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I Elemente der Mathematik

Fibonacci numbers at most one away from a perfect power

1 Introduction

Yann Bugeaud, Florian Luca,
Maurice Mignotte and Samir Siksek

Yann Bugeaud received his Ph.D. from the Université Louis Pasteur in Strasbourg in
1996. Since 2001 he holds a permanent professorship at the same university. His
main fields of research are diophantine equations, diophantine approximation, and
transcendence.

Florian Luca received his Ph.D. from the University of Alaska at Fairbanks in 1996.
He then held various visiting positions. Since 2000 he works at the Mathematical
Institute of the Universidad Nacional Auténoma de México in Morelia. His main
fields of research are diophantine equations, and algebraic and combinatorial number
theory.

Maurice Mignotte received his Ph.D. from the Université de Paris Sud in 1974. He
then obtained a permanent position at the Université [Louis Pasteur in Strasbourg. His
main fields of research are diophantine problems and computer algebra.

Samir Siksek received his Ph.D. from the University of Exeter in 1995. Presently
he holds an associate professorship at the University of Warwick. His main fields of
research are diophantine equations and the arithmetic of curves.

We consider the Fibonacci sequence (F,),=0 and the Lucas sequence (Lj),=0 both of
which are solutions to the linear recurrence t,40 = 41 + Uy, with the initial conditions
Fo =0, Fy = 1 and, respectively, Lo =2, L1 = 1.

Das Problem, alle reinen Potenzen in der Fibonacci- und der Lucas-Folge zu finden,
wurde vor kurzem von drei der vier Verfasser der vorliegenden Arbeit gelost. Hier
geben die Autoren einerseits einen Uberblick iiber den Beweis dieses Resultats, ande-
rerseits zeigen sie, dass die Zahlen 0, 1, 2, 3, 5 und § die einzigen Iibonacci-Zahlen F,
sind, fiir die F,, + 1 oder F, — 1 eing reine Potenz ist. Dabei ist die Tatsache erstaunlich,
dass das erste Frgebnis auf tiefen Resultaten, wie z.B. dem Satz von Wiles zur Modu-
laritét elliptischer Kurven (der beim Beweis der Fermat- Vermutung eine entscheidende
Rolle spielte) oder der Bakerschen Theorie der linearen Formen in Logarithmen, be-
ruht, wihrenddem sich das hier dargestellte neue Ergebnis relativ einfach gewinnen

lasst.
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The problem of determining all perfect powers in the Fibonacci sequence was a famous
open problem for over 40 years, and has been resolved only recently [9].

Theorem 1. The only perfect powers among the Fibonacci numbers are Fy = 0, 1 =
F, =1, Fs = 8 and Fip = 144. For the Lucas numbers, the only perfect powers are
Li=1land L; =4

Subsequent papers studied several multiplicative generalizations such as F,, = ayf (see
[8D) and Fy, --- F,, = ¥ with 1 < r < p (see [7]). Here, we consider the (apparently)
non-multiplicative question F;, + 1 = y#. We prove the following result:

Theorem 2. The only nonnegative integer solutions (n, y, p) of the equations
with p > 2 are

Fo+1=0+1=1, Fi+1=3+1=22 Fe+1=8+1=32
Fi—1l=F—-1=1—-1=0, B—-1=2—-1=1, F-1=5-1=2%

We note that these equations have been previously solved for p = 2, 3 by R. Finkelstein
[14], [15], and N. Robbins [29]. In Section 2.6 of [1], J.A. Antoniadis gave an alternative
resolution of F, — 1 = y2.

The traditional approach to equations involving Fibonacci numbers combines clever tricks
with various elementary identities connecting Fibonacci and Lucas numbers. This is the
approach we follow in proving Theorem 2. By contrast Theorem 1 was proved by com-
bining some of the deepest tools available in number theory: namely the proof of Fermat’s
Last Theorem and a refined version of Baker’s theory of linear forms in logarithms.

