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On the Archimedean or semiregular polyhedra

Mark B. Villarino

Mark B. Villarino obtained his B.A. in mathematics at the University of California,
Los Angeles. He later received a “Licenciatura™ in mathematics at the University of
Costa Rica in San Jose, where he is currently a tenured member of the mathematics
faculty. His major interest is classical mathematics with emphasis to number theory,
Galois theory, analysis and approximations, and the history of mathematics.

1 Introduction

1.1 Regular polyhedra

Polyhedra have fascinated mathematicians for at least two and a half millennia. In par-
ticular, the regular or platonic solids were used in Greek astronomy and philosophy in
addition to mathematics. Their beauty and symmetries have stimulated investigations that
even today are thriving. Our paper deals with a small but fundamental result in their theory.

A polyhedron may be intuitively conceived as a “solid figure” bounded by plane faces and
straight line edges so arranged that every edge joins exactly two (no more, no less) vertices
and is a common side of two faces.

A polyhedron is regular if all its faces are regular polygons (with the same number of
sides) and all its vertices are regular polyhedral angles; that is to say, all the face angles

Eines der schonsten Ergebnisse der klassischen Raumgeometrie ist die Klassifikati-
on der regularen Polyeder. Es diirfte den meisten Lesern wohlbekannt sein, dass die-
se Polyeder durch die fiinf Platonischen Korper gegeben sind. Ein besonders elegan-
ter Beweis dafiir kann mit Hilfe von Eulers Polyederformel gegeben werden. Weni-
ger bekannt ist moglicherweise die Klassifikation der sogenannten halbregularen Po-
lyeder, deren Oberfliche zwar auch aus regelméssigen Vielecken besteht, allerdings
konnen diese nun unterschiedliche Eckenzahlen aufweisen. Dieses Klassifikationspro-
blem wurde bereits durch Archimedes gelost: es fiihrt auf die dreizehn halbregulidren
Polyeder sowie auf die unendlichen Familien von Prismen und Antiprismen. Im nach-
folgenden Beitrag gibt der Autor einen elementaren Beweis dieses Resultats unter Ver-
wendung der Eulerschen Polyederformel.
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at every vertex are congruent and all the dihedral angles are congruent. An immediate
consequence of the definition is that all the faces of the polyhedron are congruent.

There are five such regular convex polyhedra, a fact known since Plato’s time, at least, and
all of Book XIII of Euclid is devoted to proving it, as well as showing how to construct
them: the tetrahedron, the cube, the octahedron, the dodecahedron, and the icosahedron.

1.2 Archimedean/semiregular polyhedra

It is reasonable to ask what happens if we forego some of the conditions for regularity.
Archimedes [1] investigated the polyhedra that arise if we refain the condition that the
faces have to be regular polygons, but replace the regularity of the polyhedral angles at
each vertex by the weaker condition that they all be congruent (see Lines [6]). Such solids
are called Archimedean or semiregular polyhedra.

Theorem 1 (Archimedes’ theorem). There are thirteen semiregular polyhedra as well as
wo infinite families: the prisms and the antiprisms.

In the following paper we will prove Archimedes’ theorem by elementary topological
arguments based on Euler’s polyhedral formula (see §2.2). After some simple introductory
lemmas the entire proof boils down to solving an inequality involving the number of sides
of the polygons that meet at each vertex by an exhaustive enumeration of cases (see §4).

2 Proof techniques

2.1 Euclid’s proof for regular polyhedra

Euclid’s proof (Proposition XVIII, Book XIIT) is based on the polvhedral angle inequalitv:
the sum of the face angles at a vertex cannot exceed 2w, as well as on the fact that the

internal angle of a regular p-gon is m — 27”.
Thus, if ¢ faces meet at each vertex
2w
iq(n—?) <2m (2.1.1)
=(p-2)g—-2) <4 (2.1.2)
= Al =133) @:8), B8], (3:3), 3,5) (2.1.3)

which give the tetrahedron, cube, octahedron, dodecahedron, and icosahedron respec-
tively.

