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On the Miquel point of simplices

Lothar Heinrich

Lothar Heinrich promovierte im Jahr 1980 an der Technischen Universitit Dresden.
Von 1995-1997 war er Professor fiir Wahrscheinlichkeitstheorie und Statistik an der
Technischen Universitdt Bergakademie in Freiberg. Seit 1997 ist er Professor fiir Ma-
thematik an der Universitit Augsburg. Seine Forschungsinteressen liegen in der ange-
wandten Wahrscheinlichkeitstheorie (stochastische Geometrie, groie Abweichungen,
Grenzwertsatze, raumliche Statistik, probabilistische Zahlentheorie).

1 Introduction and preliminaries

If points are marked on each side of a planar triangle, one on each side (or on a side’s
extension), then the three circles (each passing through a vertex and the marked points
on the adjacent sides) are concurrent at a point M. This interesting fact was first proved
and published by Augueste Miquel [3] in 1838, see also Weisstein [4] for further details
and extensions. This result is well-known in planar geometry as Miquel’s theorem, and M
is called the Miguel poini. However, much less known (even amongst geometers) is the
following multidimensional generalization of Miquel’s theorem: If one point is marked on
each of the d(d + 1)/2 edges of a d-simplex

d d

SO0, X1, - Xa) = {Xo+ Y pui (6 =%0) 1Y < Lz 0i=1,...d] ()

Der Satz von Miquel ist ein klassisches Resultat der Elementargeometrie: Wird auf
jeder Seite eines gegebenen Dreiecks oder deren Verldngerung ein Punkt beliebig
festgelegt, und wird durch jeweils eine Ecke und die beiden markierten Punkte auf
den Nachbarseiten ein Kreis gezeichnet, so schneiden sich diese drei Kreise in einem
Punkt. In der vorliegenden Arbeit wird mit einfachen Hilfsmitteln der linearen Algebra
erstmals ein vollstindiger Beweis der Verallgemeinerung des Miquelschen Satzes auf
d-dimensionale Simplizes angegeben: Wird auf den d(d+ 1)/2 Kanten je ein Punkt be-
liebig markiert, dann haben die d 4 1 Kugeln, wovon jede durch je einen Eckpunkt und
die markierten Punkte auf den d in diesen Eckpunkt einlaufenden Kanten festgelegt
wird, genau einen Punkt gemeinsam.
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with positive volume and a sphere S; is drawn through each vertex x; and the points marked
on the d edges which meet in x;, then these d 4+ 1 spheres §;,7 =0, 1, ..., d, all meetin
apoint M which will also be called Miquel’s point in this note. By the best of the author’s
knowledge the only known proof of this result seems to be that given by Konnully [2].
Konnully’s proof is based on the fact that there exists a common orthogonal sphere with
respect to the so-called Miqguel spheres S, S1, ..., Sq and it is shown that the radius of
this sphere equals zero. However, such a sphere does not always exist even in the planar
case, namely if the unique point which has the same circle power w.r.t. three pairwise
non-concentric circles lies in the interior of each of these circles.

The aim of the present note is to provide a rigorous analytical proof which requires only
simple facts from analytic geometry and linear algebra. As a by-product we obtain a family
of upper bounds of Gram’s determinant (including Hadamard’s inequality) which seems
to be of interest in its own right. This auxiliary result in Section 3 is valid in all Euclidean
vector spaces.

It should be mentioned that an analogous construction with points marked on the (d — 1)-
faces (instead of on the edges) of the simplex does in general not yield a common point
that belongs to all spheres.

Let the points of the Fuclidean space R? be represented by column vectors x =
(x1,...,xq) having the Euclidean norm ||x|| = /{x, x), where the scalar product (-, -}
is defined by

y.2)=yYz=vi21+... +Yi2a

for
yz(YI,---aYd)f and Z:(ZI,'--,Zd)I.

Furthermore, we recall the well-known fact from analytic geometry that the circumsphere
of the d-simplex (1) consists of all points x € R satisfying the equation

x> lxoll® Ixal* -+ lxall®
X X0 X1 Xd = 0, (2)
1 1 1 1

where the left-hand side is for a (d + 2) x (d + 2) determinant.

Without loss of generality, we shall assume the vertex x¢ of the d-simplex (1) to coincide
with the origin o = (0, ..., 0) and the vertices x; = (xy;,...,xg:),i = 1,...,d, tobe
linearly independent vectors, i.e.