In Section 2 we discuss the modular approach (used in the proof of Fermat’s Last Theo-
rem). We also try to give the reader a feel for the modular approach through some ele-
mentary computations connected with the proof of Theorem 1. In Section 3 we sketch the
main steps in the proof of Theorem 1. In Section 4 we give a brief historical survey of
previous results on perfect powers in the Fibonacci sequence. Sections 5 and 6 build up to
the proof of Theorem 2, which is completed in Section 7. In the final section we briefly
mention a related open problem.

2 The modular approach and Fibonacci powers

In this section we would like to make a few remarks on the modular approach used in
the proof of Fermat’s Last Theorem. We also give the reader a feel for how the modular
approach works by carrying out some very explicit and elementary calculations connected
with the Fibonacci perfect powers problem. It is appropriate to point out that equations
F, = y¥ and L, = v¥ have previously been solved for small values of the exponent p by
various authors; we present a brief survey of known results in Section 4.

Wiles” proof of Fermat’s Last Theorem [35], [34] is certainly the most spectacular recent

achievement in the field of Diophantine equations. Although the proof is very deep, the
logical structure of the proof is easy to understand. There are three main steps:
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(i) Associate to a non-trivial solution of x# 4+ y# = z# what is now known as a Frey
elliptic curve !:
Exyz : Y2 =X(X +xP)(X — ).

(ii) Ribet’s Level-Lowering Theorem [28] and the Modularity Theorem ? together imply
that £ y ; is associated 3 to a cuspidal newform of level 2.

(iii) There are no newforms at level 2, hence we have a contradiction.

We may attempt to apply the same strategy to other Diophantine equations. For example,
sensible Frey curves are available for Diophantine equations of the form

ax? 4 by? = cz?, ax? + by? = cz?, ax? +by? = ¢z, ... (pprime).

If a ‘sensible’ Frey curve can be constructed, then we may apply step (ii) and deduce that
the Frey curve is associated to a newform of a certain level N, which depends on the Dio-
phantine equation we started with. However, whilst there are no newforms at level 2 nor
at a handful of other small levels, there are newforms at all levels N > 60. Thus step (iii)
fails in general. Several alternative strategies do apply in special cases (see for example
[3], [13], [16]), though there does not seem to be a general strategy that is guaranteed to
succeed.

A fact that had been underexploited is that the modular approach (when applicable) yields
an infinite number of congruence conditions for the solutions of the Diophantine equation
in question. Namely, for a fixed prime exponent p (which is not too small), if we choose
a good prime / (all primes are good except for finitely many) then we obtain congruence
conditions on x, v, z modulo /. For an explicit example of how the modular approach
furnishes congruence conditions on the solutions, see below. For the above equations it
is difficult to exploit this information successfully since we neither know a bound for the
exponent p, nor for the variables x, y, z. This suggests that the modular approach should
be applied to exponential Diophantine equations; for example, equations of the form

ax? + by? = ¢, ax>4+b=cy?, ... (pprime).

For such equations, Baker’s theory of linear forms in logarithms (see the book of Shorey
and Tijdeman [32]) gives bounds for both the exponent p and the variables x, v. This
approach (through what are known as linear forms in logarithms and Thue equations) has
undergone substantial refingments, though it still often yields bounds that can only be
described as ‘astronomical’.

I Non-trivial means xyz # 0. In step (i), we may suppose that x, y, z are coprime integers and p is a prime,
and for technical reasons that will not concern us, we need to suppose p > 5, reorder the variables x, y, z and
change signs sothatx = —1 (mod 4) and 2 | y.

2The Modularity Theorem states that all elliptic curves are modular. Wiles proved this for semi-stable elliptic
curves, which was enough for the proof of Fermat’s Last Theorem. Since then the proof of the Modularity
Theorem has been completed in a series of papers the last of which is [5].

