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Uber eine bemerkenswerte Eigenschaft von Dezimal-
briichen und gewissen anderen Systembriichen

Stefan Deschauer

Stefan Deschauer studierte Mathematik, katholische Theologie und Erziechungswis-
senschaften an der Universitit Marburg. Nach der Promotion in Ulm und einigen Jah-
ren im Schuldienst war er an den Universititen Fichstiatt und Erlangen titig, bevor
er 1994 den Ruf auf eine Professur fiir Didaktik der Mathematik an der TU Dresden
annahm.

Wihrend eines Unterrichtsbesuchs in einer 7. Klasse eines Dresdner Gymnasiums sollte
eine Schiilerin den Dezimalbruch 2,5 in einen gemeinen Bruch verwandeln. Thre spontane

Antwort war % dann korrigierte sie und gab % an. Fiir den Mathematiker ergab sich
sogleich folgende Frage:

Gibt es weitere endliche Dezimalbriiche, deren Wert mit dem Quotienten aus
der natiirlichen Zahl, die aus den Nachkommastellen gebildet wird, und der
Vorkommazahl tibereinstimmi?

Zu welchen Ergebnissen fiihrt die entsprechende Untersuchung bei g-adi-
schen Systembriichen?

Der Reiz dieses keineswegs trivialen Problems besteht darin, dass die Fragestellung ei-
gentlich so naheliegend ist, wichtige Teillosungen mit Methoden der elementaren Zahlen-
theorie gewonnen werden konnen und gentigend offene Fragen bleiben.

Eine fehlerhafte Umwandlung von 2,5 (in %) im Unterricht machte den Autor auf die

augenfillige Darstellung 2,5 = % aufmerksam. Gibt es im Dezimalsystem noch wei-
tere solcher Darstellungen, wobei die (ein- oder mehrstellige) Vorkommazah!l mit dem
Nenner und die (ein- oder mehrstellige) Nachkommazahl mit dem Zihler des gemeinen
Bruchs iibereinstimmt? Der elementare, aber attraktive Weg zur (negativen) Antwort
weckt Neugier auf die Situation in anderen g-adischen Systemen. Ohne Weiteres findet
man unendlich viele g mit mindestens einer Darstellung (in obigem Sinne). Schwieri-
ger ist es zu zeigen, dass sogar unendlich viele g mit mindestens zwei Darstellungen
existieren, und diese explizit anzugeben.,
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1 Dezimalbriiche
Wir betrachten also allgemein Dezimalbriiche
a,dpln-1...0100, a €N, 0<ag, <9 O<v<n)
mit der Eigenschaft
7 n
a,anln_1...d16do = —, 2z = Zav IO < 2T (D
a
v=0
Es folgt nach Multiplikation mit 107*! . g:
10" a? 4 az = 10" (2)
mit a® + a < 10"t wegen 1071 . g% = (10" — a)z < 10"+ — @) 107+,
1.1 Analyse des Terms fiir z
Wir kénnen nun nach z auflosen und den entstehenden Term studieren. Es gilt
lon—H R a2
i1=—7 3
100+l — g
Eine Umformung des Terms fiir z fiihrt zu
2 a P nt1 a’ 1
Z=a +q,q:meN mit a° < 10 —a:;,alsoq<a. 4
Letzteres ergibt sich auch aus der Identitit
< q
107+ g o
Gemil (4) oder (5) betrachten wir die multiplikative Darstellung
a@+q=10""q, g<a (6)
Mit der Zerlegung
g=2"-5-q'-q". 5,120, (10,¢"-¢") =1, q'la, q"|@®+q) (7)

— die Wahl von ¢’ und ¢” ist zunéchst nicht notwendig eindeutig — ergeben sich die Dar-

stellungen

a=2-5%¢, 0<i<n41+s 0<k<n+1+1¢
miti + k£ > 1 wegen g < d;

2n+1+s—1 . 5n+1+t—k . QH-

(Wiederum sind nicht beide Potenzen = 1.)

a’+q =

1Insgesamt giltz = a’? +4g < a’ +a< 10+,

(8)

()
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Andererseits ist

2 22, 52k I L 5t.q’qg” _ 12
aq‘ﬁ:q: QQ—’/_/ q4d :22152](%_'_2S51‘q/’ (10)
so dass wegen der Bedingung der Teilerfremdheit in (7) gilt:
q"1q". (10

Dartiber hinaus ergibt sich aus (10) und (9)

& & — 0252 gy 08 5l gt — gntlsi gntldi—k ‘1_”

q' 7
mit ¢’|¢” und
5 " Ik
a :q _ 92 5% L 98 5t Q’_f _ ontls—i | gnblti—k | q_/z (12)
q q 1
mit
q/2|q//' (13)
Mit (11) folgt
¢"=q¢”* unddaher g =2"-5"-¢" (gemiB (7)). LA

Weiterhin ergibt sich nun aus (12)
;L 2n+1+s—i . 5n+1+l‘—k o 22i X 52k
4= 2% 50
mit den im Vergleich zu (7) und (8) eingeschridnkten Exponentenbedingungen
O0<i,k<n+1, 0<s<2i 0<t =<2k