A:=detX # 0, 3)

where X = (xy, ..., Xq) denotes the quadratic matrix with columns xy, . .., Xq.

For 0 =i < j = d, let xj; be a fixed point on the edge joining the vertices xj and x;
being distinct from its end-points, i.e. Xjj = Xj + A;; (Xj — Xx;) for some A;; ¢ {0, 1}. For
notational ease put A;; =1 — A5 fori < jand Az =1/2fori =0,1,...,4d.
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In accordance with (2), the unique d-sphere Sy passing through the origin o and the points
Xo1. - - .. Xoq consists of all points x = (x1, ..., xg) € R satisfying

Ix|? 0 /’»81||X1||2 A%dHXdHZ
x1 0 Xoxyno oo AoaXig
Ap(x) = : : : : =0,
xa 0 hoxgr -+ hodXdd
1 1 1 cae 1

Since H?:o Argi # 0, the latter equation is equivalent to

2 2 2
Ix[1< Aorllxal® -+ AoallXall
B X11 X1d
= 0. 4
Xd ;¥ Xdd

Likewise, a point x = (x1,...,%q) € R4 belongs to the unique d-sphere §; containing
the vertex x; and the marked points Xg;, . . ., Xi—1i, Xj i+1. - - - » Xja 001 the adjacent edges if
and only if

IxI? X3l A3 Ixill®  l1xi 4 &gy (x5 — %31
X1 X1i hoiXti Xt + A (X1 — X14)
Aix) =1 : f : =0
Xq Xgi hoiXgi  Xai + hij(Xaj — Xai)
1 1 1 1

el Ldn{i)
fori=1,...,d.

By appealing to the well-known transformation rules for determinants we obtain

Ix[1? — A3 Ixill* (L + Ao lIxill* Ao lIxill® lIxi 4 Aij (x5 — x|
X1 — hpiXy; X1i 0 Xti + A (X15 — X14)

Ai(x) = (hoi — 1) : : : :
Xa — hoiXdi Xgi 0 Xgi + Aij(Xgj — Xai)

0 0 —1 1

Jell, . dN{i}

IxII> — A3 Ixil1> i hoilxill® e
X1 — hoiX1i X1 0 X1j
S 1 £ I SR
I Xd — hoiXdi  Xai 0 Xdj
0 0 —1 0
—

jell . d\ii}
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where

1% + A4 x5 — i) [I” — [1xill”
¢y 1= —— ;L..l (14 2ot} il
ij

2 2 2 T
= Xoi %07 + %517 = Aji Ix —x;l|7 for i, j=1.....d.

The latter equality follows by using the identity Ju — v||? = |[u||> + || v||*> — 2 (u, V). Since
cii = (14 hoi) 1Xi ||2 we may simplify the previous determinant by multiplying the second
column by Ag; and adding it to the first column.

Consequently, in view of A;; ¢ {0, 1} fori # j, the equation A;(x) = 0 can be ex-
pressed as

Ix)1? + hoillxil> c1 - cia
X1 X1 oo Xid .
=0 for i=1,...,d. (5)
Xd Xg1 -+ Xda

Obviously, the set of points x € RY satisfying both equations (4) and (5) coincides with
the (d — 1)-dimensional sphere Sp M S; . By subtracting equation (4) from equation (5)
and applying the summation law for determinants differing in only one row we obtain the
linear equation

rilxill?2 cin —rorlxall® c-0 cia — Aogllxall?
X1 X11 X1d
Di(x) := : . . . =0
X4 Xd1 Xdd

that holds for all x = (x1,...,xs) € R? belonging to the (uniquely determined) hyper-
plane H; containing the (d — 1)-sphere Sp N S;. Combining the equations D;(x) = 0,
i =1,....d,yields a system of d linear equations whose solution (if it exists!) coincides
with the point of intersection of the hyperplanes Hy, ..., Hy.

To find this point we introduce the matrix Ay = (¢; j)f’ g1 with entries
e w12 — e 1y 112 . 12 12
aij ‘= Cij — hoj ”Xj 1“ = Ao [Ixi]]7 + (1 — }&0]) ||XJ|| — Aji l1x; — XJ” . (6)
Letus first note the remarkable fact that, in view of A;; +4;; = 1 fori # jand A; = 1/2,
aj +azi = Ixill* + X117 — G + 250 % — x> =2 {xi,xj) for i, j=1,....d,

which can be expressed concisely by

1 / d
5 (AA +AA) = G(X) = ((xi, xj) )i,jzl ) )

where G (X) and det G (X) are called Gram’s matrix and Gram’s determinant, respectively,
of the vectors X, . ... xq. In RY we have G(X) = X'X and thus det G(X) = A2, On the
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other hand, the relation (7) is meaningful in any real vector space V on which a symmetric,
positive definite, bilinear form (-, -) — briefly called scalar product —is defined. Such vector
spaces are usually called Euclidean vector spaces.