3We do not explain here what newforms are, nor the precise relationship furnished by Ribet’s Theorem be-
tween Frey curves and associated newforms. We do however, later on, give an example were we explain this
relationship in terms of down-to-earth congruences.
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The proof of Theorem 1 marked the first time the modular approach has been combined
with Baker’s theory. We shortly sketch the main steps of the proof of Theorem 1 for Fi-
bonacci numbers. Before that we illustrate the modular approach in this case by providing
a few details. We are concerned with the equation F,, = y? with p prime. For technical
reasons we restrict to the case p > 7. The Frey curve needed depends on the class of n
modulo 6, and we restrict our discussion to n = 1 (mod 6). We associate to the solution
(n, v, p) the Frey elliptic curve

E,: Y’=x'+L,Xx*>-%x.

Ribet’s Level-Lowering Theorem tells us that this is associated to a cuspidal newform of
level 20. The only such newform itself corresponds to the elliptic curve

E: YP=x*3+x2_3x

We did not explain the precise relationship between Frey curves and the newforms asso-
ciated to these by Ribet’s Level-Lowering Theorem. In the present context, it is easy to
state the relationship in terms of very simple congruences. Let/ # 2, 5 (we are excluding
2 and 5 as these are ‘bad’ primes in the present context). Let N (/) denote the number of
solutions (X, Y') to the equation I modulo /; we can write this as

NO=#{(X,Y) : 0<X,Y<l—landY?’=X’4+X>—X (mod ).
We let Ny, (1) denote the corresponding quantity for Ej,:
N =#(X,Y) : 0<X.Y<!—-land Y’ =X +L,X*°— X (mod ).
The relationship between E, and E can be expressed as follows:

(I) if! +y then N,(!) = N() (mod p), and
(D) if! | ythen N(I) = —1or2{+ 1 (mod p).

To get a feel for these congruences and the information they give let us take [ = 3. By
counting we see that N(3) = 5. If 3 | y then (II) tells us that 5 = —1 or 7 (mod p);
in other words p | 6 or p | 2. Both are impossible as p > 7. Hence 3 t v. By (D)
we deduce that N, (3) = 5 (mod p). Looking closely at the definition of N, we see that
Ny (3) depends only on the congruence class of the Lucas number L, modulo 3. A little
counting tells us that:

e L, =0 (mod 3) implies N, (3) = 3 and so 3 = 5 (mod p), thatis p | 2 which is
impossible;

e L, =2 (mod 3) implies N,(3) = l and so 1 = 5 (mod p), thatis p | 4 which
again is impossible;

e L, =1 (mod 3) implies N, (3) = 5and so 5 = 5 (mod p); this last case is true
regardless of the value of p.
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We deduce that L, = 1 (mod 3). What does this tell us about n? The reader is asked to
compute modulo 3 the first (say) 30 terms of the Lucas sequence Ly starting with Lo = 2.
Once that is done, a little reflection will convince the reader that L, = 1 (mod 3) precisely
when n = 1, 3, 4 (mod 8). However, we started out by assuming that # = 1 (mod 6).
Thus we are now able to deduce that, if n = 1 (mod 6), thenn = 1 or 19 (mod 24). We
would in fact like to show thatif n = 1 (mod 6) then n = 1. Notice that we have shown
in this case thatifn > 1 then n is at least 19. An important step in our proof of Theorem 1
is to show thatif n > 1 then n > 10°%°°, The following elementary exercise will give you
a feel for how this is done.

Exercise. We continue with the assumptions that p > 7andzn =1 (mod 6).

(a) Show that N(7) = 5.
(b) Make a table of values for N, (7) and deduce that L, = 1 or 3 (mod 7).
(¢) Show L, =1or3 (mod 7)impliesn = 1,2,7, 11, 13, 14 (mod 16).

(d) But we know from the above thatn = 1 or 19 (mod 24). Deduce from this and (c)
thatn = 1 or 43 (mod 48).

Note from part (d) of the exercise that if n > 1 then n > 43, Before all we could say was
n > 19. Thus by considering one value of [ we have been able to increase our lower bound
for n by a factor 0£43/19 ~ 2.26.