Of course the key step is to obtain (2.1.2). Euclid does it by (2.1.1) which expresses a
metrical relation among angle measures.

One presumes that Archimedes applied more complex versions of (2.1.1) and (2.1.2) to
prove that the semiregular solids are those thirteen already listed. Unfortunately, his trea-
tise was lost over two thousand years ago!
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2.2 Euler’s polyhedral formula for regular polyhedra

Almost the same amount of time passed before somebody came up with an entirely new
proof of (2.1.2), and therefore of (2.1.3). In 1752 Euler [4] published his famous polyhe-
dral formula.

v —E+F=2] (2.2.1)

in which V := the number of vertices of the polyhedron, £ := the number of edges, and
F := the number of faces. This formula is valid for any polyhedron that is homeomorphic
to a sphere.

The proof of (2.1.2) using (2.2.1) goes as follows. If ¢ p-gons meet at each vertex,

= pF =2E =qV (2.2.2)
1% 1%
=L 1 (2.2.3)
2 p
Substituting (2.2.3) into (2.2.1),
V 1%
:>V—q7+q?:2 = 2pV —gpV +2gV =4p
4p
>V =c— 2p—qp+29>0 = (p—-2(g—2)<4
2p—qp+2q

which is (2.1.2).

This second proof proves much more. We have found all regular maps (graphs, networks)
on the surface of a sphere whatever the boundaries may be, without gny assumptions in
regard to they are being circles or skew curves. Moreover the exact shape of the sphere is
immaterial for our statements, which hold on a cube or any homeomorph of the sphere.

This topological proof of (2.1.2) is famous and can be found in numerous accessible
sources, for example Rademacher and Toeplitz [7].

2.3 Proofs of Archimedes’ theorem

Euclidean-type metrical proofs of Archimedes’ theorem are available in the literature (see
Cromwell [2] and Lines [6]) and take their origin in a proof due to Kepler [5].

They use the polyhedral angle inequality to prove:

¢ al most three different kinds of face polygons can appear around any solid angle;

o three polygons of different kinds cannot form a solid angle if any of them has an
odd number of sides.

One then exhaustively examines all possible cases.

The situation is quite different with respect to a topological proof of Archimedes’ theorem.
Indeed, after we had developed our own proof, as presented in this paper, we were able to
find only one reference: T.R.S. Walsh [8] in 1972,
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His proof, too, is based exclusively on Euler’s polyhedral formula, and so there are over-
laps with ours. However, our proof is quite different, both in arrangement and details, and
in purpose. The pedagogical side is insisted upon in our proof so as to make it as ele-
mentary and self-contained as possible for as wide an audience as possible. We comment
further on the structure of our proof in §4.

3 Three lemmas

For any polyhedron we define:

V:=total number of vertices;

Vp:= total number of vertices incident with p edges;
E:=total number of edges;

F:=total number of faces;

Fp:= total number of p-gonal faces.

Here, and from now on, polvhedron means any map on the sphere for which Euler’s theo-
rem holds.

31 Lemmal

The following lemma is due to Euler [4] and is well-known. We sketch the proof for
completeness.

Lemma 1. The following relations are valid in any polyhedron:

1. 3F3 +2F4+ F5s =124+ 2V4+4Vs+ - -+ Fp + 2Fg+ -+ .

2. Ar least one fuce has to be a triangle, or a quadrilateral, or a pentagon, i.e., there
is no polyhedron whose faces are all hexagons, or polygons with six or more sides.

Proof. For 1. we note

i) Fi3+F4+---+Fy_1 =F;
(ii) 3F3 +4F4+ -+ (V — YFy_ =2F;
(i) Va4+Va+-- 4+ Vp_1 =V;
(iv) 3Va +4Vy+- -+ (F — 1)Vp_1 = 2E.

Now multiply (i) by 6, subtract (ii), and use (iii), (iv), and Euler’s formula.

