-plans
définis restent les mêmes, à cause de l’axiome de Pasch.

Pour prouver l’axiome HIII4, je choisis ad libitum une demi-droite D[ab8, un angle a
[0,p] et l’un des demi-plans de frontière Dab. Je construis ensuite une demi-droite de

sommet a contenue dans le demi-plan choisi et formant avec D[ab8 un angle de mesure a.
Voyons le détail Fig. 2):

c

a b

p

b

c

p

p - a a

Fig. 2
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– C’est seulement à ce stade qu’il faut faire appel à l’axiome 6: il existe un point p
hors de la droite Dab.

– Si p n’est pas dans le demi-plan choisi, je le remplace par un point p de la
demidroite D[p b8 situé au-delà du point b. Sinon, j’appelle p le point p

– Si a µ(pab), je choisis sur le segment S[bp]
l’unique point c tel que µ(bac) a

voir le lemme 12 infra).
– Si a µ(pab), je le rebaptise a pour la clarté du dessin. Je remplace ensuite b par

un point b tel que bab soit un alignement, et a par p - a Puis je reprends la
construction précédente.

– La demi-droite cherchée est D[ac8 ou D[ac 8
Lemme 12 Avec les notations précédentes, les applications

D[bp8 -. R 0 -. [0,p - µ(pba)[
x - |bx| - µ(bax)

et leur composée f : x µ(bax) sont bijectives.

Preuve. Il suffit de s’occuper de la composée f Soit bxx un alignement sur la
demidroite D[bp8. Comme les points a, x, x ne sont pas colinéaires, ni C{axx } ni s{axx } par
conséquent) ne sont nuls:

0 s{axx }
1

2 |ax||ax |sin(xax

12

Donc sin(xax et µ(xax sont strictement positifs. Avec le théorème 8.3, il s’ensuit que

f est strictement croissante. Elle est aussi continue car si |xx | < |ax|, alors

1- cos(xax |xx |
2 - (|ax|- |ax |

2

2|ax||ax |
|xx |

2

2|ax|(|ax|- |xx |
< |xx |

|ax|

2

et cos(xax tend vers 1 quand |xx | tend vers 0.

Il reste l’axiome des parallèles HIV1 et les axiomes de continuité HV. Suivant une
remarque de [4], l’axiome HIV1 est une conséquence des autres axiomes et du théorème 6.2.
Les axiomes HV découlent de «mon» axiome 4 et des propriétés de R.

Annexe: Les quinze axiomes plans de Hilbert

Le cadre de l’axiomatique est un ensemble P de points, un ensemble D de droites et une

relation P × D {oui, non} appelée relation d’incidence. L’incidence est exprimée par
les mots «passe par» «contient» «se trouve sur» et caetera.

L’axiomatique originale de Hilbert est celle de la géométrie tridimensionnelle. La dimension

3 est fixée par les axiomes HI7 et HI8. Pour limiter la dimension à deux, il suffit
de supprimer les axiomes HI4, HI5, HI6, HI7, HI8 et les références au(x) plan(s) dans

l’axiome de Pasch HII4, ainsi que dans HIII4 et HIV1.
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Voici les axiomes de Hilbert:

HI: Axiomes d’incidence

1. Par deux points donnés passe une droite au moins.

2. Par deux points donnés passe une droite au plus.

3. Une droite contient au moins deux points.
Il existe au moins trois points non colinéaires.

HII: Axiomes d’ordre
Il existe une relation alignement P3 {oui, non}. Si la valeur du triple de points abc) est

oui, on dit que b est situé entre a et c.

1. Si un point b se trouve entre un point a et un point c, alors a, b, c sont colinéaires et

b se trouve aussi entre c et a.

2. Etant donné deux points a et c, il existe au moins un point b de la droite Dac tel que
c soit situé entre a et b.

3. Etant donné trois points colinéaires, l’un d’entre eux au plus est situé entre les deux
autres.

4. Axiome de Pasch.) Soit a, b, c trois points non colinéaires et D une droite ne conte¬

nant aucun de ces points. Si D contient un point du segment S[ab], elle contient aussi
un point entre a et c ou entre b et c. Le ou n’est pas exclusif.

Définitions

1. Le segment S[ab]
est constitué de a, b et de l’ensemble des points x situés entre a et

b.
2. La demi-droite D[ab8

est constituée du segment S[ab]
et de l’ensemble des points x

tels que b est situé entre a et x.
3. La réunion H K de deux demi-droites distinctes H, K de même sommet a est un

angle. On désigne cet angle par HK ou par hak, h étant un point de H et k un
point de K.

4. Un ensemble fini de n points est une figure. Une figure détermine 12 n(n - 1) seg¬

ments et 12 n(n - 1)(n - 2) angles. Ce sont les segments et les angles de la figure.

HIII: Axiomes de congruence

La congruence est une relation d’équivalence notée entre les segments et entre les
angles, étendue ensuite aux figures. Deux figures F et F sont congruentes on écrit F F

s’il existe une bijection de l’une vers l’autre et si tous les segments et tous les angles
déterminés par des points correspondants sont congruents.

1. Etant donné un segment S[ab] et une demi-droite D[a c 8 il existe au moins un point
b sur D[a c 8 tel que S[ab] S[a b ]

2. Les congruences S[a b | S[ab]
et S[a b ] S[ab]

impliquent S[a b ] S[a b ]
3. Soit b un point entre les points a et c et b un point entre les points a et c Si

S[ab| S[a b ] et S[bc] S[b c ] alors S[ac] S[a c ]
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4. Etant donné un angle H K, une demi-droite H et l’un des demi-plans déterminés
par H il existe exactementune demi-droite K contenue dans ce demi-plan telle que

H K H K
5. Si S[ab] S[a b ] S[ac] S[a c ]

et bac b a c alors abc a b c

Deuxième cas d’égalité)

HIV: L’axiome des parallèles

1. Etant donné une droite D et un point a, il existe au plus une droite passant par a et

ne coupant pas D.

HV: Axiomes de continuité

1. Soit deux segments S[ab] et S[cd]. Il existe un entier naturel n tel que n reports du
segment S[cd] sur la demi-droite D[ab8 à partir du point a conduisent à un point situé
au-delà du point b. Axiome archimédien)

2. Si un ensemble de points d’une droite vérifie tous les axiomes précédents à l’ex¬
ception évidente de HIV1), cet ensemble contient tous les points de cette droite: on
ne peut pas rajouter de points sans violer l’un des axiomes. Axiome de complétude
linéaire)
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