3 Scheme of the proof of Theorem 1

The main steps in the proof of Theorem 1 for Fibonacci numbers are as follows (the case
of Lucas numbers is similar, and in fact simpler):

(i) We associate Frey curves to putative solutions of the equation F,, = v# with even
index n and apply the modular approach. This, together with some elementary ar-
guments is used to reduce to the case where the index 7 satisfies 1 = =1 (mod 6).

(ii) We then show that we may suppose that the index n in the equations F,, = y*
is prime: this is essentially a result proved first by Pethd [25] and Robbins [30]
(independently).

(iii) Using Binet’s formula — see (1) below — one sees at once that the equation F,, = y#
implies that the linear form

A =nlogua —log«/g—plogy

is very small (here and below we write « = (1 + V5) /2). Then a lower bound
for linear forms in logarithms gives an upper bound on the exponent p. Applying a
powerful improvement to known bounds for linear forms in three logarithms we get
that p < 2 x 10%.

(iv) Knowing that p < 2 x 108 in the Fibonacci case, we apply the modular approach
again under the assumption that the index # is odd. We are able to show, using the
congruences given by the modular approach, that n = +£1 (mod p).
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(v) As seen in step (iii), the equation F,, = v? yields a linear form in three logarithms.
However we know that n = 1 (mod p). In this case the linear form in three
logarithms may be easily rewritten as a linear form in two logarithms. For example,
if n = kp + 1, then we can rewrite A as

A = plog(e®/v) +1og(e/v/5).

The bounds available for linear forms in two logarithms are substantially better than
those available for linear forms in three logarithms. Applying [17] we deduce that
p < 733. A serious improvement!

(vi) We reduce the equations F,, = y¥ to Thue equations; these are equations of the
form G(u,v) = 1 where G is a binary form of degree p. We do not solve these
Thue equations completely, but we compute explicit upper bounds for their solutions
using classical methods (see for example [6]). This provides us with upper bounds
for n in terms of p. To be precise, we prove that n < 10°°°Y, which is a rather large
bound for an index.

(vii) We show how the congruences given by the modular approach can be used, with the
aid of a computer program, to produce extremely stringent congruence conditions
on n. For p < 733 in the Fibonacci case, the congruences obtained are so strong
that, when combined with the upper bounds for » in terms of p obtained in (iv), they
give a complete resolution for F,, = y¥#.

Let us make some brief comments.

The condition 1 = 1 (mod p) obtained after step (iv) cannot be strengthened. Indeed,
we may define F, and L, for negative n by the recursion formule Fyyr = Fypq + Iy
and Lyyo = Lyy1 + Ly, We then observe that F_y = 1 and L_; = —1. Consequently,
F_1, F1, L1 and L are p-th powers for any odd prime p. Thus equations F,, = y# and
L, = v# do have solutions with n = +1 (mod p).

The computations in the paper were performed using the computer packages PARI /GP
[2] and MAGMA [4]. The total running time for the various computational parts of the proof
of Theorem 1 was about a week.

4 A brief survey of previous results

In this section we give a very brief survey of results known to us on the problem of perfect
powers in the Fibonacci and Lucas sequences, though we make no claim that our survey
is exhaustive.

Before stating specific results on Fibonacci and Lucas numbers, we note that Peth$ [24]
and, independently, Shorey and Stewart [31] proved that there are only finitely many per-
fect powers in any non-trivial binary recurrence sequence. Their proofs, based on Baker’s
theory of linear forms in logarithms, are effective but yield huge bounds. We now turn to
specific results on the Fibonacci and Lucas sequences.

e The only perfect squares in the Fibonacci sequence are Fyp = 0, F1 = I, = 1 and
F1p = 144; this is a straightforward consequence of two papers by Ljunggren [18],



