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Flachen mit lauter Nabelpunkten

Arno Pauly

Arno Pauly studiert Informatik und Mathematik an der Fernuniversitait Hagen und
Physik an der Albert-Ludwigs-Universitit in Freiburg. Sein Informatikstudium hat er
im Jahr 2007 mit dem Master abgeschlossen.

Zweck des Folgenden ist ein kurzer Beweis des Satzes, dass jedes zweimal stetig diffe-
renzierbare Flichenstiick im R?, welches nur aus Nabelpunkten besteht, in ¢iner Ebene
oder einer Sphére enthalten ist. Das Resultat ist bekannt und war Gegenstand einer Arbeit
von Philip Hartman [2]. Es hat aber nicht Eingang in die neuere Lehrbuchliteratur gefun-
den (vgl. [3], Problem auf S. 51), wohl weil der iibliche kurze Beweis dreimalige stetige
Differenzierbarkeit erfordert. Die Frage ist von einigem Interesse, da von ihr die Diffe-
renzierbarkeitsvoraussetzungen im geometrischen Beweis des Satzes von Liouville liber
konforme Abbildungen des dreidimensionalen Raumes abhéngen.

1 Differentialgeometrie der Flichen

Wir erinnern zunéchst an einige Grundbegriffe aus der Flichentheorie. Fiir Einzelheiten
sei etwa auf [3] verwiesen. Im Anschluss an GauB werden wir Flichen M C R? als pa-
rametrisiert betrachten. Ein parametrisiertes Flichenstiick der Klasse C*k ist eine k-mal
stetig differenzierbare Abbildung f : U — R?, deren Differential Df (1) an jeder Stelle
u € U den Rang zwei hat. Dabei ist U eine offene Teilmenge des R?, der Parameterbereich

Die Beschreibung von zweidimensionalen Fldchen in dreidimensionalen Raumen
gehort zu den origindren Aufgaben der Differentialgeometrie. Eine wichtige Figen-
schaft einer Flache ist ihre Kriimmung. Diese hangt prinzipiell sowohl von dem be-
trachteten Punkt als auch von der Richtung ab. In diesem Beitrag gibt der Autor einen
elementaren Beweis des folgenden Satzes von P. Hartmann aus dem Jahr 1947, dass
namlich eine Fliache in der Ebene oder einer Sphire enthalten sein muss, falls die
Kriimmung an jedem Punkt unabhidngig von der Richtung ist. Im Unterschied zum
wohlbekannten kurzen Beweis dieses Satzes, der dreimalige stetige Differenzierbar-
keit erfordert, benotigt der Autor fiir seinen hier gegebenen elementaren Beweis nur
die zweimalige stetige Differenzierbarkeit.
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von f. Wir werden im Folgenden f als injektiv voraussetzen, so dass die Parameterwerte
u = (uy, uz) den Punkten p € M = f(U) eindeutig entsprechen.

Schreibt man fiir die partiellen Ableitungen d/du11 und @/9u, der Kiirze halber ¢y und 3,
dann sind aufgrund der Rangbedingung die Vektoren a1 f(#) und 9, f (u) fiir jeden Para-
meterwert # linear unabhéngig und spannen die Tangentialebene T, M C R? der Fliche
im Punkt p = f(u) auf. Man erhilt den (bis aufs Vorzeichen bestimmten) Einheitsnorma-
lenvektor v{(u) der Fliche im Punkt p als normiertes Vektorprodukt
1] x o2 f
V() = ——————(u).
[31f x o2 1|l

Die Abbildungv : U — R?, die jedem Punkt u € U den Normalenvektor v(u) zuordnet,
heiBt die Gaupabbildung von f.

Die Weingartenabbildung Ly . Ty M — Tp M der Fliche im Punkt p = f(u) ist definiert als
Ly =—Dvl)o (DSl

Sie ist ein selbstadjungierter Endomorphismus des zweidimensionalen Vektorraumes
oM < R?. Thre beiden Eigenwerte sind daher reell. Die Abbildung L, hat folgende geo-
metrische Bedeutung: Ist v € T, M ein Einheitstangentialvektor an die Flache im Punkt
p, dann ist das Skalarprodukt (L v, v) gleich der Kriimmung des Normalschniites der
Flache, den man erhilt, wenn man M mit der Ebene schneidet, die den Punkt p enthélt
und in Richtung der Vektoren v(u) und v liegt.

Die verschiedenen Einheitsvektoren v € 1, M ergeben verschiedene Normalschnitte
und damit im allgemeinen auch verschiedene Normalschnittkriimmungen. Als Haupi-
kriimmungen der Fliche im Punkt p bezeichnet man die kleinste und die groBte dieser
Kriimmungen. Es sind dies gerade die beiden Eigenwerte «1(p) und x2(p) von Lp. Damit
die Weingartenabbildung und die Hauptkriimmungen definiert sind, ist f als differenzier-
bar von der Klasse C? vorauszusetzen.

2 Nabelpunkte

Ein Punkt p € M heilit ein Nabelpunkt (oder Kreispunkr) von M, wenn k1(p) = k2(p)
gilt. Bezeichnet man diesen gemeinsamen Wert mit « (p), dann haben also alle Normal-
schnitte der Flache im Punkt p dieselbe Kriimmung «(p), und die Weingartenabbildung
ist ein Vielfaches der Identitét: Es gilt L, = «(p) 1, und damit, wenn man statt «(p) ctwas
ungenau « (1) schreibt,

Dv(u) = —k (1) Df (). (1)

Ziel der vorliegenden Arbeit ist nun ein Beweis des folgenden Satzes.

