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Elemente der Mathematik

Über eine bemerkenswerte Eigenschaft von Dezimalbr

üchen und gewissen anderen Systembrüchen

Stefan Deschauer

Stefan Deschauer studierte Mathematik, katholische Theologie und Erziehungswissenschaften

an der Universität Marburg. Nach der Promotion in Ulm und einigen Jahren

im Schuldienst war er an den Universitäten Eichstätt und Erlangen tätig, bevor
er 1994 den Ruf auf eine Professur für Didaktik der Mathematik an der TU Dresden
annahm.

Während eines Unterrichtsbesuchs in einer 7. Klasse eines Dresdner Gymnasiums sollte
eine Schülerin den Dezimalbruch 2,5 in einen gemeinen Bruch verwandeln. Ihre spontane

Antwort war ”
2

5
“, dann korrigierte sie und gab ”

5
2“ an. Für den Mathematiker ergab sich

sogleich folgende Frage:

Gibt es weitere endliche Dezimalbrüche, deren Wert mit dem Quotienten aus

der natürlichen Zahl, die aus den Nachkommastellen gebildet wird, und der
Vorkommazahl übereinstimmt?
Zu welchen Ergebnissen führt die entsprechende Untersuchung bei g-
adischen Systembrüchen?

Der Reiz dieses keineswegs trivialen Problems besteht darin, dass die Fragestellung
eigentlich so naheliegend ist, wichtige Teillösungen mit Methoden der elementaren Zahlentheorie

gewonnen werden können und genügend offene Fragen bleiben.

Eine fehlerhafte Umwandlung von 2,5 in 25 im Unterricht machte den Autor auf die

augenfällige Darstellung 2,5 52 aufmerksam. Gibt es im Dezimalsystem noch weitere

solcher Darstellungen, wobei die ein- oder mehrstellige) Vorkommazahl mit dem
Nennerund die ein- odermehrstellige)Nachkommazahlmit demZähler desgemeinen
Bruchs übereinstimmt? Der elementare, aber attraktive Weg zur negativen) Antwort
weckt Neugier auf die Situation in anderen g-adischen Systemen. OhneWeiteres findet
man unendlich viele g mit mindestens einer Darstellung in obigem Sinne). Schwieriger

ist es zu zeigen, dass sogar unendlich viele g mit mindestens zwei Darstellungen
existieren, und diese explizit anzugeben.
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1 Dezimalbrüche

Wir betrachten also allgemein Dezimalbrüche

a, anan-1 a1a0, a N*, 0 a. 9 0 n)

mit der Eigenschaft

a,anan-1 a1a0
z

a
z

n

0

a. · 10. < 10n+1 1)

Es folgt nach Multiplikation mit 10n+1
· a:

10n+1
· a2 + az 10n+1

· z 2)

mit a2 + a < 10n+1 wegen 10n+1

· a2 10n+1- a)z < 10n+1- a)10n+1.

1.1 Analyse des Terms für z

Wir können nun nach z auflösen und den entstehenden Term studieren. Es gilt

z
10n+1

· a2

10n+1 - a
3)

Eine Umformung des Terms für z führt zu

z a2 + q, q
a3

10n+1 - a
N* mit a2 < 10n+1 - a

a3

q
also q < a.1 4)

Letzteres ergibt sich auch aus der Identität

z

10n+1

q

a
5)

Gemäß 4) oder 5) betrachten wir die multiplikative Darstellung

a a2 + q) 10n+1q, q < a. 6)

Mit der Zerlegung

q 2s · 5t · q · q s, t 0, 10,q · q 1, q |a, q | a2 + q) 7)

– dieWahl von q und q ist zunächst nicht notwendig eindeutig – ergeben sich die
Darstellungen

a 2i · 5kq 0 i n + 1 + s, 0 k n + 1 + t

mit i + k 1 wegen q < a;
8)

a2 + q 2n+1+s-i · 5n+1+t-k

· q

Wiederum sind nicht beide Potenzen 1.)
9)

1Insgesamt gilt z a2 + q < a2 +a < 10n+1.
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Andererseits ist

a2 + q

q

22i · 52k
· q 2

+ 2s · 5t · q q

q
22i

·
52k ·

q 2

q + 2s
·

5t · q 10)

so dass wegen der Bedingung der Teilerfremdheit in 7) gilt:

q |q
2 11)

Darüber hinaus ergibt sich aus 10) und 9)

a2 + q

q
22i · 52k · q + 2s · 5t · q 2n+1+s-i

· 5n+1+t-k
·

q

q

mit q |q und

a2 + q

q 2
22i

·
52k + 2s · 5t ·

q

q
2n+1+s-i · 5n+1+t-k

·
q

q 2
12)

mit
q 2

|q 13)

Mit 11) folgt

q q 2 und daher q 2s · 5t · q 3 gemäß 7)). 14)

Weiterhin ergibt sich nun aus 12)

q
2n+1+s-i · 5n+1+t-k - 22i · 52k

2s · 5t
2n+1-i · 5n+1-k - 22i-s

· 52k-t 15)

mit den im Vergleich zu 7) und 8) eingeschränkten Exponentenbedingungen

0 i, k n + 1, 0 s 2i, 0 t 2k.