Fibonacci numbers at most one away from a perfect power 71

[19] (see also [21]). This has been rediscovered by Cohn [11] (see the Introduction
to [20]) and Wyler [36].

e London and Finkelstein [22] showed that the only perfect cubes in the Fibonacci
sequence are Fyp = 0, F1 = F» = 1 or Fs = 8. This was reproved by Peths [25],
using a linear form in logarithms and congruence conditions.

e Form = 5,7, 11, 13, 17, the only m-th powers are Fp = 0, F1 = Fp = 1. The
case m = 5 is due to Peth [26], using the method described in [25]. It has been
reproved by McLaughlin [23] by using a linear form in logarithms together with the
LLIL algorithm. The other cases are solved in [23] with this method.

e Ifn >2and F, = v’ then p < 5.1 x 10'7; this was proved by Peth$ using a linear
form in three logarithms [27]. In the same paper he also showed that if n > 2 and
Ly, = y7 then p < 13222 using a linear form in two logarithms.

¢ Another result which is particularly relevant to the proof of Theorem 1 is the fol-
lowing: If p > 3 and F,, = y* for an integer y then either n = 0, 1, 2, 6 or there is
aprime g | n such that F, = yf , for some integer yy. This result was established
by Pethé [25] and Robbins [30] independently.

e Cohn [12] proved that Ly = 1 and L3z = 4 are the only squares in the Lucas
sequence.

e London and Finkelstein [22] proved that L1 = 1 is the only cube in the Lucas
sequence.
The proof of London and Finkelstein consists of solving some elliptic equations
obtained by combining (2) below with the conditions F, = y> and L, = z°. Tt
is also interesting to note — as London and Finkelstein have done — that a paper
of Siegel [33] shows that determining all the cubes among Fibonacci and Lucas
numbers gives a new solution of the old famous problem of determining all the
imaginary quadratic fields with class-number one; see also a more recent paper of
Chen on this subject [10].

We end this section with very elementary results which will be useful throughout the rest
of this paper. We use Binet’s formula
ot — ,3”

b,=—--, a=ao" " 1
NG o + B (D)

where o = (1+ \/5)/2 and g = (1— \/5)/2, that imply the following well-known relation
between F, and L.

Lemma 1. For any integer n, the Fibonacci and Lucas numbers F, and L, satisfy the
quadratic relation
L2 52 =4 (-1 (2)

This quickly leads us to associate the equations F,, = v¥ and L, = y¥ with auxiliary
equations of the type ax?> —b = cy? discussed above as examples for which the modular
method may be applied.
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5 Factorization

As noted previously, the Fibonacci and Lucas sequences can be extrapolated backwards
using Fy, = Fyao — Fyy1 and Ly, = Lyyp — Lyyy. Thus, for example, F_1 = 1, F_p =
—1, and so on. Binet’s formul® (1) remain valid for Fibonacci and Lucas numbers with
negative indices, and they allow us to show easily that

Fy Ly = Fyrp+ (—1)"Fyp (3)

for any two integers a, b. We use this to turn the equation F, + 1 = v# into a multiplicative
instead of an additive problem. Here we are helped by the fact that Foy = Fy = Fp =
l and F_» = —1. A little experimentation gives a different factorization for F, + 1
depending on the class of n modulo 4:

Fag + 1 = Fop—1Lok+1, Fagr1 + 1 = Fopy1Log, )

Fagqo + 1 = FoppoLog, Fagy3 + 1 = Fogy1Log42. (5

Thus we are led to consider four equations of the form F,Lp = y¥. If the Fibonacci and
Lucas numbers in question are coprime we instantly deduce that both are perfect powers
and conclude using Theorem 1. This is not true in all the cases we require; the next section

provides the necessary information on the greatest common divisors of these Fibonacci
and Lucas numbers.

6 Common factors of Fibonacci and Lucas numbers

The following are well-known facts whose proofs we sketch for the convenience of the
reader.

Lemma 2. The following properties hold for all nonnegative integers n.