Proposition. For arbitrary linearly independent vectors X1, ..., Xa € R? and real num-
bershij, i, j=0,1,...,4d, satisfying hi;+xj; = Landdy; ¢ {0, 1} fori, j=0,1,....d,
there exists a unique point of intersection Hy N ... N Hy = x* = (x], ..., x;ik)’, Which is
given by

K =XAT % with x = Gor [all’, .. hog Ixall®) - @

The first step in proving this result is to show that x = (xy,...,xs)" obeys the linear
equations D;(x) =0 fori = 1,...,d if and only if it satisfies the equation A 5 X 1x =
x,. This is left to the reader as an exercise. To see the invertibility of the matrix A we
use (7) and decompose A 5 as follows:

Ar=Bo+GX) with By=- (Ax—A)). )

N =

Here the matrix B, is skew-symmetric, i.e. B’A = —BA . This skew-symmeitry and
the positive definiteness of the Gram matrix G(X) show the quadratic form X’ Ay x =
x" G(X) x to be strictly positive for any x # o. This in turn implies A s x # o for any x #
o, which is equivalent to detA s # O for all A;; satisfying A;; + A;; = 1. This combined
with a simple continuity argument tells us that detAy < 0O contradicts det G(X) > 0,
leaving as the only possibility detAx > 0. By the same argument we get det(BA +
o G(X)) > 0O for any ¢ > 0, entailing detB, > 0 by letting ¢ | 0. However det By
may take positive values only for even d > 2 due to the very definition of skew-symmetry.
Moreover, we shall bound det A 4 uniformly from below by Gram’s determinant det G (X)
in Section 3.

Finally, note that the proposition does not answer the question whether x* € §; holds for
someorevenalli =0, 1,...,d. This will be the subject of the next section.

2 The main result and its proof

Theorem. Under the conditions of the above proposition the point x* given in (8) belongs

to each of the spheres S;, i = 0, 1,...,d, that is, X* is the unique point of intersection
So N 81N ...N Sy In other words, xX* coincides with Miquel’s point M of the simplex
S{0, X1, ..., Xa) W.r.L the marked points Xjj = X; + As; (Xj — Xj) on ifs edges.

Proof. After transposing and expanding the determinant on the left-hand side of (4) along
the first row we recognize that Ag(x*) = 0 is equivalent to

-

xi oo rorlxall? 1

. ¢l o el - xe
IXIPA =Y x| : . |=0. (10)
J=1 ~

=

Xig -+ hoallxal* - Xaa



On the Miquel point of simplices 131

x;=(1,1,6)

Miquel point M = (3.41,0.89,1.54)

1,=(3,6,0)

Fig. 1: Tetrahedron S(xy, X1, X2, x3) and the four Miquel spheres with common Miquel
point M for Agp = 1/2, kgp = 1/4, oz = 2/3, k12 = 1/3, A3 =
1/4, koy =2/3

Dividing by A # 0 the latter equation takes the form (x*,x* — zg) = 0, where the

components of zg = (z1, ..., z4) are given by
xu oo Aolxl® oo xa
1| X2 0 Ao2llx2lP cor xa2 T .
7j = — or =1,....d.
T A . . !
Xig - hoallxall® oo+ Xaa
Applying Cramer’s rule we see that z, satisfies the linear equation X'zy = x;, ie.
xi/|Ixill, Zo) = Aoi |xi|| fori = 1,...,d, so that g = (X’)‘lxk. The geometric in-
terpretation of the above relations reveals that the orthogonal projection of zg onto the
edge joining o and x; equals xp; = Ag; xj fori = 1,...,d. Furthermore, zy lies on the

sphere Sp and, provided that x* € Sy, the point zy/2 coincides with the centre of Sy by
appealing to the converse of Thales’ theorem.

