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A new line associated with the triangle
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Let ABC be any triangle in the Euclidean plane E with side-lengths a, b, and ¢, and with
angles A, B, and C, in the standard order. Let X, Y, and Z be points on the sidelines BC,
CA, and AB, respectively. A fairly well-known theorem of Ceva states that the cevians
AX, BY,and CZ are concurrent if and only if the cevian relation

(BX)(CY)(AZ) = —(CX)(AYN(BZ) (1)
holds, where UV denotes the directed distance between the points U and V. Here, a

cevian is a line that joins a vertex to a point on the opposite side. Less known is the fact
that the perpendiculars erected from the points X, Y, and Z on their respective sides, as

Fillt man von einem Punkt P aus die Lote auf die drei Seiten eines Dreiecks ABC,
so bestimmen die Fusspunkte X, Y, Z auf diesen Seiten die entsprechenden Seitenab-
schnitte BX, CY, AZ. Es stellt sich heraus, dass der geometrische Ort aller Punkte P,
fiir welche diese Seitenabschnitte sich als Linearformen der Lingen a, b, ¢ der Drei-
ecksseiten ausdricken lassen, die Gerade durch die Zentren 7 und © des In- bzw. des
Umbkreises ist. Dies erginzt die Ergebnisse, dass die Gerade durch 7 und den Schwer-
punkt G des Dreiecks der geometrische Ort der Punkte ist, deren baryzentrische Ko-
ordinaten projektiv linear in a, b, ¢ sind und dass die Eulergerade durch O und ¢ der
geometrische Ort der Punkte ist, deren baryzentrische Koordinaten projektiv linear in
tan A, tan B, tan C sind. Ausserdem generieren die Autoren durch Untersuchung der
Geraden durch Z, O und G zusitzliche spezielle Punkte des Dreiecks ABC, die im
Kimberling-Katalog der ,.Dreieckszentren™ nicht qufgefiihrt sind.
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shown in Fig. 1, are concurrent if and only if the condition
(BX)? + (CY)? +(AZ)* = (CX)* + (AY)? + (BZ)? 2)
holds; see, for example, [13] and [7, Theorem 6.3.1, p. 96].

Following [22], a center or a cenfer function is defined to be a mapping that assigns to
every non-degenerate triangle in the Fuclidean plane E a point in E in a manner that is
symmetric and that respects isometries and dilations. More precisely, a center function Z
satisfies the following properties:

(i) Z(o(A),o(B),o(C)) = Z(A, B, C) for all permutations ¢ on {A, B, C}.
(i) Z(p(A), p(B), p(C)) = ¢(Z(A, B, C)) for all isometries ¢ of E.
(iii) Z(MA,AB,AC) = ALZ(A, B, C) for all real numbers A.

Let P be a center of triangle ABC, and let X, ¥, and Z be the orthogonal projections of P
on the sidelines BC, C A, and A B, respectively. If the lengths BX, CY, and AZ are linear
forms in a, b, and ¢, then it follows fairly easily from properties of center functions that
the directed lengths of the segments B X, etc., are given by

b
BX:%+r(b—c), CY:§+t(c—a), AZ:%+t(a—b) 3
a b c
CXza—r(b—c), AYzz—t(c—a), BZzz—t(a—b) 4)

for some € R; see the proof of [1, Theorem 1]. Plugging these values in (2), we obtain
what, unexpectedly, turns out to be an identity that holds for all ¢; namely the identity

(% +1(b — c))2 + (g - — a))2 + (% +1{a - b))2

= (% b c))2 + (g (e — a))2 + (% g - b))z.
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Thus every ¢ € R defines a center P; in the manner described. Specifically, given € R,
we locate the points X, ¥, and Z on the sidelines according to (3) and (4), and we let £; be
the point of concurrence of the perpendiculars erected from these points on the respective
sidelines,

The centers Py just defined were investigated in [3, Section 9]. There, the authors noted that
the centers corresponding to the valuest = 0,7 = —1/2 and f = 1/2 are the circumcenter,
the incenter, and what is referred to in [22] as the Bevan point, and they raised the following
question:

Question. What is the curve that the centers P; trace as r varies?

In the theorem below, we answer this question and we prove that the curve in question is,
amazingly, a straight line. We also consider those centers for which the angles of XY Z
are linear forms in the angles of ABC.