Wegen 10,q 1 reduziert sich 15) zunächst auf vier Darstellungsformen für q :

i k n + 1, 0 s,t 2n + 2 : q1 1- 22n+2-s
· 52n+2-t 16)

s 2i, t 2k, 0 i,k n + 1 : q2 2n+1-i · 5n+1-k - 1, 17)

k n + 1, s 2i, 0 i n + 1, 0 t 2n + 2 : q3
2n+1-i - 52n+2-t 18)

i n + 1, t 2k, 0 k n + 1, 0 s 2n + 2 : q4 5n+1-k - 22n+2-s 19)

Dabei scheidet 16) von vornherein aus wegen q1 0. Die anderen q sind auch noch
hinsichtlich des Kriteriums q < a zu untersuchen. Nach 14) und 8) ist q < a äquivalent
zu

q 2 < 2i-s
· 5k-t 20)

und die Wahl von s und t in 17) fuhrt¨ wiederum zu keinem q 1. Im Fall 18) musste¨

1 q 2
3 <

5n+1-t

2i
5n+1-t mit t n gelten im Widerspruch zur Abschätzung q3
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44

2n+1-i-52n+2-t 2n+1-5n+2 < 0 fur¨ alle n N. Entsprechende Uberlegungen fuhren¨
nur bei q zu keinemWiderspruch. Nach 19) und 20) gilt es nun, q zu finden mit

¨

1 q 2
4 < 2n+1-s

· 5-k 21)

4

Hieraus folgt 5k < 2n+1-s mit s n und mit 19) 2s · 52k < 22n+2-s < 5n+1-k wegen
q 1. Daher gilt 2s < 5n+1-3k mit k

n
insgesamt also eine Verscharfung¨ der

3
Bedingungen für s, k gegenüber 19). Für die weiteren Überlegungen genügen aber die
Schranken 0 s, k n. Setzt man gemäß 19)

1 q4 u - mit u := 5n+1-k und := 22n+2-s 22)

so erhält man nach Division von q 2
4 durch u. infolge von 21) die obere Abschatzung¨

u
+ - 2 <u

1

10n+1
23)

1.2 Bestimmung von u und

Wir betrachten zuerst den Fall n 1 und nehmen zunächst an, dass

uk n) > .s n) uk n - 1) > .s n - 1), 0 s, k n, 24)

gilt, wobei uk n-1) 5n-k und .s n- 1) 22n-s ist. Dafür ist k auf 0 k n-1
einzuschränken. Dann kann die linke Seite von 23) folgendermaßen nach unten
abgeschätzt werden:

5

4 ·
uk n - 1)

.s n - 1) +
4

5 ·
.s(n - 1)
uk(n - 1) - 2 >

5

4 +
4

5 - 2
1

20 >
1

10n+1
25)

Dazu beachte man, dass die Funktion f x) x +
1

x für x > 1 streng monoton wächst

und x
5

4 ·
u

ein Produkt aus zwei Faktoren ist, die beide 1 übersteigen. 24) lässt sich

also mit 23) nicht vereinbaren. Es verbleibt jetzt noch der Fall

uk n) > .s(n) uk n - 1) < .s(n - 1), 0 s, k n. 26)

Äquivalent dazu ist die Ungleichungskette

22n+2

5n+1 <
2s

5k <
22n

5n
27)

Mithilfe des Faktors
53

27

125

128
der noch näher bei 1 liegt als

22

51

4

5
lässt sich

22n

5n
mehrfach

passend verkleinern, womit konkrete
2s

5k
unter der Bedingung 27) erzeugt werden

können. Hierbei ist zu beachten, dass
4

5 <
53l

27l < 1, l N, genau dann gilt, wenn l im
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Intervall [1;9] liegt. Damit können s und k die folgenden Werte annehmen, womit eine
weitere Einschränkung von n verbunden ist:

s 2n- 7l, k n - 3l, n
7

2
l, l 1, 9. 28)

Gibt es noch andere s und k, die 27) erfüllen? Hierzu betrachten wir die zu 27)
äquivalente Ungleichungskette

22n+2-s < 5n+1-k < 22n-s

· 5. 29)

Wegen 0 s n ist 22n+2-s 8 mit der Folge k n - 1 und rechts s 2n - 3.