Hence, Ag(x*) = 0 holds if and only if
o, % — (X)) xp) = %) (AT X (XAXI _ (X’)_l) X, =X, Cax; =0,

where Cp = (ALY X' XA — (ALY,
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Fig. 2: Intersection of the tetrahedron and the Miquel spheres in Fig. 1 with the
plane z = 1.54 parallel to the xy-plane

Using (7) we find that
1 _ P _
Ca=3 A7) (An+4a3) A7 — @Az =5 (AAI . (AAl)’) - _C,,

thus proving the skew-symmetry of the matrix C which is necessary and sufficient for the
quadratic form xi C, x; to disappear for any real A1, ..., Aog and any Xy, ..., Xq € R,
as we wished to prove.

It remains to show that A; (x*) = 0fori = 1, ..., d. For this we transpose the determinant
on the left-hand side of (5) and expand it along the first row leading to the system of
equations

d X110 Gl X4l
U IP +doillxi D A =D x5 | : D | =0, i=1....4.
JZI _xld e Cld PO -xdd
S’
J-th column

In the next step we subtract equation (9) from the latter equation and divide the difference
by A £ 0. Finally, using the abbreviation (6) we arrive at the equation

d i Xi1 o @i o Xal
2 : : . : 5
Ao I1xi| :ijwij with wl'j:Z : : : . ]:1,.“,d,
j=1 Xig -+ Qig -+ Xqd
S—
Jj-th column
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which is equivalent to A;(x*) = 0 foreachi = 1, ..., d. Again, according to Cramer’s
rule the vector wj = (wiy. ..., wig) satisfies the equation X' w; = (1. ..., dig)', that s,
we may write w; = (X/)! Al ¢; with ¢; = (0,...,1,...,0) denoting the i-th column

vector of the d x d identity matrix. Hence, the above equations can be rewritten as

roillxill? = wi' x* = ¢/ AxX"Ix* for i=1,....d.

However, these equations follow directly from (&) and vice versa. Thus the proof of the
Theorem is complete. O

Note that the point z; = wj+Z¢ —X; which can be shown to belong to the sphere S; satisfies
the orthogonality relation

X" —zi,x" —xi)=0 for i=1,...,.d.

This is easily verified by straightforward computations using the expressions of x*, wj,
and zg given in the above proof. As a result, the sphere §; has the centre (z; + xj)/2 =
(Wi + 20)/2.

3 Bounds for determinants

In the subsequent lemma we establish a lower bound for the determinant of A that is
uniform in all the varying parameters A;;, 0 < i < j < d, and even positive provided the
vectors Xy, ..., Xq are linearly independent. Note that the below inequality (11) is valid
for any d (> 2) elements of an arbitrary Euclidean vector space.

Lemma. Let V be a Euclidean vector space equipped with scalar product {-, -). For any
X1,...,Xq € V and any real numbers di;, 1, j = 0,1, ..., d, satisfying »i; + »;; = 1 for
i,j=0,1,...,d, the inequality

detAp > detBp +det G(X) > det G(X) (11)

holds, where A, Ba, and G(X) are defined by (6), (9), and (7), respectively.
Equality is attained in (11) if

Mij i — %02 = (= 2o I1%ll2 + Aoj X017 — (xi, %) for 1<i<j<d.

Proof. As already pointed out at the end of Section 1 the determinant of any skew-
symmetric d x d matrix B is non-negative and equals zero if d is odd. Thus, the second part
of (11)1is trivial and instead of the first part we prove the slightly more general inequality

det(B + G(X)) > detB + det G(X) . (12)

By applying the well-known principal axis theorem to the non-negative definite Gram
matrix G(X) we find an orthogonal d x d matrix O (with detOQ = 1) such that D =
O’ G(X) O is a diagonal matrix with non-negative diagonal elements. The multiplication
rule for determinants enables us to replace G (X) by D and B by the skew-symmetric matrix
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O’ B O without changing the inequality (12). Therefore it suffices to verify det(B + D) >
det B4+det D only for diagonal matrices D with non-negative diagonal elements vy, ..., ¥g
and any skew-symmetric d x d matrix B. The Taylor expansion of the function

Y1 b1z -+ big
b1z y2 -+ b

F, ..., yq) =det(B+D) = ) i
—D1a =ba - Ya

leads to

k=1 1<i)<--<ip <d

where the (d — k) x (d — k) matrix By, j, emerges from B by deleting the rows iy, ..., i
and columns iy, .. ., ix. Obviously, all these matrices are skew-symmetric which, together
with y1,..., vg = 0, implies

SO, ..o, vq) = detB+vy1--- vy =detB 4 detD .