Before stating and proving the main theorem, we remind the reader that the Gergonne
(respectively, Nagel) center of triangle ABC is the point of concurrence of the cevians
AA’, BB, and CC’, where A’, B', C’ are the points where the incircle (respectively, the
excircles) touch(es) the sides of ABC. That such cevians are concurrent follows from the
cevian condition (1). We also point out that the cevian analogue to the above question has
an extremely different answer. Specifically, it is shown in [1, Theorem 1] that the only
centers of ABC through which the cevians AA’, BB’, CC’ are such that BA’, CB’, and
AC" are linear forms in @, b, and ¢ are the centroid, the Gergonne center, and the Nagel
center. This heavy contrast stems from the fact that the cevian condition (1) takes the form

(% -l—t(b—c))(%-l—t(c —a))(% +ia —b))

— (% —t(b—C))(g—l(C—d))(% —t(a—b))

and has three solutions only, namely t = —1/2,¢ = 0, and ¢ = 1/2. Similarly, the only
centers for which ZBAA’, Z/CBB’, and ZACC’ are linear forms in A, B, and C are the
circumcenter, the incenter, and the orthocenter, and the only centers for which ZAC’'B’,
ZBA'C’, and ZCB’A’ are linear in A, B, and C are the centroid, the orthocenter, and the
Nagel center; see [1, Theorem 2] and [2, Theorem 7]. Similar issues are addressed in [17]
and [4].

Theorem. Let ABC be a non-degenerate triangle with side-lengihs a, b, and ¢ in the
standard order. For a point P in the plane of ABC, let X, Y, and Z be the projections of
P on the sides BC, CA, and AB, respectively. Then the centers for which BX, CY, and
AZ are linear forms in a, b, and ¢ form the straight line that joins the circumcenter and
the incenter.

Proof. As seen earlier, the centers in question are precisely the centers P = P, whose
projections X = X;, Y = Y, and Z = Z; on the sides BC, CA, and AB satisty (3) and
(4) for some .
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Using the lengths of XB = X; B and XC = X, as given in (3) and (4), we write Xy as a
convex combination

Xt:é[(%+t(b—c))c+(%—r(b—m)B]

of the points B and C. Multiplying by 24 and simplifying, we obtain
20Xy =a(C+ B)+2t(h —c)(C — B). (5

Since P — X; is perpendicular to C — B, it follows that Py - (C — B) = X;- (C — B). Here,
we have treated points in the plane as position vectors and we have used the ordinary scalar
product. Without loss in generality, we shall assume that the circumcenter Py of ABC lies
at the origin O and that its circumradius is 1. Then

2a P, - (C—B) = 2aX,-(C—B)
= @W@C+B)+2t(b—c)(C—DB))-(C—DB), by(5)
= a(C-C—B-B)y+2tb—c)(C—B)-(C—B)
= 2tb— c)az, because ||C|| = ||B]||=1and ||C — B| = a.

From this and symmeltry, we conclude that

P (C=B)=talb—c), P,-(A-C)Y=tb(c—a), P,-(B—A)=1tcla—>b). (6)
We shall now compute the distance || Py — Poll = || P || between P; and the circumcenter
Py and see that it is a constant multiple of |£].

To compute || P ||, welet D =[Py C—B A —(]bethe?2 x 3 matrix whose columns
represent the coordinates of the vectors P, C — B, and A — C (with respect to some basis),
and we consider the 3 x 3 matrix DY D, where DT denotes the transpose of D. Since
rank(D) < 2 (in fact = 2, since C — B and A — C are linearly independent), it follows
from the general fact rank(U V) < rank(U) that rank(D7 D) < 2 and that det(DT D) = 0.
Therefore

0 = det(D' D)
=det([P C-B A-C]'[R C-B A-C])

PP P - (C—-B) P (A-0C)
=det| /- (C—-B) (C-B)- (C—-B) (C—-B)-(A-C)
F+lA—-E€) A—-C)-1C—-B) lA—-C)-A—-C)

PP tab —c) tb(c—a)

=| ta(b —c) a? 0 , by (6) and where Q0 = (C — B) - (A — C)
th(c —a) 0 b?

B ,| a? Q talb—c¢) O talb —c) a?

= || P 0 B ‘—za(b—c) thic—a) b2 +th(c —a) thic —a) Q

_ 2| @* 0 2 atb—c) Q 2 atb —ec) a?

= || P 0 b2 ‘—ta(b—c) blc—a) b2 +t°b(c —a) bic—a) O




A new line associated with the triangle 169

The right-hand side has the form || 7 ||?G — t>H, where G and H do not depend on f.
Therefore | P;||? = t2F, where F does not depend on ¢, and hence the distance between
P and Py = 0 is a constant multiple of |f|. Since the length of the projection of the
segment P; Py on BC is also a constant multiple of |¢], being nothing but |£||b — ¢|, we
conclude that the absolute value of the slope of P; Py, relative to BC, is independent of 7.
It follows that the slope of P; Py is independent of £. In fact, if b > ¢ > a, then X; moves
towards C and ¥; towards A, showing that the slope is positive and hence does not change
sign. Thus P; moves on a straight line, necessarily the line joining the circumcenter Py
and the incenter P_1 /. O

Remarks. (i) To find a formula for || P ||, one uses the Law of Cosines to obtain
20=2(C—B) - (A—C)=—2abcosC = c* — g% — b?,

and then plugs this in the determinant above. The result should of course be multiplied by
the circumradius R to make up for our assumption that R = 1. In view of Euler’s formula
d? = R({R — 2r), where R is the circumradius,  the inradius, and 4 the distance between
the circumcenter and the incenter, one expects to get

1P )|? = 422 P_y o | = 46207 = 42 R(R — 2r).