- 2ﬂ+1—l . 5n+1—k _ 22i—S . 52k—t (15)

Wegen (10, ¢’y = 1 reduziert sich (15) zunéchst auf vier Darstellungsformen fiir ¢”:

i=k=n+1, 0<s5,0<2n+2:q;=1—2%+5 st~ (16)
s=2i, t=2k, 0<ik<n+1:qg)=2r1" st~k _1 (17)
k=n+1, s=2i, 0<i<n+1, 0<t<2n+2:q;=2"T1"" 52+~ (1g)
i=n+1, t=2k 0<k<n+l1, 0<s<2n42:qy,=>5"T""*_222 (19

Dabei scheidet (16) von vornherein aus wegen qi < 0. Die anderen ¢’ sind auch noch
hinsichtlich des Kriteriums ¢ < a zu untersuchen. Nach (14) und (8) ist ¢ < a dquivalent
Zu

qlz < 2i—S . Sk_t, (20)
und die Wahl von s und ¢ in (17) fiihrt wiederum zu keinem ¢’ > 1. Im Fall (18) miisste
5n+17t

7 < 51" mit ¢ < n gelten im Widerspruch zur Abschitzung ¢} =

15q§2<
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prtl—i _§2nt2—1 < ontl _ 572 () fijralle n € N. Entsprechende Uberlegungen fiihren
nur bei qj‘ 7u keinem Widerspruch. Nach (19) und (20) gilt es nun, q; zu finden mit

1 <qf <2"t=5.57%, 21)

Hieraus folgt 55 < 277175 mit s < s und mit (19) 2% . 5% < 22425 o §7F1-k wepen
g, > 1. Daher gilt 2* < 57— mit & < % insgesamt also eine Verschirfung der

Bedingungen fiir s, k gegeniiber (19). Fiir die weiteren Uberlegungen geniigen aber die
Schranken 0 < 5, k < n. Setzt man gemaf (19)

5}’l+1—k

(1<) gy=u—v mitu:= und v ;=222 (22)

so erhilt man nach Division von qf durch uv infolge von (21) die obere Abschitzung

LT S (23)
voou 1gntl
1.2 Bestimmung von z und v
Wir betrachten zuerst den Fall # > 1 und nehmen zunichst an, dass
up(n) > vy() Augn — 1) > vy —1), 0<s,k <n, (24)

gilt, wobei ug(n — 1) = 5% und ve(n — 1) =22~ ist. Dafiir ist k auf 0 <k <n—1
einzuschrinken. Dann kann die linke Seite von (23) folgendermaBen nach unten ab-
geschitzt werden:

2 S—I—4 2 1
b o = = —
4 5

5 ugn—1 4 vi(n—1)
— g —_ S ——,
20~ 107+l

4 viin—1) 5 upm—1)

(25)

’ ; 1. .
Dazu beachte man, dass die Funktion f(x) = x + = flir x > 1 streng monoton wichst

und x = % . % ein Produkt aus zwei Faktoren ist, die beide 1 iibersteigen. (24) ladsst sich
also mit (23) nicht vereinbaren. Es verbleibt jetzt noch der Fall

up(n) >vi(m) Aug(n — 1) <vyy(n—1), 0<s,k <n. (26)

Aquivalent dazu ist die Ungleichungskette

22ﬂ+2 25 22}1

oy 53 125 ,. ¢ 3 .2 SN
Mithilfe des Faktors — = —, der noch néher bei 1 liegt als — = —, ldsst sich — mehr-
27 128 st 5 E

A
fach passend verkleinern, womil konkrete i—k unter der Bedingung (27) erzeugt werden

31

. . .. 4 5
konnen. Hierbei ist zu beachten, dass 5 < —=

7 < 1,1 € N, genau dann gilt, wenn [ im
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Intervall [1; 9] liegt. Damit konnen s und & die folgenden Werte annehmen, womit eine
weitere Einschrinkung von # verbunden ist:

7
§=2n-7; k=wn -3 nzzl, F= 1500059 (28)

Gibt es noch andere s und k, die (27) erfiillen? Hierzu betrachten wir die zu (27)
dquivalente Ungleichungskette

22ﬂ+2—S o 5ﬂ+1—k o 22]1—.5‘ . 5 (29)

Wegen O < § < 7 ist 2271275 > & mit der Folge k < n — 1 und rechts s < 2n — 3.
Nun beginnt ein hiibscher ,.Schaukel-Algorithmus*; Man erhilt weiter 222% > 32 und
k < n —2,sodassrechts s < 2a — 5 folgt. Dann ist aber 22"t2=5 > 128 k <n — 3 und
rechts s < 2n — 7. Damit ergibt sich aus (29)

1% T R, GEk (o, g T g (30)

mit ausschlieBlich nicht-negativen Exponenten, wobei aber jetzt die Schranken von &k und s
stagnieren. Das Verfahren bricht an dieser Stelle ab. Aus (27) bzw. (29) folgt also einerseits
die Exponentenbedingung