Nun beginnt ein hübscher Schaukel-Algorithmus“: Man erhält weiter 22n+2-s 32 und”
k n - 2, so dass rechts s 2n - 5 folgt. Dann ist aber 22n+2-s 128, k n - 3 und
rechts s 2n- 7. Damit ergibt sich aus 29)

512 · 22n-7-s < 625 · 5n-3-k < 128 · 22n-7-s
· 5 30)

mit ausschließlich nicht-negativenExponenten,wobeiaber jetzt die Schranken von k und s

stagnieren.Das Verfahren brichtan dieser Stelle ab. Aus 27) bzw. 29) folgtalso einerseits
die Exponentenbedingung

s 2n - 7 und k n- 3, 31)

andererseits erweist sich der Fall l 1 in 28) wieder als eine Losung¨ von 27), wie man
an der gultigen¨ Ungleichungskette 512 < 625 < 128 · 5 in 30) erkennt. s 2n - 7
und k n - 3 sind also die maximalen Exponenten, fur¨ die die Ungleichungskette 27)
erfullt¨ ist. s und k mit l 2 in 28) mussen¨ nun die zweithochsten¨ Exponenten sein, denn
angenommen, 27) wurde¨ durch ein Paar s, k) mit 2n - 14 < s < 2n- 7, n - 6 < k <

2s 27 22n
n - 3 erfullt,¨ dann ergabe¨ sich wegen · < auch noch fur¨ s + 7,k + 3) mit

5k 53 5n
2n - 7 < s + 7 < 2n, n - 3 < k + 3 < n eine Lösung. Diese Exponentenbedingungen
widersprechen aber 31).

Da sich diese Überlegung für alle l 3, 9 fortsetzen lässt, sind mit 28) tatsächlich
alle Lösungen von 27) erfasst. Nach 22) folgt nun

uk n)

.s n) +
.s n)
uk n) - 2

5

4

125
128

l
+

4

5

128

125

l

- 2. 32)

Die Funktion auf der rechten Seite fällt offenbar streng monoton mit l. DasMinimumwird
also für l 9 angenommen und ist größer als 9 · 10-5. Andererseits lässt sich die rechte
Seite von 23) mit

1

10n+1

1

10
7
2+l

33)

nach oben abschätzen, wobei das Maximum für l 1 angenommen wird und kleiner als

4 · 10-5 ist. Damit gilt auch hier uk n)
.s n) +

.s n)

uk n) - 2 >
1

10n+1
im Widerspruch zu 23).
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Unser Problem

4

ist also auf n 0 reduziert. Es folgt s k 0, u0(0) 5, .0(0) 4,
u0(n)

+
.0(n)

- 2
1 1

< gemaß¨ 23), q
.0(n) u0(n) 20 101

1 mit i 1, t 0 nach 19), q 1 nach

14), a 2 nach 8), z a0 5 nach 4) und 1). Damit gilt

Satz 1. 2,5 ist der einzige Dezimalbruch, der die Eigenschaft 1) besitzt.

2 g-adische Systembrüche

Im Weiteren wollen wir nun allgemein g-adische Systembrüche a, anan-1 a1a0,
a N*, 0 a. g- 1 0 n) mit der Eigenschaft

a, anan-1 a1a0)g
z

a
z

n

0

a. · g. < gn+1 1

betrachten.

2.1 g pa, p Primzahl, a 1

Die Schritte 2)–(15) für g 10 lassen sich weitgehend analog auf g pa übertragen:
Mit den alten Bezeichnungen erhält man jetzt q q 2, q ps · q 3 und schließlich

q pa(n+1)-i - p2i-s 15

mit den Exponentenbedingungen 1 i a(n + 1), 0 s 2i.

Wegen p, q 1 reduziert sich 15 nun auf nur zwei Darstellungsformen für q :

1 i a(n + 1), 0 s 2a(n + 1) : q1 1- p2a(n+1)-s 16

s 2i, 1 i a(n + 1) : q2 pa(n+1)-i - 1. 17

Einerseits gilt q1 0, andererseits ist q < a wegen a pi · q jetzt äquivalent zu 20

q 2 < pi-s, so dass für q q2 mit s 2i folgt: q 2
2 < p-i p-1 – im Widerspruch zu

q2 1. Daher gilt

Satz 2. Ist g > 1 eine Primzahlpotenz, so gibt es im zugehörigen g-adischen System keine
Darstellung gemäß 1

2.2 g-adische Systeme mit mindestens einer Darstellung2

Ersetzt man 10 durch g, so erhält man

z

gn+1

q

a
5

2Unter einer Darstellung“ sei hier und im Folgenden die Darstellung gemäß 1 gemeint.”
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mit

z a2 + q, q
a3

gn+1 - a < a. 4

Daraus folgt unmittelbar

Satz 3. Ein g-adisches System hat genau dann mindestens eine Darstellung, wenn ein

n N und ein naturliches¨ q, 1 q < a, q|a3, existieren mit gn+1 a3

+ a. Dieq
zugehörige Darstellung ist

a,anan-1 a1a0)g
a2 + q

a
a2 + q

n

0

a. · g.