For 2, observe that F3, Fy, and F5 cannot all be zero in 1. at the same time. O
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3.2 Definition of semiregular polyhedron. Lemma 2

Definition 1. A polyhedron is called Archimedean or semiregular if the cyclic order of the
degrees of the faces surrounding each vertex is the same (o within rotation and reflection

([8]).

Lemma 2. In any Archimedean polyhedron:

3

where r edges are incident at each vertex.

where the pr are the degrees of the r polygons meeting at each vertex.

Proof. Tor 1., since there are 2 vertices on any edge, the product r V counts each edge
twice, so is equal to 2 F.

For 2., p Fp counts the total number of vertices once if one p-gon is incident at each vertex,
wice if two p-gons are incident there, .. ., g times if ¢ p-gons are incident at the vertex.
Thatis, pFp =¢gV.

For 3., solve 1. for £, use (i) of the proof of Lemma 1.1, solve 2. for F)p, substitute in
Euler’s formula, solve for V, and write any fraction

I 1 1
I R O
p r D p
g —times

3.3 Lemma3l

This lemma limits the number of candidate polygons surrounding each vertex.

Lemma 3. [fr edges are incident with each vertex of an Archimedean polvhedron then

r <5,

Proof. By 3. of Lemma 2

r 1 1 1 1 r—2
l——+—+ - +—>0=>—+ - +—> ;
2 m pr 14 Dr 2
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But,
1 1 1 1 1 r—2
p=z3ppz23...,pz23>-4+-+F+=-z2—+ -+ —>
33 3 D1 Dr 2
ror—2
:>§> 7 =r<6=>r1r <5 I

4 The methodology of the topological proof

It is of interest to compare the method of proof, using Euler’s theorem, for the regular
polyhedra and the Archimedean polyhedra.

In both cases the essential step is to use the fact that the denominaior of the formula for
the number of vertices, V, is positive:

2
2

Vv = - i 7 7 Archimedean.
1_§+p_1+p_2+”'+ﬁ

e

In the case of the regular polyhedron the inequality

1 r+r O
— s — B¥
2 p

can be rearranged into the elegant inequality
(p—2r—2) < 4,

which, as we saw before, leads to five solutions (p, 7).
Unfortunately, in the case of the Archimedean polyhedra the inequality

roo1 1 1
l——4+—4+—+- 4+ — >0
2 pr P2 Pr

apparently does not lend itself to an algebraic rearrangement into a product, and so must
be studied by an exhaustive enumerdtion of cases.

Nevertheless, it is worth emphasizing that the basic structure of the two arguments is the
same at the core, although the elaboration of the cases in the Archimedean case demands
some topological counting arguments that are not entirely trivial (see §5.2.1 and §5.3.1).

5 Topological proof of Archimedes’ theorem

By Lemma 3 we have to consider three cases:
Case 1: Five faces meet at a vertex: r = 5.
Case 2: Four faces meet at a vertex: r = 4.
Case 3: Three faces meet at a vertex: r = 3.
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5.1 Case 1. Five faces meet at a vertex: r = 5

By Lemma 3.2,

+ +
2 pr p2 p3

I U R |
> —+—+—+—
poop2 P3P

_|_
pae  ps V

1 3

—— = % {].

ps 2

By Lemma 1.2, at least one of py, ..., ps hastobe 3,4, or 5.

5.1.1 At least one face is a triangle: p; = 3

Assuming pp = 3,
1 1 1 1 3
= — 4+ — +—+
P2 Pz ps ps 2 3

Without loss of generality, we assume that:

3K <3< pa<sps
1 | 1 | 1
=

(5.1.1)

- z— 22— 22— 2 —

37 p2" p3T opa ops

1+1+1+1 7 0

— e = epa e e s By

3 3 3 5 6

1 1

— —— =0

ps 6

= ps <6

= ps=154,3

= (P1, P2, P3. P4, Ps) = (3, pa, P3, P4, 5), (3, p2, p3, pa, 4), (3, p2, p3, P4, 3).