$<2n-—7 und k<n-—3, (31)

andererseits erweist sich der Fall / = 1 in (28) wieder als eine L.osung von (27), wie man
an der giiltigen Ungleichungskette 512 < 625 < 128 - 5in (30) erkennt. § = 2n — 7
und k = n — 3 sind also die maximalen Exponenten, fiir die die Ungleichungskette (27)
erfiillt ist. s und £ mit/ = 2 in (28) miissen nun die zweithochsten Exponenten sein, denn

angenommen, (27) wiitde durch ein Paar (s, k) mit2n — 14 < s < 2n -7, 01— 6 < k <«
s 7 2n

n — 3 erfiillt, dann ergiibe sich wegen i—k . §—3 < 257 auch noch fiir (s + 7, £ + 3) mit

2n—T7 <547 <2n, n—3 < k+3 < neine Losung. Diese Exponentenbedingungen

widersprechen aber (31).

Da sich diese Uberlegung fiir alle [ = 3, ..., 9 fortsetzen lisst, sind mit (28) tatsdchlich
alle T.osungen von (27) erfasst. Nach (22) folgt nun

ve(nt)  ur(n) 4

128

"3

lg(n Vs (1 5 125N\ 4 128\
k()+s()_2 ( ) ( )_2 (32)
125
Die Funktion auf der rechten Seite féllt offenbar streng monoton mit /. Das Minimum wird
also fiir / = 9 angenommen und ist groBer als 9 - 107>, Andererseits ldsst sich die rechte
Seite von (23) mit
1 1

n+1 =% 147
10 102t

(33)

nach oben abschitzen, wobei das Maximum fiir / = 1 angenommen wird und kleiner als

-5, P o di(m) | vs(n)
4 - 1077 ist. Damit gilt auch hier e + ) 2 b= L

im Widerspruch zu (23).
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Unser Problem ist also auf n = O reduziert. s folgt s = &k = 0, uo(0) = 5, vo(0) = 4,

upln) vo(n) 1 1 . o o . .
vt ey -2 = 5 = o gemil (23), gy = I miti = 1,¢ = O nach (19), ¢ = 1 nach

(14), a = 2 nach (8), z = gp = S nach (4) und (1). Damit gilt

Satz 1. 2,5 ist der einzige Dezimalbruch, der die Eigenschaft (1) besitzt.

2 g-adische Systembriiche

Im Weiteren wollen wir nun allgemein g-adische Systembriiche a, apdn—1 ... d1do,
aeN*,0=<a, <g—1(0<v <n)mitder Eigenschaft

1
Z
(@, Qntn_1...a1a0)g ==, 2= ay-g" <", (1)
a
=0
betrachten.

21 g = p% pPrimzahl, ¢ > 1

Die Schritte (2)—(15) fiir g = 10 lassen sich weitgehend analog auf ¢ = p® ibertragen:
Mit den alten Bezeichnungen erhilt man jetzt ¢” = ¢’%, ¢ = p* - ¢’° und schlielich

ql _ pa(n—l—l)—i _ pZi—S (15/)
mit den Exponentenbedingungen 1 <i <w(m+1), 0 <5 < 2i.

Wegen (p, ¢’) = 1 reduziert sich (15) nun auf nur zwei Darstellungsformen fiir ¢’:

l<i=am+1), 0<s<2am+1):q,=1-—p>0th=s (16))
s=2, l<i<am+1):q,=p*nth= 1, (17"

Einerseits gilt ¢ < 0, andererseits ist ¢ < a wegena = p' - ¢’ jetzt dquivalent zu (20')

q”? < p'*, so dass fiir ¢’ = g) mits = 2i folgt: g¥ < p~" < p~! —im Widerspruch zu
g5 > 1. Daher gilt

Satz 2. Ist ¢ > 1 eine Primzahlpoienz, so gibt es im zugehorigen g-adischen System keine

Darstellung gemdif3 (17).

2.2 g-adische Systeme mit mindestens einer Darstellung’

Ersetzt man 10 durch g, so erhidlt man

=1 ()

2Unter einer ,Darstellung sei hier und im Folgenden die Darstellung gem8 (1’) gemeint.
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mit

=+ 4= <a @)

Daraus folgt unmittelbar

Satz 3. Ein g-adisches Svstem hat genau dann mindestens eine Darstellung, wenn ein
3

n € N und ein natiirliches g, 1 < g < a, qla’, existieren mit g"t1 = 2 0. L

zugehdrige Darsiellung ist

2 n
as+
aq’ Clz+q:Zau'gv-
=0

(@, Gnp—1...a100)g =

Beispiele. n = 0 (Darstellung bezogen auf 1 Nachkommastelle):
g=1, 8 =238 = 10, (2,5)1022

g=4,a=06:g¢=060,(6, 40D = (H%)m (gemeinsamer Wert: 6%) d

n = 1 (Darstellung bezogen auf 2 Nachkommastellen):
g=2,a=4.2=06,(4,30) = (34—0)6 (gemeinsamer Wert: 4%)

[31](21]
[306]

g =27,a =36 g=42, (36], 3112142 = ( )42 (gemeinsamer Wert: 36%)

Bemerkung. Die Frage, ob es Darstellungen gibt, die sich auf mehr als 2 Nachkomma-

stellen beziehen (n > 2), ist offen.