Beispiele. n 0 Darstellung bezogen auf 1 Nachkommastelle):

q 1, a 2: g 10, 2,5)10
5

2

q 4, a 6: g 60, 6,[40])60
[40]
6 60

gemeinsamerWert: 6
2

3
3

n 1 Darstellung bezogen auf 2 Nachkommastellen):

q 2, a 4: g 6, 4,30)
30

6
4 6

gemeinsamerWert: 4
1

2

q 27, a 36: g 42, ([36], [31][21])42 [31][21]

[36] 42
gemeinsamerWert: 36

3

4

Bemerkung. Die Frage, ob es Darstellungen gibt, die sich auf mehr als 2 Nachkommastellen

beziehen n 2), ist offen.

Wir wollen nun die folgende Tabelle studieren, in der alle Werte g unterhalb von 10000

mit g
a3

q + a unter der Bedingung 1 q < a, q|a3 n 0) der Größe nach aufgelistet

sind, und zur weiteren Theoriebildung beitragen.

10 30 36 60 68 78

2*1 3 *1 4*2 62 6 *4 4*1 6*3

114 130 135 136
6*2 5 *1 10*8 8 *4

204 210 222 228 252 260 264
12 *9 10 *5 6*1 12 *8 9*3 10*4 8 *2

300 350 357 390

12 *6 7 *1 14*8 15 *9
406 444

14 *7 12 *4
504 510 520 528 588

18*12 10 *2 8*1 20*16 16 *8 12*3

666 690

18 *9 15 *5

3Einziffrige Zahlen werden durch eckige Klammern gekennzeichnet, um Missverständnisse zu vermeiden.
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700 738 747 792
14 *4 9 *1 18*8 24 *18
820 876 888

20*10 12 *2 24*16
990

18 *6 22*11

1010 1020 1030 1040 1050

10 *1 20 *8 30*27 16 *4 21*9
1110 1140 1155 1176

30*25 15 *3 30*24 24 *12
1342 1344 1353 1364 1378 1380 1386
11 *1 21 *7 22*8 33 *27 26*13 30*20 14 *2

1400 1476 1494 1530 1560 1596 1620

28*16 18 *4 36*32 30 *18 24*9 28*14 20 *5
1740 1750 1752 1764 1830 1962 1980
12 *1 35 *25 24*8 36*27 422 30*15 18*3 36 *24
2020 2040 2064 2080 2100

20 *4 40 *32 16*2 32 *16 42*36

2210 2214 2223 2236 2280 2328 2346

13 *1 27 *9 26*8 39 *27 30*12 24*6 34 *17
2600 2628 2684 2688

40*25 36 *18 22*4 42 *28
2706 2730 2758 2772 2786 2926 2934 2952

44*32 30 *10 14*1 28 *8 42*27 38*19 18 *2 36*16

3030 3108 3120 3129 3150 3164 3175 3240
30 *9 21 *3 48*36 42 *24 25*5 28*7 50 *40 40*20
3300 3390 3405 3420 3480 3504 3570

33*11 15 *1 30*8 45 *27 24*4 48*32 42 *21
3640 3690 3916 3924 4020 4026 4040 4060

56*49 45 *25 44*22 36 *12 20*2 33*9 40 *16 60*54

4112 4128 4144 4158 4278 4380
16 *1 32 *8 48*27 42 *18 46*23 60*50
4420 4428 4446 4530 4560 4602 4632 4656
26 *4 54 *36 52*32 30 *6 60*48 39*13 24 *3 48*24
4860 4930 4947 4964 4981 5050 5166 5220

60*45 17 *1 34*8 51 *27 68*64 50*25 63 *49 36*9
5334 5346 5368 5390 5430 5460 5516 5544

42*14 22 *2 44*16 66 *54 30*5 52*26 60*40 28 *4 56*32

5850 5868 5886 5904 6060

18 *1 36 *8 54*27 72 *64 60*36
6120 6160 6192 6195 6216 6300 6328 6440

45*15 35 *7 48*18 70 *56 42*12 50*20 56 *28 40*10
6588 6600 6615 6630 6669 6710 6780 6786
27 *3 66 *44 54*24 39 *9 78*72 55*25 30 *4 58*29

6810 6878 6897
60*32 19 *1 38*8
6916 6930 6935 6936 6960 6984 7070 7260

57*27 70 *50 76*64 24 *2 48*16 72*54 70 *49 60*30
7750 7788 7812 7848 7854

62*31 44 *11 36*6 72 *48 51*17
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8020 8040 8052 8060 8080 8224 8256 8274
20 *1 40 *8 66*36 60 *27 80*64 32*4 64 *32 42*9
8316 8610 8645 8700 8778

84*72 35 *5 70*40 60 *25 66*33
8802 8814 8840 8866 9030 9060 9090

54*18 26 *2 52*16 78 *54 30*3 60*24 90 *81

9204 9264 9282 9303 9316 9324 9345 9394
78*52 48 *12 21*1 42 *8 68*34 63*27 84 *64 77*49
9450 9492 9804 9810 9860 9870 9894

75*45 84 *63 57*19 90 *75 34*4 70*35 68 *32

Tabelle 1 für 2 g 10000, g a*q :=
a3

q + a, 1 q < a, q|a3

Nach Satz 2 treten für g keine Primzahlpotenzen auf, so dass g mindestens zwei verschiedene

Primfaktoren enthält. Speziell gibt es Zahlen g, die sich in genau zwei verschiedene
Primfaktoren zerlegen lassen, z.B. 10 und 4981 17 · 293).