(ii) Letting X, ¥, and Z be as in the theorem, one may consider those centers for which
the angles of the pedal triangle XY Z are linear forms in A, B, and C. Since

LLXY =/LZXP+ /YXP=/ZBP+ /YCP =/BPC — A,

it follows that these are precisely the centers P for which the angles ZBPC, ZCP A, and
ZAPB are linear forms in A, B, and C. These centers are the subject of study in [17],
where the curve they trace is called the Balaton curve and where the complex behaviour
of this curve is fully described.

(iii) Let the centroid, the circumcenter, and the incenter of AB C be denoted, respectively,
by G, O, and 7. It is shown in [4] that the locus of the centers of ABC whose barycentric
coordinates are projective linear functions in a, b, and c¢ is the straight line L(¢, 7). Tt
is also noted there that the Euler line L(G, @) is the locus of the centers of ABC whose
barycentric coordinates are projective linear functions in tan A, tan B, and tan C. It follows
that

LG, 7T) || BC <— 2a=Db+c, @)
LG, O)|| BC «<— 2tanA =tanB +tanC. (8)

A condition for L(QO, I) to be parallel to BC can be found by setting the slope of L(O, T)
equal to 0. More directly, we let r and R be the inradius and circumradius of ABC, and
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we see that

LO,T) || BC +

11111

the areas of triangles OBC and ZBC are equal
ra  R?sin2A

2 2
ra = 2R%sin Acos A

;
= cos A, because 2R =

sin A

CosA+cos B+ cosC — 1 =cos A, by Carnot’s formula [24]

cosB +cosC =1.

Thus we have proved that

For earlier references related to (7), see [20, Problem 82, p. 209], [8], [10], [14], [25], and
[12]. For (8), see [15, Problem 9, p. 18], [11], and [6], where [6] also describes the locus of
A when ABC is a triangle having a fixed base B C and satisfying 2 tan A = tan B 4 tan C.
For (9), see [26] and [19], where [19, Corollary 4] gives another geometric characterization

L(O,T) || BC <= cosB +cosC = 1.

of the condition L(O, 1) || BC.

\
\ i)
\

\
L(G,O) v \VL(OD C
\

\
AT
A

\\\
\

Fig. 2
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(iv) In [28, Exercise 5.7], the area of the triangle GOZ is given by the elegant formula

stb—cyc—a)a—->)

[GOL] = 24K

where s is the semiperimeter and K the area of ABC. An equivalent formulais given in [5,
Section 4.4, pp. 105-106]. Tt follows that two (and hence all) of the three lines L(G, O),
L(G, 1), and L(O, 1) coincide if and only if ABC is isosceles. A more geometric proof
is given in [21, Section 11, problem 4, pp. 142-144]. Also, a generalization to higher
dimensional orthocentric simplices is given in [18].

(v) The lines L(G, O), L(G, 1), and L(O, 1), together with several centers that they
contain and the relative locations of these centers, are shown in Fig. 2. This figure shows
the similarity between the Euler line L(G, O) and its rival (G, 7) and locates them as two
medians of a triangle two of whose vertices are the orthocenter H and the Nagel center AV,
The third vertex is labelled X and it does not seem to be a known center. This configuration
points to two more centers, other than X', that are denoted by Y (the midpoint of HA) and
Z (the midpoint of OT). We wonder whether these centers as well as the many lines that
appear in this configuration are not already catalogued in [22].

(vi) According to [23], the ling L(QO, T) passes through 68 centers that include the Bevan
point X4 and the points X46, Xs6, X165, and X3s. The trilinear equation of L(QO, 7) is

(cosB—cosCla+(cosC —cosA) B+ (cosA—cosB)y =0.

In view of the fact that (cosB — cosC, cosC — cosA, cosA — cosB) are trilinear
coordinates of X g9, L(O, T) is the central line that should be denoted by Lg9. For more
on central lines, see [27].

In the two recent papers [16] and [19], the line L(O, 7) is called the OI-ling, and some of
its properties are explored. According to [16], the point X57 also lies on the O I-line. It is
also proved in [19, Lemma 2] that the orthocenter of the intouch triangle, or equivalently
the orthocenter of the cevian triangle of the Gergonne point, lies on the O7-line. One
wonders whether this center is already catalogued in [22] and [23].
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