Wir wollen nun die folgende Tabelle studieren, in der alle Werte ¢ unterhalb von 10000
3

mit g = 2 4+ g unter der Bedingung 1 < g < a, gla® (n = 0) der Groe nach aufgelistet

sind, und zur weiteren Theoriebildung beitragen.

10 30 36 60 68 78
21 31 452 = 67 6 #4 41 6#3
114 130 135 136
6%2 5%l 10 %8 8 x4
204 210 222 228 252 260 264
12 %9 10%5 61 12 %8 943 10 x4 82
300 350 357 390
12 %6 7x1 14 =8 15 %9
406 444
14 %7 12 =4
504 510 520 528 588
18 %12 10%2 | 8x1 =20x%16 16 %8 12 %3
666 690
18 %9 155

3Einziffrige Zahlen werden durch eckige Klammern gekennzeichnet, um Missverstandnisse zu vermeiden.
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700 738 747 792
14 %4 9:x1 18 %8 24 %18
820 876 888
2010 1242 24 %16
990
186 =22x%11
1010 1020 1030 1040 1050
10 =1 208 3027 164 21 %9
1110 1140 1155 1176
3025 153 3024 24 %12
1342 1344 1353 1304 1378 1380 1386
11 %1 21 %7 22 %8 33 %27 26%13 30 %20 14 %2
1400 1476 1494 1530 1560 1596 1620
28 %16 18 x4 36%32 30%18 24 %9 28 %14 20 %5
1740 1750 1752 1764 1830 1962 1980
12 %1 35x%25 24 %8 3627 = 422 | 30%15 18 %3 36 %24
2020 2040 20064 2080 2100
20 %4 40 %32 16 %2 32%16 42 %36
2210 2214 2223 2236 2280 2328 2346
13 %1 27 %9 26 %8 39 %27 3012 24 *6 34 %17
2600 2628 2684 2688
40 %25 36%18 22 x4 42 %28
2706 2730 2758 2772 2786 2926 2934 2952
44 %32 3010 14 =1 28 %8 42 %27 38 %19 182 | 36%16
3030 3108 3120 3129 3150 3164 3175 3240
30 %9 21 %3 48 %36 42 %24 25 %5 28 %7 5040 | 4020
3300 3390 3405 3420 3480 3504 3570
33x11 151 30 %8 45 %27 24 %4 48 %32 42 %21
3640 3690 3916 3924 4020 4026 4040 4060
56 49 45 %25 44 %22 36%12 20 %2 33 %9 4016 | 6054
4112 4128 4144 4158 4278 4380
16 %1 32 %8 48 %27 42 %18 46 423 60 x50
4420 4428 4446 4530 4560 4602 4632 46356
26 x4 534 %36 52 %32 30 %6 60 48 39 %13 24 %3 | 4824
4860 4930 4947 4964 4981 5050 5166 5220
60 =45 17 =1 34 %8 51 %27 68 %64 50 %25 63x49 | 36x9
5334 5346 5368 5390 5430 5460 5516 5544
42 %14 22%2 44 %16 66 %54 30%5 | 52426 =060%40 | 28=4 | 56%32
5850 5868 5886 5904 6060
18 x1 36 %8 54 %27 T2 %64 60 %36
6120 6160 6192 6195 6216 6300 6328 6440
45%15 35 %7 48 %18 70 %56 42 %12 50 %20 5628 | 4010
6588 6600 6615 6630 6669 6710 6780 6786
27 %3 66 *44 54 +24 39 %9 T8 %72 55 %25 304 | 5829
6810 0878 6897
60 32 191 38 *8
6916 6930 6935 6936 6960 6984 7070 7260
57 27 70 %50 76 +64 24 %2 48 %16 72 %54 70%49 | 60 %30
7750 7788 7812 7848 7854
62 %31 44 %11 36 *6 72 %48 51 %17
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8020 8040 8052 8060 8080 8224 8256 8274
20 %1 40 %8 066 %36 60 %27 80«64 32 %4 64 %32 | 42%9
8316 8610 8645 8700 8778
84 %72 35%5 70 %40 60 %25 66 %33
8802 8814 8840 8866 9030 9060 9090
54 %18 262 52 %16 78 %54 30 %3 60 %24 90 %81
9204 9264 9282 9303 9316 9324 9345 9394
T8 %52 4812 21 =1 42 %8 68 %34 63 %27 84 %64 | 77 %49
9450 9492 9804 9810 9860 9870 9894
75 %45 84 %63 57 %19 90 %75 34 x4 70 %35 68 %32

3
Tabelle 1 fiir 2 < g < 10000, g = a*g := i +a,l1<g< a,q|c£3
q

Nach Satz 2 treten fiir ¢ keine Primzahlpotenzen auf, so dass ¢ mindestens zwei verschie-
dene Primfaktoren enthilt. Speziell gibt es Zahlen g, die sich in genau zwei verschiedene
Primfaktoren zerlegen lassen, z.B. 10 und 4981 (= 17 - 293).