Es kommen gerade und ungerade g vor, wobei alle Endziffern ausgeschöpft werden, aber
die geraden g dominieren in der Tabelle) beiWeitem. Ungerades g zieht offenbar gerades

a nach sich. Darüber hinaus erhält man sofort folgendes Kriterium:

g ist ungerade genau dann, wenn gilt:

a 2ia q 23iq i 1, a q ungerade.
34)

Dabei gilt q |a 3. Weiterhin hat g die Produktdarstellungen

g
a

a,q) ·
a2
q

a,q)
+ a, q)

a

a, q) ·
a, q)2

q
a,q)

·
a

a, q)

2

+ a, q) 35)

In diesem Zusammenhang bietet sich auch an, die Werte q zu klassifizieren:

q < a) q|a), 36)

q < a) q a) q|a2 36

q < a) q a2 q|a3 36

In den Fällen 36) und 36 lässt sich 35) vereinfachen, und man erhält g
a

q ·
a2 + q)

a,q) · a, q) ·
a2

bzw. g
a

q + 1 wobei kein Faktor gleich 1 ist. Man sieht direkt – auch

ohne Rückgriff auf das Kriterium 34) – leicht ein, dass in diesen Fällen g stets gerade ist.

2.3 g-adische Systeme mit mindestens zwei Darstellungen

In der Tabelle 1 fallen weiterhin die Werte g 520, 990, 5460 auf, die nach Satz 3 Fall
n 0) jeweils mindestens zwei verschiedene auf die 1. Nachkommastelle bezogene Dar-
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stellungen besitzen, und zwar

8,[65])520
[65]

8 520
gemeinsamerWert: 818

([20],[416])520
[416]

[20] 520
gemeinsamerWert: 2045

bzw.

([18],[330])990
[330]

[18] 990
gemeinsamerWert: 1813

([22],[495])990
[495]

[22] 990
gemeinsamerWert: 2212

bzw.

([52], [2730])5460
[2730]

[52] 5460
gemeinsamerWert: 5212

([60], [3640])5460
[3640]

[60] 5460
gemeinsamerWert: 6023

und möglicherweise noch weitere, falls für diese g außerdem noch die Identität gn+1

b3

r + b r < b, r |b3) für ein n 1 gilt. Im Bereich der Tabelle 1 ist dies nicht der Fall.)

Es stellt sich nun natürlicherweise die Frage, ob es unendlich viele g mit mindestens)
zwei Darstellungen gibt und ob man gegebenenfallszumindest eine unendliche Teilmenge
dieser g konkret angeben kann.

Dabei sollen zwei Darstellungen bezüglich g, die sich jeweils auf die 1. Nachkommastelle
beziehen, als 1/1-Darstellungen von g bezeichnet werden. Außerdem gehen wir noch kurz
auf 1/2-Darstellungen von g ein, d.h. auf Darstellungen bezüglich g, von denen sich die
eine auf die 1. Nachkommastelle, die andere auf die ersten beiden Nachkommastellen
bezieht.

2.3.1 g-adische Systeme mit 1/1-Darstellungen

Hier sind g zu finden mit

g
a3

q + a
b3

r + b, a b, q < a, q|a3 r < b, r |b3 37)

Sei o.B.d.A. a < b. Die Tabelle 1 lieferte die Beispiele g 520, g 990 und g 5460.
Wir wollen nur den speziellen Fall q|a, r|b betrachten, wie er für g 990 vorliegt, und
erhalten mit a .q, b µr, 1 < a, 1 < µ b

g a(.a + 1) b(µb + 1), 2 µ < 37

bzw.
a

b

µb + 1

.a + 1 µ|b, .|a, 2 µ < 38)
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Mit s a, b) schreiben wir a as, b ßs:

as

ßs

µßs + 1

.as + 1 a< ß, a, ß)= 1, µ|ßs, .|as, 2 µ < 38

Für die Zahl k, mit der der Bruch a
ß

zu
µßs + 1

.as + 1
erweitert wird, gilt k .as - µßs

ß - a
woraus

einerseits k + .s - µ)ßs

ß - a
andererseits k + µs -µ)as

ß - a
folgt. Somit ergibt sich

ß - a|( -µ)s. 39)

Wir nehmen nun eine erneute Spezialisierung vor:

ß - a -µ)s. 39

Dann ist
k + .s ß, k + µs a, 40)

und wegen der Erweiterungseigenschaft von k ergibt sich aus 38 :

k(k + µs) µ(k + .s)s + 1, k(k + .s) k + µs)s + 1.