1) ged(Fytr, Fn) = 1
2) ged(Fuyn, Fy) = 1;
3) 3 divides I, if and only if 4 divides n;
4) gcd(Fyuqo,3F,) is 1 if 4 does not divide n + 2, and is 3 otherwise;
5) gcd(B3E42, Fy) is 1 if 4 does not divide n, and is 3 otherwise;
6) 2 divides Iy if and only if 3 divides n.
Proof. (Sketch)
1) The Euclidean algorithm with input F,,4+1 and F;, gives the sequence Fyi1, Fy, Fr—1,

..., F1 = 1; hence, the result. Moreover, this is the “slowest” example for the Euclidean
algorithm. This is Lamé’s Theorem, proved around 1830.

2) Follows from 1) and the relation Fy4» = Fyyq + .
3) Computing the sequence (F;),>0 modulo 3 one notes that the period is 8.

4) By 2), the greatest common divisor of the two numbers is 1 when 3 does not divide
F,42 and is 3 otherwise. The desired conclusion follows from 3).
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5) Similar to 4).
6) Exercise. O

Lemma 3. For all nonnegative integers n we have:

1) gcd(Fy, Ly) is 1if3 does not divide n, and is 2 otherwise;

2) ged(Fyt1, Ly) = ged(Lpyyr1, Fy) = 1,

3) gcd(Fu42, Ly) is 1 if 4 does not divide n + 2, and is 3 otherwise;
4) ged(Fy—2, Ly) is 1 if4 does not divide n — 2, and is 3 otherwise.

Proof. The proof follows easily from LLemma 2 and the relations
Ly, = 2Fn+1 - =2F 1+ F = 2Fn+2 —3F, = —2F, 2+ 3F,,

which can be obtained almost directly from Binet’s formul® (1) and the defining relation
Fn+2:Fn+1+Fn. D

7 Proof of Theorem 2

We now return to equation Fy, + 1 = v¥. We know from (4) and (5) that F, + 1 = F,Lp
where the pair of integers a, b depends on the class of #n modulo 4. By Lemma 3, the
greatest common divisor of the two factors in the above products is always 1 except when
n = 6 (mod 8), in which case it is equal to 3. Since we already know the solutions of
F, = y# and L, = yP for p > 2 (Theorem 1), we only have to consider the equation
F, = 3%y?_ Theresult for F, + 1 = y? follows from the following proposition.

Proposition 1. The only positive integer solutions (n, k, p, v) fo the equation
Fp =3%v? with k>0 and p =2
are Fy =3 -1 and Fjp = 32 . 42,

Proof. By considering the Fibonacci sequence modulo 3 and 9 it is easy to see that 3 | Fy
if and only if 4 | n, and 9 | F, if and only if 12 | n. Suppose that F, = 3¥y# with
k > 1. Then 3 divides n and, by Lemma 4 below, F,;3 = 3*7'z7 with some positive
integer z1. So, we treat first the case when £ = 1 and z is not a multiple of 3. Since 3
divides Fy, we get that n = 4h, where 3 does not divide A because 3 does not divide z.
Then Fyp, = FopLop, where Fop and Loy are coprime. Hence, Fpp =t or Loy = ¥ and
Theorem 1 implies that # = 1. The conclusion is now immediate by noticing that 3¢ is

not a solution. a

Lemma 4. For all nonnegative integer n,
Py = F,(SF + (=1)'3) = F, Z,.
Furthermore, gcd(Ily,, Zy) = 3 when 3 divides Iy,. Moreover, 9 never divides Zy.

Proof . Exercise. [

We leave it as an exercise to the reader to discover the necessary factorizations of I, — 1
using (3) and to complete the proof of Theorem 2 by solving F,, — 1 = y¥.
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8 An open problem

We conclude by posing an open problem. Find all the solutions to the equation

Fu+2=y?, p=2

For odd #n it is possible to factorize F; +2 and solve this problem; but no such factorization
is known for even 7.
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