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Flächen mit lauter Nabelpunkten

Arno Pauly

Arno Pauly studiert Informatik und Mathematik an der Fernuniversität Hagen und
Physik an der Albert-Ludwigs-Universität in Freiburg. Sein Informatikstudium hat er
im Jahr 2007 mit dem Master abgeschlossen.

Zweck des Folgenden ist ein kurzer Beweis des Satzes, dass jedes zweimal stetig
differenzierbare Flächenstück im R3, welches nur aus Nabelpunkten besteht, in einer Ebene
oder einer Sphäre enthalten ist. Das Resultat ist bekannt und war Gegenstand einer Arbeit
von Philip Hartman [2]. Es hat aber nicht Eingang in die neuere Lehrbuchliteratur gefunden

vgl. [3], Problem auf S. 51), wohl weil der übliche kurze Beweis dreimalige stetige
Differenzierbarkeit erfordert. Die Frage ist von einigem Interesse, da von ihr die
Differenzierbarkeitsvoraussetzungen im geometrischen Beweis des Satzes von Liouville über
konforme Abbildungen des dreidimensionalen Raumes abhängen.

1 Differentialgeometrie der Flächen

Wir erinnern zunächst an einige Grundbegriffe aus der Flächentheorie. Für Einzelheiten
sei etwa auf [3] verwiesen. Im Anschluss an Gauß werden wir Flächen M R3 als
parametrisiert betrachten. Ein parametrisiertes Flächenstück der Klasse Ck ist eine k-mal
stetig differenzierbare Abbildung f : U R3, deren Differential Df u) an jeder Stelle
u U den Rang zwei hat. Dabei ist U eine offene Teilmenge desR2, der Parameterbereich

Die Beschreibung von zweidimensionalen Flächen in dreidimensionalen Räumen
gehört zu den originären Aufgaben der Differentialgeometrie. Eine wichtige Eigenschaft

einer Fläche ist ihre Krümmung. Diese hängt prinzipiell sowohl von dem
betrachteten Punkt als auch von der Richtung ab. In diesem Beitrag gibt der Autor einen
elementaren Beweis des folgenden Satzes von P. Hartmann aus dem Jahr 1947, dass

nämlich eine Fläche in der Ebene oder einer Sphäre enthalten sein muss, falls die
Krümmung an jedem Punkt unabhängig von der Richtung ist. Im Unterschied zum
wohlbekannten kurzen Beweis dieses Satzes, der dreimalige stetige Differenzierbarkeit

erfordert, benötigt der Autor für seinen hier gegebenen elementaren Beweis nur
die zweimalige stetige Differenzierbarkeit.
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von f Wir werden im Folgenden f als injektiv voraussetzen, so dass die Parameterwerte
u u1,u2) den Punkten p M f U) eindeutig entsprechen.

Schreibt man für die partiellen Ableitungen ./.u1 und ./.u2 der Kürze halber 1 und 2,
dann sind aufgrund der Rangbedingung die Vektoren 1 f u) und 2 f u) für jeden
Parameterwert u linear unabhängig und spannen die Tangentialebene TpM R3 der Fläche

im Punkt p f u) auf. Man erh ält den bis aufs Vorzeichen bestimmten) Einheitsnormalenvektor

u) der Fläche im Punkt p als normiertes Vektorprodukt

u) 1 f × 2 f

1 f × 2 f
u).

Die Abbildung : U R3, die jedem Punkt u U den Normalenvektor u) zuordnet,
heißt die Gaußabbildung von f

Die Weingartenabbildung Lp :TpM.TpM der Fläche im Punkt p= f u) ist definiert als

Lp -(D.|u Df |u)-1

Sie ist ein selbstadjungierter Endomorphismus des zweidimensionalen Vektorraumes
TpM R3. Ihre beiden Eigenwerte sind daher reell. Die Abbildung L p hat folgende
geometrische Bedeutung: Ist v TpM ein Einheitstangentialvektor an die Fläche im Punkt
p, dann ist das Skalarprodukt Lpv, v gleich der Krümmung des Normalschnittes der
Fläche, den man erhält, wenn man M mit der Ebene schneidet, die den Punkt p enthält
und in Richtung der Vektoren u) und v liegt.

Die verschiedenen Einheitsvektoren v TpM ergeben verschiedene Normalschnitte
und damit im allgemeinen auch verschiedene Normalschnittkrümmungen. Als Hauptkr

ümmungen der Fläche im Punkt p bezeichnet man die kleinste und die größte dieser

Krümmungen. Es sind dies gerade die beiden Eigenwerte .1(p) und .2(p) von L p. Damit
die Weingartenabbildung und die Hauptkrümmungen definiert sind, ist f als differenzierbar

von der Klasse C2 vorauszusetzen.

2 Nabelpunkte

Ein Punkt p M heißt ein Nabelpunkt oder Kreispunkt) von M, wenn .1(p) .2(p)
gilt. Bezeichnet man diesen gemeinsamen Wert mit p), dann haben also alle Normalschnitte

der Fläche im Punkt p dieselbe Krümmung p), und die Weingartenabbildung
ist ein Vielfaches der Identität: Es gilt L p p) I, und damit, wenn man statt p) etwas
ungenau u) schreibt,

D.(u) - u) Df u). 1)

Ziel der vorliegenden Arbeit ist nun ein Beweis des folgenden Satzes.