Aus beiden Gleichungen erhält man

k2 - 1 µ.s2 41)

was nach 40) zu k2 - 1 a- k)(ß - k) mit k aß + 1

a + ß
führt, woraus wieder wegen

40) die Darstellungen

µs
a2 - 1

a + ß
.s

ß2- 1

a + ß
42)

folgen. Einzellosungen¨ des Systems 42) unter den Bedingungen aus 38 sind nun leicht
zu finden. Wahlt¨ man z.B. µ s 2 und a ungerade, d.h. a 2. - 1, so ist nach 42)

ß 2 - 3. + 1 und
1

- 2)( - 3). Dabei muss nach 38) 5 sein. Es folgt
2

2. - 1) · 2
2- 3. + 1) · 2

2( 2 - 3. + 1) · 2 + 1

12 - 2)( - 3)(2. - 1) · 2 + 1
38

Hier ist µ|ßs trivialerweise allgemein erfullt.¨ 2 µ < .|as kann offenbar nur fur¨
endlich viele a erfullt¨ sein, hier fur¨ a1 9, ß1 11 mit .1 3 oder a2 15, ß2 41

mit .2 15. Damit erhalt¨ man die Darstellungen
9 18 2 · 22 + 1

11 22 3 · 18 + 1
mit q 6, r 11,

k 5 sowie
15

82

2 · 82+1

41

30

15 · 30 + 1
mit q 2, r 41, k 11.

Nach Satz 3 führt die erste zu einem bereits bekannten Beispiel g 990), die zweite zu

einem neuen:

([30],[902])13530
[902]

[30] 13530
sowie ([82],[6765])13530 [6765]

[82] 13530

gemeinsameWerte: 30
1

15
bzw. 82

1

2

Unser Ziel ist es aber, unendlich viele a, ß zu finden, die 38 erfüllen. Dazu bietet sich
an, möglichst schwache Teilbarkeitsbedingungen zu fordern, d.h. µ 2 und 3 zu

wählen.
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Nach 41) folgt k2 - 1 6s2 mit ungeradem k, etwa k 2m - 1, und daraus

2m(m - 1) 3s2 mit geradem s s 2s). Damit ist die erste Bedingung µ|ßs bereits
erfüllt. Wir erhalten

3s2 1

2
m(m - 1). 43)

Aus 40) folgt m
1

2
a- 4s + 1) - 2s mit a 2. - 1 wegen ungeradem k und

µ 2), also

3s2 1

2 - 2s)( - 2s - 1). 43

Wir zeigen zunächst, dass m aus 43) bzw. aus 43 stets ungerade ist.

Angenommen, es sei m 2t:
Im Fall 3|2t - 1 existiert dann ein ungerades l l 2l - 1) mit 2t - 1 3l. Es folgt
t 3l - 1 und s2 3l - 1)(2l - 1) mit teilerfremden quadratischen Faktoren. Mit
den Bezeichnungen 3l - 1 c2, 2l - 1 d2 folgt 2c2 - 1 3d2 mit ungeradem d
d 2d -1). Hieraus erhält man c2 2(3d d -1)+1) mit ungeradem zweiten Faktor,

was zum Widerspruch führt.

Im Fall 3|t t 3l) erhalten wir die Darstellung s2 l(6l-1), wiederum mit teilerfremden

quadratischen Faktoren c2, d2). Es folgt 6c2-1 d2 mit ungerademd d 2d -1)
und hieraus 3c2 2d d - 1) + 1, wobei aber d d - 1) nur die Reste 0 oder 2 mod 3
annehmen kann, was erneut zum Widerspruch führt.

m ist also ungerade. Mit m 2t + 1 ergibt sich daher aus 43)

3s2 2t + 1)t 44)

bzw. aus 43 mit 2d + 1:

3s 2 2d - 2s + 1)(d - s). 44

Die folgende Tabelle gibt die ersten acht Werte für t, m, s an, die 44) bzw. 43) erfüllen.

n 1 2 3 4 5 6 7 8

tn 1 12 121 1200 11881 117612 1164241 11524800
mn 3 25 243 2401 23763 235225 2328483 23049601

sn 1 10 99 980 9701 96030 950599 9409960

Tabelle 2

Es lassen sich folgende Vermutungen beweisen:

tn+1 - sn+1 tn + sn; mn+1 - 2sn+1 mn + 2sn, 45)

sn+1 5sn + 4tn + 1 5sn + 2mn - 1, 46)

tn+1 6sn + 5tn + 1; mn+1 12sn + 5mn - 2, 47)

s1 1, s2 10, sn+2 10sn+1 - sn, 48)

t1 1, t2 12, tn+2 10tn+1 - tn + 2;
m1 3, m2 25, mn+2 10mn+1- mn - 4, 49)
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s2n 2(4tn + 1)sn 2(2mn - 1)sn, 50)

t2n 4(2tn + 1)tn; m2n 2mn - 1)2 51)

Es lässt sich zeigen, dass damit die Lösungen von 43) bzw. 44) vollständig erfasst werden.