Es kommen gerade und ungerade ¢ vor, wobei alle Endziffern ausgeschopft werden, aber
die geraden g dominieren (in der Tabelle) bei Weitem. Ungerades ¢ zieht offenbar gerades
a nach sich. Dariiber hinaus erhélt man sofort folgendes Kriterium:

g istungerade genau dann, wenn gilt: 34
a=24d', g=2"¢" .i >1, d. q ungerade.

Dabei gilt ¢’|a’®. Weiterhin hat g die Produktdarstellungen

a a? a (a,q)’ ( a )2
= . + (a, — ) : + (a, . 35
8= wD (d% (am) . (ﬁ% B (@, q) (35)

In diesem Zusammenhang bietet sich auch an, die Werte ¢ zu klassifizieren:

(g < a)n(qla), (36)

(g < a)A(@ta) A (gla®). (36)

(q < @) A (g 1a) Aglad). (36")

In den Fillen (36) und (36) lisst sich (35) vereinfachen, und man erhilt g = g - 2 - q)
bzw. g = (a%) Aa,q)- (% + 1), wobei kein Faktor gleich 1 ist. Man sieht direkt — auch

ohne Riickgriff auf das Kriterium (34) — leicht ein, dass in diesen Fillen g stets gerade ist.

2.3 g-adische Systeme mit mindestens zwei Darstellungen

In der Tabelle 1 fallen weiterhin die Werte ¢ = 520, 990, 5460 auf, die nach Satz 3 (Fall
n = 0) jeweils mindestens zwei verschiedene auf die 1. Nachkommastelle bezogene Dar-
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stellungen besitzen, und zwar

(8, [65D)s520 = — (gemeinsamer Wert: 8%),

5
([20], [416])500 = @) (gemeinsamer Wert: 2()%)
[201 / 520

(
(
brw.
(1181, [330])990 = (% . (gemeinsamer Wert: 184).
([221, [4951)990 = (%)990 (gememsamer Wert: 22%)
bzw.
(1521, [2730]) 5460 = (%)5460 (gemeinsamer Wert: 52%),
([60]. [36401)5460 = (%)5%0 (gemeinsamer Wert: 603)

und moglicherweise noch weitere, falls fiir diese ¢ auBerdem noch die Identitat g”+1 =
3
bT +b(r<Db,r |b3) fiirein n > 1 gilt. (Im Bereich der Tabelle 1 ist dies nicht der Fall.)

Es stellt sich nun natiirlicherweise die Irage, ob es unendlich viele ¢ mit (mindestens)
zwei Darstellungen gibt und ob man gegebenenfalls zumindest eine unendliche Teilmenge
dieser g konkret angeben kann.

Dabei sollen zwei Darstellungen beziiglich g, die sich jeweils auf die 1. Nachkommastelle
beziehen, als 1/1-Darstellungen von ¢ bezeichnet werden. Aufierdem gehen wir noch kurz
auf 1/2-Darstellungen von g ein, d.h. auf Darstellungen bezliglich g, von denen sich die
eine auf die 1. Nachkommastelle, die andere auf die ersten beiden Nachkommastellen
bezieht.

2.3.1 g-adische Systeme mit 1/1-Darstellungen
Hier sind ¢ zu finden mit

a’ b3
3 3

Sei 0.B.d.A. a < b. Die Tabelle 1 lieferte die Beispiele ¢ = 520, ¢ = 990 und g = 5460.
Wir wollen nur den speziellen Fall g|a, r|b betrachten, wie er fiir ¢ = 990 vorliegt, und
erhalten mita = Ag, b=pr, 1l <A <a,1l<pu<bh

g=ata+ D) =bub+1), 2<p<h, (37"

bzw.
a pb+1

b ra+1’

wlb,  Aa, 2<p<h. (38)
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Mit s = (a, b) schreiben wir ¢ = as, b = B5:

as  pps+1
—=— a<pB (0,B)=1, s, Mas, 2< <A 38
85 s+l B, (. p) wlp | 1 (38")
Fiir die Zahl k£, mit der der Bruch Zmt - 1 erweitert wird, gilt k = M, woraus
B ras + 1 B—ua
einerseits k + As = % andererseits k + us = % folgt. Somit ergibt sich
B —al(k —ps. (39)
Wir nehmen nun eine erneute Spezialisierung vor:
p—o= & —ps. (39"
Dann ist
k+is=8, k+us=aqa, (40)

und wegen der Erweiterungseigenschaft von k ergibt sich aus (38'):
kik +ps)=puk+As)s+1, k(k+rs) =itk + us)s + 1.