Thus the inequality (11) is proved. The proof of the lemma is complete by noting that
A = A, and (7) imply equality in (L1). O

Remark. The above proof turns out that the inequality (12) remains valid if G(X) is
replaced by any other non-negative definite d x d matrix.

Corollary. Ifx1,...,xq € V are linearly independent, then det A p is positive which in
turn implies the existence of the inverse AXI Jor all real ; satisfying Lij + Aji = 1 for
i,j=0,1,...,d. As a special case, (11) includes the well-known Hadamard inequality

detGX) < Ixq1|I? -...- |Ixall® forany xi,....Xs€V,
which reads | A| < ||x1] -...- |xall in R%

The first part of the corollary follows from the well-known fact that det G(X) > 0O char-

acterizes the linear independence of x1, ..., xg € V. The second part follows by setting
Al =...= Aog = Oand)\,-j = ||Xi||2/||Xj—Xj||2 so that by (6)Clji =0forl <i<j<d.
In other words, A A is an upper triangular matrix entailing detAp = @iy - - .. - daq.

4 Concluding remarks

1. Formula (8) and the above theorem reveal that the Miquel point M of the simplex
S{0,x1, ..., Xxq) w.r.l. the marked points xjj = xj + A;; (Xj —xj) on the simplex” edges can
be represented as a linear combination of the edges xq, ..., Xq,

d
xt = Z i xj = Xu  with weight vector  w = (uy, ..., ig)' = AXI X . (13)
i=1
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From (6) and (8) it is seen that the weights uy, ..., uy depend only on the parameters
Ai; and the squared edge lengths ||xj — xj||2 for0 <i < j < d (with xg = o). For
this reason the Miquel point can be defined in a meaningful way for any finite family of
linearly independent elements of a Fuclidean vector space V.

By (13) the Miquel points x;', i = 0,1,...,d, of those (¢ — 1)-simplices having the
d vertices xj, j # i, can be easily determined. Geometrically spoken, x;* is the point
of intersection of the d Miquel spheres S;, j # i, with the hyperplane containing the
(d — 1)-face of the original simplex which x; does not belong to. In this way a new d-
simplex S(xg, xj, ..., Xg) arises and relations between it and the original one for given
Aij’s could be of interest.

2. Since the matrix A  is invertible for any 2;; the point x* is also well-defined for Aij €
{0, 1}. For special choices of the A;;’s we have interesting geometric intepretations, e.g.
ford = 2, letting Ag1 — 1, Aoz — 0, and A12 — 1 entails that each of the limiting Miquel
circles touches one side of the triangle A xox1 X2 at a vertex and passes through the opposite
vertex; the corresponding Miquel point turns into the Brocard point, see [1]. By means
of the Theorem in Section 2 several generalizations of this point to higher dimensions are
possible. In particular, for a tetrahedron S(o, X1, X3, X3) in R the choice Agr = rgp =
Aoz = h13 = 1 and A1» = ko3 = 0O (in the above setting) yields x* as common point of the
circumsphere So and S1 N S2 N S3, where e.g. S is the unique sphere through x3 touching
the face triangle A ox;x» at xy, and Sz, 33 are defined analogously.

3. The vertices of a further d-simplex associated with S(o, xq, ..., Xq) and the given A;;’s
coincide with the midpoints xic of the Miquel spheres S;,i =0, 1,...,d. In Section 2 we
have derived the following formulas:

1 1
XSZE(X/)_IXA and XiCZE(XI)_IAAei‘f’XBa i=1,....,d.

In the planar case simple geometric arguments show that the triangles A xgx1x2 and
A xgx‘l’xg are similar, cf. e.g. [1]. Itis natural to ask whether the simplex § (xg, x‘l", R xg)
and the original simplex are similar for any d > 2. This fact can be expressed analytically
by an orthogonal matrix O and some scaling factor y > 0 by requiring

{ 1 sdetAp\1/4
xic—xﬁzf(X')_lAAeiZVOXi for i=1,....d, where VZE( AQA) ‘

In view of O’ = O~' and (7) these relations are equivalent to G~ 1(X) = 2y2 (A" +

(A’A)‘1 ) This equality holds actually only for d = 2 without additional restrictions on
the A;;’s.

4. On the other hand, for any d > 2, the particular choice A;; = 1/2,0 <i < j < d,
yields the Miquel point x* = 3 X~ (IIx1]%, ..., IIxall®)’, which coincides with the
circumcenire of the simplex S(o, X1, ..., Xq).
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