Satz. Sei M = f(U) ein parametrisiertes Flichenstiick der Klasse C? mit zusammen-
hiingendem Parameterbereich U. Wenn jeder Punki von M ein Nabelpunkt ist, dann ist M
in einer Sphdre oder einer Ebene enthalten.

Flédchen, die nur aus Nabelpunkten bestehen, werden gelegentlich als Nabelfldichen (umbi-
lical surfaces) bezeichnet. Der Satz besagt also, dass jede C2-Nabelfliche in einer Sphire
oder einer Ebene enthalten ist.
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Sowohl der Satz als auch der im Folgenden gegebene Beweis lassen sich ohne weiteres auf
den Fall einer n-dimensionalen Fliche der Klasse C2 im R**! (1 > 2) verallgemeinern.

Der wesentliche Punkt des Beweises besteht darin, zu zeigen, dass die Funktionk : # +—
k(u) auf U konstant ist. Ist das ndmlich der Fall, dann ergibt sich durch Integration der
Gleichung (1)

v=—kf+c¢

mit einem konstanten Vektor c. Falls k = 0, dann ist der Normalenvektor v konstant. Man
erhilt fiir j = 1,2
i {fivy=(d;f,v)=0
und damit die Ebenengleichung {f, v) = const. Ist aber ¢ 7~ 0, dann folgt
¢ v 1
21121
K

K

und das ist die Gleichung einer Sphiire. Es bleibt also nur die Konstanz von « zu beweisen.

Setzt man voraus, dass das Flichenstiick sogar differenzierbar von der Klasse C? ist, dann
ergibt sich die Behauptung wie folgt: Gleichung (1) besagt

NMv=—kdf, dhv=—kdf

Wendet man d» auf die erste, 9 auf die zweite dieser Gleichungen an und setzt mit
d1drv = drd1v die Resultate gleich, dann ergibt sich wegen der linearen Unabhingigkeit
der Vektoren 1 f und a2 f, dass d1x = dox = O ist. Also ist « konstant. Das Argument
versagt, wenn f nur von der Klasse C? ist.

3 Bewelis des Satzes

Es geniigt, zu zeigen, dass jeder Punkt pp € M ¢ine Umgebung in M besitzt, die in ¢iner
Ebene oder einer Sphire enthalten ist. Hinreichend kleine Umgebungen lassen sich nach
Monge als Graph einer Funktion iiber der Tangentialebene in pg parametrisieren. Man
kann daher annehmen, dass f die Gestalt

S, uz) = (uy, u, h(uq, un))

hat mit einer zweimal stetig differenzierbaren reellen Funktion . Dann ist

1 0
Df=(31f=32f)=(0 1)
ath  oah

und die Gau3abbildung

0 o 1
po NI XhS ——(4h, 0o, 1)
[|01f x 02 [ y

mit y = \/ 1 + (81h)2 + (82h)2. Setzt man diese Ausdriicke in die Matrixgleichung (1)
ein und vergleicht entsprechende Matrixelemente, dann ergibt sich

d(dh/y) =k, (h/y)=0, &(hh/y)=rK  d&@h/y)=0.
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Die vierte dieser Gleichungen besagt, dass di1#1/y nicht von up abhingt. Es ist also
h/y = a1(u1) mit einer stetig differenzierbaren Funktion ¢1. Ebenso folgt aus der zwei-
ten Gleichung dxh/y = an(u2). Die beiden iibrigen Gleichungen liefern nun

ay(ur) = aj(uz) = ki, uz),

und diese Gleichung zeigt, dass ¥ weder von #1 noch von i, abhingt, also konstant ist.

4 Bemerkungen

Der Satz geht zurtick auf eine der ersten Arbeiten zur Differentialgeometrie der Flichen,
Meusniers Mémoire sur la courbure des surfaces aus dem Jahre 1776. Das im dritten
Abschnitt gegebene Argument findet sich in dhnlicher Form bei Monge ([4, XIX, S. 172-
175]), ist aber offenbar in Vergessenheit geraten. Die von Hartman [2] verwendete Me-
thode beruht grob gesprochen darauf, dass es geniigt, wenn Integrabilitdtsbedingungen der
Differentialgeometrie in einem integrierten Sinne erfiillt sind. Hartman hat diesen Gedan-
ken in der Folge systematisch verwendet, um klassische Sdtze der Differentialgeometrie
unter schwicheren als den iiblichen Differenzierbarkeitsbedingungen zu beweisen. Das
Thema der Nabelfldchen ist von einem anderen Standpunkt erneut aufgegriffen worden.
Es geht dabei um die Frage der Stabilitit der Aussage des Satzes, genauer darum, ob eine
Fliache, deren samtliche Punkte in einem zu prizisierenden Sinne beinahe Nabelpunkte
sind, notwendig nahe bei einer Sphire liegt. Positive Resultate in dieser Richtung finden
sich bei Pogorelov ([5, S. 493]), Reshetnyak [6] und de Lellis und Miiller [1]. Als Nebenre-
sultat ergibt sich insbesondere, dass der Satz auch fiir Fldchen der Sobolevklasse w2 gilt.

Danksagung. Der Autor mochte sich herzlich bei Herrn Prof. Wolfgang Kiihnel sowie
dem anonymen Gutachter flr ihre sehr hilfreichen Kommentare bedanken.
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