Aus beiden Gleichungen erhilt man

k2 —1 = uirs?, (41)
was nach (40) zu k2 — 1 = (¢ — k)(B — k) mitk = O;ﬁ :ﬂl fiihrt, woraus wieder wegen
(40) die Darstellungen

o —1 p*—1
s = ——, As=-—, (42)
o+ p a4+ p

folgen. Einzellosungen des Systems (42) unter den Bedingungen aus (38”) sind nun leicht
zu finden. Wihlt man z.B. ¢ = 5§ = 2 und « ungerade, d.h. « = 2y — 1, so ist nach (42)

B=y>—3y+lundr = %(y — 2)(y — 3). Dabei muss nach (38) y = 5 sein. s folgt

Qr—-D-2 _ 20°-3y+1)-2+1
P =3y+12 Jy-Dr-Hey—1-2+1
Hier ist w|Bs trivialerweise allgemein erfiillt. 2 = g < A A Alas kann offenbar nur fiir
endlich viele « erfiillt sein, hier flirey = 9, B = 11 mit A = 3 oder ap = 15, B2 = 41

. . » . 9 18 2.2241

mit A» = 15. Damit erhilt man die Darstellungen — = — = —

tAn 5. Damit erhélt man die Darstellunge 7 = = meT
15 30 2-82+1

k=5sowic — === ——mitg=2,r =41,k =11.
41 82 15-30+1

Nach Satz 3 fiihrt die erste zu einem bereits bekannten Beispiel (g = 990), die zweite zu
einem neuen:

(1301, 902D 13530 = (

(38")

mitg =6,r =11,

[902] )
[30] /13530

(gemeinsame Werte: 30% bzw. 82%).

[6765]

ie ([82], [6765 =( )
sowie ([82], | D13s3o [82] /13530

Unser Ziel ist es aber, unendlich viele «, 8 zu finden, die (38") erfiillen. Dazu bietet sich
an, moglichst schwache Teilbarkeitsbedingungen zu fordern, d.h. 4 = 2 und + = 3 zu
wdhlen,
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Nach (41) folgt k> — 1 = 652 mit ungeradem k, etwa k = 2m — 1, und daraus
2m(m — 1) = 352 mit geradem s (s = 2o). Damit ist die erste Bedingung p|8s bereits
erfiillt. Wir erhalten

302 = lm(m =1 (43)
= > '

Aus (40) folgt m = %(a —4o0 +1) =y — 20 mitae =2y — 1 (wegen ungeradem k und
w=12),also
1
362 = 5(y —20)(y — 20 — 1. (43"

Wir zeigen zundchst, dass m aus (43) bzw. y aus (43') stets ungerade ist.

Angenommen, es sei m = 2r:

Im Fall 3|2¢ — 1 existiert dann ein ungerades { (! = 2!’ — 1) mit 2t — 1 = 3. Es folgt
t =3 — Lund 6 = (31’ — 1)(2I' — 1) mit teilerfremden quadratischen Faktoren. Mit
den Bezeichnungen 3’ — 1 = ¢?, 2I' — 1 = 4 folgt 2¢? — 1 = 3d? mit ungeradem d
(d = 2d’ — 1). Hieraus erhilt man ¢? = 2(3d’(d’ — 1) + 1) mit ungeradem zweiten Faktor,
was zum Widerspruch fiihrt.

Im Fall 3|¢ (t = 3[) erhalten wir die Darstellung o® = [(6/ — 1), wiederum mit teilerfrem-
den quadratischen Faktoren (¢2, d%). Es folgt 6¢? —1 = d? mit ungerademd (d = 2d’ —1)
und hieraus 3¢? = 2d’(d’ — 1) + 1, wobei aber d’(d’ — 1) nur die Reste 0 oder 2 mod 3
annehmen kann, was erneut zum Widerspruch fiihrt.

m st also ungerade. Mit m = 2¢ 4 1 ergibt sich daher aus (43)
307 = (2t + 1)t (44)
bzw. aus (43") mit y = 28 + 1:
362 = (28 — 20 + 1)(8 — o). (44"

Die folgende Tabelle gibt die ersten acht Werte fiir #, m, ¢ an, die (44) bzw. (43) erfiillen.

n|l1] 2 3 + ] 6 P 8

I | 112 | 121 | 1200 | 11881 | 117612 | 1164241 | 11524800
my | 3| 25| 243 | 2401 | 23763 | 235225 | 2328483 | 23049601
op | 1110 ] 99| 980 | 9701 | 96030 [ 950599 | 9409960

Tabelle 2

Es lassen sich folgende Vermutungen beweisen:

Ing1 — Ont1l = ln +0ns Muy1 — 20441 = My + 204, (45)
Opt1 = S, + 41, + 1 = S50, +2m, — 1, (46)
Iny1 =60, + 5ty + 1;  myq1 = 120, + Smy, — 2, 47)
o1 =1, o0 =10, o442 = 100,11 — oy, (48)

h=1 =12, ty42 = 10ty41 — 1y + 2;
my =3, mpy =25, muyo = 10mpyy1 — my, — 4, (49)
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oon = 204ty + 1)on = 22my, — Doy, (50)
ton = 42ty + Ditn:  mop = (2my — 1% (51)

Es lasst sich zeigen, dass damit die Losungen von (43) bzw. (44) vollstindig erfasst wer-
den. Aulerdem gilt nach (46) und (44)

on on Vin 2ty + 1)

= 5 4+ +/24, so dass fiir o, — wie nach der Rekursionsformel (48)

n
zu erwarten war — nach Beriicksichtigung eines normierenden Faktors (vgl. n = 1) eine
BINET-Formel entsteht:

tn(2tn + 1)

4 4t
Tl syl s 32 5403, \/8+

5 . (e
it By son —2LL

n
o 54+ +/24 ) ( d24)). (52)
" 2~/ ((
Wir kommen nun auf die zweite Teilbarkeitsbedingung Ajlas mit A =3, ¢ =2y — 1 =
48 + 1, s = 2o zuriick. Sie ist genau dann erfiillt, wenn 3 Teiler von o oder Teiler von
45 + 1 ist.