Außerdem gilt nach 46) und 44)

sn+1

sn
5 +

4tn+1

sn
5 +

v3 ·
4tn+1

vtn(2tn + 1)
5 +

v3 · 8 +
1

tn(2tn + 1)

mit limn.8 sn+1

sn
5 + v24, so dass für sn – wie nach der Rekursionsformel 48)

zu erwarten war – nach Berücksichtigung eines normierenden Faktors vgl. n 1) eine

BINET-Formel entsteht:

sn
1

2v24 · 5 +
v24

n

- 5-v24
n

52)

Wir kommen nun auf die zweite Teilbarkeitsbedingung .|as mit 3, a 2. - 1
4d + 1, s 2s zurück. Sie ist genau dann erfüllt, wenn 3 Teiler von s oder Teiler von
4d + 1 ist.

Zum Fall 3|s: Nach Tabelle 2 ist s3 0 mod 3, s6 0 mod 3, und allgemein führt
s3n 0 mod 3zus3(n +1) 0 mod 3wegens3(n +1) s3n +2 - s3n +1 s3n +1 -s3n +1 - s3n 0 mod 3 nach 48). Aus s3n 0 mod 3 folgt nach 48) andererseits

s3n -1 s3n -2 mod 3, wobei der Rest 0 nicht angenommen wird, weil sonst alle sn
durch 3 teilbar wären im Widerspruch zu s1 1, s2 10. Es gilt also 3|sn genau dann,
wenn 3|n.

Zum Fall 3|4d + 1: Aus 44) und 44 ergibt sich d s + t und daher 4d + 1 4s +
4t + 1. Indiziert man die rechte Seite mit n, so gelangt man gemäß 46) und 48) zu den
äquivalenten Bedingungen 3|sn+1 - sn und 3|sn+2.

Insgesamt ist – in indizierter Schreibweise – die zweite Teilbarkeitsbedingung .|ansn mit
3 daher genau dann erfüllt, wenn n 2 mod 3 ist. Dabei ist kn 2mn-1 4tn+1,

also nach 50)
kn

s2n

2sn
53)

und wegen µ 2, sn 2sn gilt für an nach 40), 46): an kn + 4sn 4tn + 1 + 4sn
bzw.

an sn+1 - sn. 54)

Daraus folgt für ßn im Hinblick auf 39 wegen -µ 1:

ßn sn+1 + sn. 55)

Die quasi-reziproke“ Gleichung 38 ist daher für sn 2sn und an, ßn aus 54) und
”55) erfüllt, und für n 2 mod 3 sind die geforderten Teilbarkeitsbedingungen – trivial:

2|(sn+1 + sn)2sn, nichttrivial: 3|(sn+1- sn)2sn – garantiert:

sn+1 - sn) · 2sn

sn+1 + sn) · 2sn

2(sn+1 + sn)2sn + 1

3(sn+1 - sn)2sn + 1
56)
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wobei sn+1 - sn

sn+1 + sn
ein vollständig gekürzter Bruch ist, der mit s2n

2sn
zum Bruch auf der rechten

Seite von 56) erweitert wird. Weiterhin gilt nach 37 gn bn(2bn + 1) bzw. u.a. nach
55))

gn sn+1 + sn) · 2sn · 4(sn+1 + sn)sn + 1 57)

mit g1 990 99 · 10, g2 9506980 9701 · 980, so dass man – vgl. Tabelle 2 –
folgenden vereinfachten Ausdruck für gn vermuten kann:

gn s2n+1 · s2n. 58)

Zum Nachweis greift man auf die Beziehungen 44), 46), 50) und 51) zurück und stellt

fest, dass die rechten Seiten von 57) und 58) mit 5s2
2n +

1

2 · s4n übereinstimmen.

Schließlich sind noch a2n + qn, b2n + rn zu bestimmen:

a2
n + qn

qn

an · gn
1

3
gn

1

3 ·s2n+1 · s2n;
b2

n +rn
rn

bn · gn
1

2
gn

1

2 · s2n+1 · s2n.

Insgesamt gilt nach Satz 3:

Satz 4. Es gibt unendlich viele g-adische Systeme mit 1/1-Darstellungen. Dazu gehören
gn s2n+1 · s2n, sn aus 52), n 2 mod 3, mit den Darstellungen

sn+1 - sn) · 2sn,
1

3s2n+1 · s2n

s2n+1·s2n

13

s2n+1 · s2n

sn+1 - sn) · 2sn
s2n+1 ·s2n

59)

gemeinsamer Wert: sn+1- sn)2sn
1

3

sn+1 + sn) · 2sn,
1

2s2n+1 · s2n

s2n+1·s2n

12

s2n+1 · s2n

sn+1 + sn) · 2sn
s2n+1 ·s2n

60)

gemeinsamer Wert: sn+1 + sn)2sn
1

2

Beispiele zu 56) und Satz 4):

n 1:
9 · 2 · 1
11 · 2 · 1

2 · 11 · 2 · 1+1

3 · 9 · 2 · 1+1
k1 5),

([18],[330])990 [330]

[18] 3; ([22],[495])990 [495]
990

18 1

[22] 990
22 1

2
;

n 3:
881 · 2 · 99

1079 · 2 · 99

2 · 1079 · 2 · 99 + 1

3 · 881 · 2·99 + 1
k3 485),

([174438], [30428673990])91286021970 [30428673990]

[174438] 91286021970
174438

1

3

([213642], [45643010985])91286021970 [45643010985]

[213642] 91286021970
213642

1

2
;

n 4:
8721 · 2 · 980

10681 · 2 · 980

2 · 10681 · 2 ·980 + 1
3 · 8721 · 2 ·980 + 1

k4 4801).