Satz. Sei M f U) ein parametrisiertes Flächenstück der Klasse C2 mit zusammenh

ängendem ParameterbereichU. Wenn jeder Punkt von M ein Nabelpunkt ist, dann ist M
in einer Sphäre oder einer Ebene enthalten.

Flächen, die nur aus Nabelpunkten bestehen, werden gelegentlich als Nabelflächen umbilical

surfaces) bezeichnet. Der Satz besagt also, dass jede C2-Nabelfläche in einer Sphäre

oder einer Ebene enthalten ist.
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Sowohl der Satz als auch der im Folgenden gegebene Beweis lassen sich ohne weiteres auf
den Fall einer n-dimensionalen Fläche der Klasse C2 im Rn+1 n 2) verallgemeinern.

Der wesentliche Punkt des Beweises besteht darin, zu zeigen, dass die Funktion : u
u) auf U konstant ist. Ist das nämlich der Fall, dann ergibt sich durch Integration der

Gleichung 1)

- f + c

mit einem konstanten Vektor c. Falls 0, dann ist der Normalenvektor konstant. Man
erhält für j 1, 2

j f, j f, 0

und damit die Ebenengleichung f, const. Ist aber 0, dann folgt

f -
c 1

|.|
und das ist die Gleichung einer Sphäre. Es bleibt also nur die Konstanz von zu beweisen.

Setzt man voraus, dass das Flächenstück sogar differenzierbar von der Klasse C3 ist, dann
ergibt sich die Behauptung wie folgt: Gleichung 1) besagt

1. - 1 f, 2. - 2 f.

Wendet man 2 auf die erste, 1 auf die zweite dieser Gleichungen an und setzt mit
1.2. 2.1. die Resultate gleich, dann ergibt sich wegen der linearen Unabhängigkeit

der Vektoren 1 f und 2 f dass 1. 2. 0 ist. Also ist konstant. Das Argument
versagt, wenn f nur von der Klasse C2 ist.

3 Beweis des Satzes

Es genügt, zu zeigen, dass jeder Punkt p0 M eine Umgebung in M besitzt, die in einer
Ebene oder einer Sphäre enthalten ist. Hinreichend kleine Umgebungen lassen sich nach
Monge als Graph einer Funktion über der Tangentialebene in p0 parametrisieren. Man
kann daher annehmen, dass f die Gestalt

f u1, u2) u1, u2, h(u1, u2))

hat mit einer zweimal stetig differenzierbaren reellen Funktion h. Dann ist

Df 1 f, 2 f

1 0
0 1
1h 2h

und die Gaußabbildung

1 f × 2 f

||.1 f × 2 f || -
1

1h, 2h, 1)

mit := 1 + 1h)2

+ 2h)2. Setzt man diese Ausdrücke in die Matrixgleichung 1)

ein und vergleicht entsprechende Matrixelemente, dann ergibt sich

1(.1h/ 1(.2h/ 0, 2(.2h/ 2(.1h/ 0.
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Die vierte dieser Gleichungen besagt, dass 1h/ nicht von u2 abhängt. Es ist also

1h/ a1(u1) mit einer stetig differenzierbaren Funktion a1. Ebenso folgt aus der zweiten

Gleichung 2h/ a2(u2). Die beiden übrigen Gleichungen liefern nun

a1 u1) a2 u2) u1, u2),

und diese Gleichung zeigt, dass weder von u1 noch von u2 abhängt, also konstant ist.

4 Bemerkungen

Der Satz geht zurück auf eine der ersten Arbeiten zur Differentialgeometrie der Flächen,
Meusniers Mémoire sur la courbure des surfaces aus dem Jahre 1776. Das im dritten
Abschnitt gegebene Argument findet sich in ähnlicher Form bei Monge ([4, XIX, S. 172–
175]), ist aber offenbar in Vergessenheit geraten. Die von Hartman [2] verwendete
Methode beruht grob gesprochen darauf, dass es gen ügt, wenn Integrabilitätsbedingungender
Differentialgeometrie in einem integrierten Sinne erfüllt sind. Hartman hat diesen Gedanken

in der Folge systematisch verwendet, um klassische Sätze der Differentialgeometrie
unter schwächeren als den üblichen Differenzierbarkeitsbedingungen zu beweisen. Das

Thema der Nabelflächen ist von einem anderen Standpunkt erneut aufgegriffen worden.
Es geht dabei um die Frage der Stabilität der Aussage des Satzes, genauer darum, ob eine

Fläche, deren sämtliche Punkte in einem zu präzisierenden Sinne beinahe Nabelpunkte
sind, notwendig nahe bei einer Sphäre liegt. Positive Resultate in dieser Richtung finden
sich bei Pogorelov ([5, S. 493]), Reshetnyak [6] und de Lellis undMüller [1]. Als Nebenresultat

ergibt sich insbesondere, dass der Satz auch für Flächen der SobolevklasseW2,2 gilt.

Danksagung. Der Autor möchte sich herzlich bei Herrn Prof. Wolfgang Kühnel sowie
dem anonymen Gutachter für ihre sehr hilfreichen Kommentare bedanken.
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