Zum Fall 3|o: Nach Tabelle 2 ist 03 = 0 mod 3, 06 = 0 mod 3, und allgemein fiihrt
O3yl = 0 mod 3 zu T3(p'+1) = 0 mod 3 WEECH T3(p/41) = O3p/42 — O3p/41 = O3p/41 —
341 — 03 = 0 mod 3 nach (48). Aus o3,y = 0 mod 3 folgt nach (48) andererseits
o3p—1 = o3—p mod 3, wobei der Rest 0 nicht angenommen wird, weil sonst alle oy,
durch 3 teilbar wiren im Widerspruch zu o1 = 1, op = 10. Es gilt also 3|0, genau dann,
wenn 3|x.

7Zum Fall 3148 + 1: Aus (44) und (44') ergibt sich 8 = o + ¢ und daher 48 + 1 = 4o +
4t + 1. Indiziert man die rechte Seite mit 7, so gelangt man gemih (46) und (48) zu den
dquivalenten Bedingungen 3|oy,41 — oy, und 3|o,42.

Insgesamt ist — in indizierter Schreibweise — die zweite Teilbarkeitsbedingung A |cy, 5, mit
& = 3 daher genau dann erfiillt, wenn n £ 2 mod 3 ist. Dabeiistk, = 2m, —1 = 48, +1,

also nach (50)
O2n
ky = —, (53)
20y
und wegen p = 2, s, = 20y, gilt fiir o, nach (40), (46). oy = ky + 40, =41, + 1 + 40,
bzw.
Uy = Opyl — Op. (54)

Daraus folgt fiir 8, im Hinblick auf (39’) wegen A — o = 1:
Bu = Op+1 + Tp. o 3)

Die ,quasi-reziproke” Gleichung (38) ist daher fiir s, = 20, und «,, B, aus (54) und
(55) erftllt, und fiir n £ 2 mod 3 sind die geforderten Teilbarkeitsbedingungen — trivi-
al: 2|(op41 + 01 )20y, nichttrivial: 3|(o,41 — 04)20, — garantiert:

(O'n—l—l —ay) - 204 _ 2(C"n—i—l + op)2op + 1
(Ont1 +on) - 204 3(opt1 — on)on + i

(56)
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Ont1 — 9

wobei ein vollstidndig gekiirzter Bruch ist, der mit ;’ﬂ zum Bruch auf der rechten

Op+1 +0n g7

Seite von (56) erweitert wird. Weiterhin gilt nach (37") g, = b, (2b, + 1) bzw. (u.a. nach
(55))
8n = (Un+1 +on) - 200 (4(Un+1 + an)on + 1) (57)

mit g1 = 990 = 99 - 10, go = 9506980 = 9701 - 980, so dass man — vgl. Tabelle 2 —
folgenden vereinfachten Ausdruck fiir ¢, vermuten kann:

gn = 0241 O2p- (58)

Zum Nachweis greift man auf die Beziehungen (44), (46), (50) und (51) zuriick und stellt

fest, dass die rechten Seiten von (57) und (58) mit 5022;1 + % - o4y Uibereinstimmen.

SchlieRlich sind noch a2 + ¢, b2 + r, zu bestimmen:

a e — - = — T oL ; o —m — -« — - = — g oL .
2 T dn i n 3 n 3 2041 02n 4 n by &n 28}1 5 2n+1°02n
Insgesamt gilt nach Satz 3:

Satz 4. Es gibt unendlich viele g-adische Systeme mit 1/1-Darsiellungen. Dazu gehiren
Zn = 02n41 - Oon, On aus (52), n £ 2 mod 3, mit den Darstellungen

1
1 302041 * 02
3V2n+ n
((O'n—i—l B Un) - 20y, 552n+1 * O2n — ( )2 (59)
O2+1-02n On+1 = 9n) " <On O +1-02n

: 1
gemeinsamer Wert: (oy41 — Gn)QGng

1 %szn+1 “ O
(O'n—i—l + O'n) 20y, 50'211+1 *O2n = 5 (60)
O2n+1-92m (Ont1 + on) - 200 Tt 1O

. 1
gemeinsamer Wert: (oy41 + an)zanz.