However, if we take p2 2 3, p3 2 3, pa > 4, p5 = 4, then

1+1+1+1+1<1+1 1+1 1
prop2 ps opa o ps 3 3 3 4 4

and this contradicts (5.1.1). Therefore we are left with only three quintuplets:

(pl’ p27 p37 p47 ps) == (37 37 3’ 37 5)7 (3’ 37 37 37 4)7 (37 3’ 37 37 3)A

(5.1.2)

These correspond, respectively, to the snub dodecahedron, the snub cube, and the icosahe-
dron, aregular polyhedron. Using the C & R symbol [3] to abbreviate the above quintuplets

we are left with:

(P1, P2, P3, P4, Ps) = 345
=13%4
=37

snub dodecahedron
snub cube
regular icosahedron

(5.1.3)



On the Archimedean or semiregular polyhedra 83

5.1.2 All faces have at least four sides: p; > 4

It is easy to show that ps < 2 so that no possibilities exist.

5.2 Case 2. Four faces meet at a vertex: r = 4

By LLemma 2.3,
4 1 1 1 1 1 1 1 1
l—- - —+—F+—4+—>0=—+ —+—+ ——1>0.
2 p1 p2 P3P Pr D2 P3 P4

Again, at least one of the py must be 3, 4, or 5.

5.2.1 At least one face is a triangle: p; =3

We will write p, g, r instead of pp, p3, psa. Thus the inequality becomes

1 1 1 2
s g e s s 53 0 5 (52.1)
p g 1 3

We examine a typical polyhedron:

¢ it must have a triangle at each vertex;
e there must be 4 edges incident at each vertex;

¢ the vertices must all have the same configuration in the same order to within rotation
and reflection.

Consider Fig. 1. As we label the faces around each vertex of the triangle ABC, say coun-
terclockwise, from the vertex A, we see that the sequence (3, p, g, r) at A, or its reflection
(3, r, g, p), must repeat itself, in that order at B, and then at C. But CB is then an edge
of a polygon with r sides and with p sides simultaneously, i.e., we conclude that p = r.
This means that we are compelled to conclude that no matter how we label the vertices, at
least two of the p, g, v must be equal.

Here instead of using sides or angles to classify the polyhedral faces, one uses the number
of vertices or edges to classify the polygons.

Putting r = p in the inequality (5.2.1), we obtain
2 1 2

=== 0

P q 3
=(p-3)2¢g-3)<9
=1<2¢g-3<9, (2g—3) odd

=2¢-3=3,5, 7.

If2g—3=50r7then p—3 =0, 1resp. p = 3,4. Otherwise, if 2¢g — 3 = 3 then
p—3=0,1,2resp. p=3,4,5.
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Fig. 1 Vertex constraint

Therefore, we obtain

pl3(3]3]|4]|4]|4]5

qg|314[53]4|5]3

Finally we observe that 2g — 3 > 9 is permitted if p — 3 = 0.
Therefore, we are left with:

(p,g)=14,5 = (p1, p2. p3, pa) = (3.4.54) small rombicosidodecahedron
(. @) =(5,3) = (p1, p2, p3, pa) = (3.5)2 icosidodecahedron

(p.q)= 4,4y = (p1. p2, p3, ps) = 3.4° small rhombicuboctahedron
(p.q)=(4.3) = (p1. p2. P3. pa) = (3.4)° cuboctahedron
(p.g)=(3,3) = (p1, p2, p3, pa) = 3* regular octahedron
(p.q)=@B.m) = (p1, p2. p3. p4) = 3>.m (m > 4) antiprism

5.2.2 All faces have at least four sides: p; > 4

If we assume that 4 < p1 < p2 < p3 < pa4, then
1 1 1 1
—f—f—f—— L
pPr P2 Pz P4

Therefore py = 4 cannot happen.
There are no other cases with r = 4.