Die Darstellungen gem äß Satz 4 sollen hier übergangen werden.
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2.3.2 g-adische Systeme mit 1/2-Darstellungen4

Es gilt also unendlich viele gn zu finden mit

gn
a3

n

qn + an qn < an, qn|a3n) und g2
n

b3
n

rn + bn rn < bn, rn|b3n). 61)

Hier führt die mit den Bedingungen konforme Spezialisierung an 2an, qn|4a2n,
bn 4a2n, rn 2a2n zu

a2
n

1

2
qn(qn - 1). 62)

Die ersten Beispiele sind 12 1

2 · 2 ·1, 62 1

2 ·9·8, 352 1

2 ·50 ·49, 2042 1

2 ·289·288.

Wegen qn < 2an muss dabei aber nach 62) qn > 2 sein. Da qn) streng monoton wächst,
ist n 1 q1 2) auszuschließen. Es lässt sich nun zeigen, dass es unendlich viele

solcher quadratischerWerte von arithmetischen Reihen gibt: Es gilt die Rekursionsformel

an+2 6an+1- an und

an
1

2v8 · 3 +v8
n

- 3 - v8
n

qn
1

2 n + 1 + 18a2 n > 1). 63)

Wegen gn 2an(2qn - 1) a2n erhält man schließlich

Satz 5. Es gibt unendlich viele g-adische Systeme mit 1/2-Darstellungen. Dazu gehören
gn a2n,an aus 62) bzw. 63), n > 1, mit den Darstellungen

2an,qn(2qn - 1)
a2n

qn(2qn - 1)
2an

a2n

1 Nachkommastelle), 64)

n,
a2n

4a2

2 [0]
a2n

a2n
2 [0]
4a2n

a2n

2 Nachkommastellen). 65)

Beispiele:

n 2: ([12],[153])204 [153]

[12] 204
gemeinsamerWert: 12

3

4

([144],[102][0])204 [102][0]

[144] 204
gemeinsamerWert: 144

1

2
;

n 3: ([70],[4950])6930 [4950]

[70] 6930
gemeinsamerWert: 70

5

7

([4900],[3465][0])6930 [3465][0]
[4900] 6930

gemeinsamerWert: 4900 1

2

4In diesem Abschnitt wird aus Platzgründen auf die Beweise verzichtet. Die Methoden ähneln denen in
2.3.1.
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Bemerkung: Es lassen sich auch Einzelbeispiele mit 1/2-Darstellungen konstruieren, bei
denen die zweite Nachkommastelle besetzt“ ist, z.B.”

([6214],[38614134])709906002=
[38614134]

[6214] 709906002
gemeinsamerWert:6214

13

239

([38613796],[2100313][436865232])709906002=
[2100313][436865232]

[38613796] 709906002

gemeinsamerWert: 38613796
1

338

Ein Nachweis dafür, dass unendlichviele1/2-Darstellungenmit besetzten“ zweiten
Nachkommastellen ”existieren, konnte nicht geführt werden.

3 Weitere Fragen

zu Satz 3:

Gibt es M/N-Darstellungen mit o.B.d.A.) M N sowie M, N) 1,1), 1, 2)?
Gibt es insbesondere 2/2-Darstellungen und solche, die sich auf mehr als 2 Nachkommastellen

n 2) beziehen?

Gibt es ein praktikables Kriterium, das im Fall g
a3

q + a 1 q < a, q|a3) weitere

Darstellungen ausschließt? Vgl. die Ausführungen zu g 10 in 1.)

zu 2.3.1:

Lassen sich aus 37) mit q a.r b unendlich viele g mit 1/1-Darstellungen konstruieren?
Vgl. die Beispiele 520 und 5460 in Tabelle 1.)

Schreibt man 39) in der Form ß - a)h -µ)s und vermeidet die Spezialisierung
h 1 39 so erhält man

k + .s ßh, k + µs ah, k2- h µ.s2 µs
a2h - 1

a + ß
.s

ß2h - 1

a + ß

Erreicht man auf diese Weise mithilfe der Variablen h einen größeren Gestaltungsspielraum“,
”

um unendlich viele g mit 1/1-Darstellungen konstruieren zu können?

zu Satz 5:

Gibt es unendlich viele g-adische Systeme mit 1/2-Darstellungen und besetzten“ zweiten”Nachkommastellen?
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