Beispiele (zu (56) und Satz 4):
C9-2.1 2.11-2-141

n=l T 3 BT
[330] 1 [495] 1
18], [330])090 = (—) = 18L: ([221. [495])900 = (—) =2l
([18], [330])990 81 /990 3 ([22], [495]1)990 ] e 5
_ 3 881.2-99 _ 2-1079.2-.-99 +1 (k3 :485),
1079 -2 .99 3.881-2-99+1
([174438], [30428673990])01286021970 = (W) — 1744381,
[174438] 91286021970 3
[45643010985] 1
213642], [4564301 _ (—) — 213642L:
([213642], [456430109851)91286021970 TR . 36 =
. 8721 -2 . 980 . 210681 -2 -980 4+ 1 (k4 :4801)

©10681-2-980 3-8721-2-980+1

Die Darstellungen gemil Satz 4 sollen hier tibergangen werden.
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2.3.2 g-adische Systeme mit 1/2-Darstellungen*

Es gilt also unendlich viele g, zu finden mit

3 3

” b

gn ="t an (gn < an, qulay) und gy =T +by Gy < by, rulby). (61)
n

n

Hier fiihrt die mit den Bedingungen konforme Spezialisierung a, = 2dyu, gnldo?,
b, = 405,%, iy = 204,% zZu

2 1
&y = Eqn(Qn — 13 (62)

Die ersten Beispiele sind 12 = ;2. 1,62 = %‘9‘8, 352 = %‘50‘49, 2042 = %‘289288.
Wegen g, < 2a, muss dabei aber nach (62) g, > 2 sein. Da (gy) streng monoton wichst,
ist n = 1 (g1 = 2) auszuschlieBen. Es l4sst sich nun zeigen, dass es unendlich viele

solcher quadratischer Werte von arithmetischen Reihen gibt: Es gilt die Rekursionsformel
Upyor = 0011 — oty und

an:%‘((3+x/§)"—(3—\/§)”), qnzé(,/Sa,%—kl—kl) (n>1). (63)

Wegen g, = 20, (29, — 1) = ap, erhilt man schlief3lich

Satz 5. Es gibt unendlich viele g-adische Systeme mit 1/2-Darstellungen. Dazu gehoren
8n = Qopn, Oy aus (62) bzw. (63), n > 1, mit den Darstellungen

(%(2% - D

(205117 Gn(2qn — 1)) = ey

o2

) (1 Nachkommastelle), (64)
(¢4

X2n

g [%2n _ [ 2 ][O]
(4%= [ > ] [O])azn = ( ™ (2 Nachkommastellen). (65)
25

n

Beispiele:

n=2:(12],[153])04 = (@) (gemeinsamer Wert: 123),
[121 /204 4

([1441, [1021[01)204 = ([1021[0]

[144]
4950
n = 3:{[70], [4950])6930 = ([[70]]

(149001, [3463110Doo30 = (

) (gemeinsamer Wert: 1441);
204 2

) (gemeinsamer Wert: 702),
6930 7

[3465][0]

; . |
[4900] ) 6930 (gememsamer Wert: 49005),

*In diesem Abschnitt wird aus Platzgriinden auf die Beweise verzichtet. Die Methoden ahneln denen in
23.1.
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Bemerkung: Es lassen sich auch Einzelbeispiele mit 1/2-Darstellungen konstruieren, bei
denen die zweite Nachkommastelle ,,besetzt™ ist, z.B.

[38614134] , 13
—) (gememsamer Wert:6214—),
[6214] /709906002 238

[2100313] [436865232])
[38613796] 709906002

([6214],[38614134])709906002 = (

([386137961,[2100313][436865232])709906002= (

1
(gemeinsamer Wert: 38613796 ﬁ)

Ein Nachweis dafiir, dass unendlich viele 1/2-Darstellungen mit ,,besetzten™ zweiten Nach-
kommastellen existieren, konnte nicht geftihrt werden.

3 Weitere Fragen
7u Satz 3:

Gibt es M /N-Darstellungen mit (0.B.d.A.) M < N sowie (M, N) # (1, 1), (1, 2)?
Gibt es insbesondere 2/2-Darstellungen und solche, die sich auf mehr als 2 Nachkomma-
stellen (n > 2) beziehen?

3
Gibt es ein praktikables Kriterium, das im Fall ¢ = % +a (1 <q < a,qla’) weitere
Darstellungen ausschliet? (Vgl. die Ausfiihrungen zu ¢ = 10 in 1.)

zu 2.3.1:

Lassen sich aus (37) mit ¢ 1 a\vr 1 b unendlich viele g mit 1/1-Darstellungen konstruieren?
(Vel. die Beispiele 520 und 5460 in Tabelle 1.)

Schreibt man (39) in der Form (8 — )i = (A — p)s und vermeidet die Spezialisierung
h =1 (39", so erhilt man

2 2

h—1 h—1
k+As=pBh, k+us=ah, k>—h=uls®, us=> , ks:ﬁ .

o+ p o+ p

Frreicht man auf diese Weise mithilfe der Variablen i1 einen grofieren ,,Gestaltungsspiel-
raum’, um unendlich viele ¢ mit 1/1-Darstellungen konstruieren zu kénnen?

zu Satz 5:

(Gibt es unendlich viele g-adische Systeme mit 1/2-Darstellungen und , besetzten” zweiten
Nachkommastellen?
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