5.3 Case 3. Three faces meet at a vertex: r = 3
By Lemma 2.3,
3 1 1 1 1 1 1 1
1_§+E+E+E>O:>P_1+P_2+P_3_§>O'

Since at least one of the pr must be equal to 3, 4, or 5, we consider each case separately.
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5.3.1 Atleast one face is a triangle: p; =3

Then,
1 . 1 1
P2 p3 O
Looking at the configuration we see:

e cach vertex has three edges incident to it,

e (wo are the edges of a triangle and the third of a p3-gonal face.

Labeling it we see that
D2 = p3,

and therefore the above equality becomes

2 1
S 0= p3<12, 3K ps < 1L
p3 6

Lemma 4. p3 is even or p3 = 3.

Proof. We look at the configuration with pz = 4. Since the vertices must all look alike, as
we traverse counterclockwise (say) the ps vertices of a p3-gonal face, we observe that the
edges of the face fall into two groups:

o those that are the common edge of two pz-gonal faces;

o those that are the common edge of a triangle and a p3-gonal face.

Moreover, they occur in adjacent pairs, and finally, as we complete one circuit and return to
our starting point, having started with a triangular edge, we end up with an edge common
to two pz-gonal faces. Thus we traverse an integral number of pairs of sides as we run
through the psz-gonal face once, i.€., p3 is even. O

The only even numbers p3 between 3 and 11 are
p3=4, 6, 8, 10.

Therefore we obtain

13=3 = (p,pnp=3 regular tetrahedron
p3=4 = (p1, p2, p3) =34%  triangular prism
713=6 = (p1.p2 p3) =3.6> truncated tetrahedron
73=8 = (p1.p2 p3) =3.82 truncated cube

p3 =10 = (p1, p2, p3) = 3.102 truncated dodecahedron
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5.3.2 Allfaces have at least four sides and one exactly four sides: p1 =4 < p» < p3

Then,
L o - <16
s et _— = 2 — 3 — < .
2 2 s 3 D P

The same sort of configuration argument shows that p, and p3 are even, and we conclude

(p1, p2, p3) = (4.6.10) great rthombicosidodecahedron
(p1, p2, p3) = (4.6.8) great thombicuboctahedron
(p1, p2. p3) = 4.6% truncated octahedron

(P1, p2. p3) =4 cube

(p1, P2, p3) =4%m (m = 4) prism

We note that this subcase covers precisely the polyhedra with bipartite graphs. Here the
vertex set V is the union of two disjoint sets V3 and Vs, and each edge of the graph goes
from Vi to Va. Equivalently, each py is even.!

5.3.3 All faces have at least five sides and one exactly five sides: p1 =5 < p> < p3

This is quite similar the the previous section. Since
1 1 3
S=pr€«pEpy=>—+———=>0= 3p—10)3p3 — 10) < 100.
j 2] P3 10
Again, a configuration argument shows that
Pr=p3=Bpr—22 < 100=15<3p <20 = pr =35, 6,

which gives

(p1, p2, p3) = 52 regular dodecahedron
(p1, p2, p3) = 5.62 truncated icosahedron

And we have completed the topological proof of Archimedes’ theorem.

We have nor demonstrated that the polyhedra enumerated in Archimedes’ theorem are in
fact constructible. Again, this is done in the works of Cromwell [2] and Lines [6].

6 Final remarks

As in the case of the topological proof that there are five regular polyhedra, we have proven
much more! We have found all semiregular maps on any homeomorph of the sphere, a
result of great generality. Although the metric proofs are of great interest, intrinsically and
historically, the topological proof shows that they appeal (o unessential properties of their
metric realizations and that, at the root of it all, Archimedes’ theorem is a consequence of
certain combinatorial relations among the numbers of vertices, edges, and faces.

One wonders what Archimedes would have thought of our proof of his theorem. We hope
that he would have liked it.

L' We thank Michael T osephy for this observation.
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