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An elementary approach to the location of the maximum
Stirling number(s) of the second kind

Horst Wegner

Horst Wegner studierte Mathematik an der Universitit Hamburg. Nach dem Diplom
1966 und kurzer Titigkeit in der Industrie promovierte er 1970 tiber ein Problem zu
Stirlingschen Zahlen zweiter Art an der Universitit Koln. Seit 1973 ist er als Akade-
mischer Oberrat an der Universitit Duisburg titig, zunichst in der Lehrerausbildung
und seit 1982 im Fachgebiet Stochastik.

1 The unimodality

The number of ways of partitioning a set of # elements into £ nonempty subsets is usually
denoted S(n, k). These numbers are called Stirling numbers of the second kind, which
were so named by Niels Nielsen [5], who wrote in German “Stirlingsche Zahlen”.

Obviously S(n, 1) = S(n,n) = 1 and S, k) = 0 for all £ > »n. Moreover it is useful to
put $(0,0) = 1 and SO, k) = S(n,0) = 0 for all n, k € N. Elementary combinatorial
arguments lead us to the two following recurrences

Sn+1,k)=kS(n, k) +Stn,k—1), n,keN, (1.1)
n 5 .
S(n+1,k):§(i)S(z,k—l), n,k e N. (1.2)

Auf wie viele Weisen ldsst sich eine Menge von n Elementen in k nicht-leere Teilmen-
gen zerlegen? Die Antwort hierauf liefern die Stirlingschen Zahlen S(n, k) zweiter Art,
wobei der Zusatz zweiter Art historische Griinde hat. Betrachtet man fiir fest gewdhltes
n die Abhéngigkeit der S(n, k) von k, stellt man fest, dass die S(n, k) zunidchst zu-
nehmen, ein Maximum erreichen und dann wieder abnehmen. Dabei kann bisher nicht
ausgeschlossen werden, dass das Maximum fiir zwei benachbarte £k angenommen wird.
Die Frage, wo die S(n, k) ihr Maximum annehmen, wurde von verschiedenen Auto-
ren mittels asymptotischer Aussagen behandelt. In der vorliegenden Arbeit werden mit
elementaren Mitteln exakie Aussagen iiber die Lage des Maximums gewonnen.
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Using (1.1) and (1.2), it can be shown by mathematical induction on the value of # that for
fixed 7 the numbers S(x, k) are unimodal in the following sense (see [1], [6]).

Theorem 1.1. Foralln € N there exists a K, e N, 1 < K, < n, such that

Stn.k—1) < Sn, k) for 1<k<K,-—1,
Stn,k — 1)< S, ky for k=K,
S,k —1)> S, ky for Ky+1l<k<n+1.

Furthermore 0 < Ky — Ky < 1.

If we do without the inequality K,+1 < K, + 1, Theorem 1.1 can be proved using only
(1.1) (see [3]).

With regard to our further investigations it is useful to define

K¥ .=

n

{Kn —1 if S@, K, —1) =S Ky, (13)

Ky it S, K, —1) < S, Kp).
According to (1.3), the proof by induction of Theorem 1.1 shows that more precisely

Clearly K5 = K7 — 1.1t is not known to the author whether there is another case such that
K} = K, — 1. It seems to be an unsolved problem whether S(n, k) always has a single
maximum for n > 3. Some results concerning this problem and the value K, have been
established (see e.g. [2], [3], [4], [7]).

The first aim of this paper is to obtain bounds for K, K f{, using quite elementary methods.
The results, attained in this way, will be stated in the Theorems 3.2 and 3.5. Finally, in the
last section, we will show how to determine exact values of K, K.

2 Preparatory remarks

Letn, k € N and let X, Y be sets with | X| = n, |Y| = k. It is evident that k! S(#n, k) is the
number of surjective functions from X to Y. Thus, by simple combinatorial considerations,
we obtain for the number of all functions from X to Y the following formula:

k—1

=" (k 'i l,)(k — IS,k —i).

=0

Hence
o 2
E:ZES(n,k—t). 2.1
i=0
Trurthermore, using the principle of inclusion and exclusion, the number of non-surjective
functions from X to Y is

k-1

k" —kIS(n, k) = Z(—l)i—l(k 'i i)(k — i
i=1
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(see [8], Section 4), and this implies

k—1

(D' (k—1)"
S(n,k):Z TR T (2.2)

1=

By the formulas (2.1), (2.2) (clearly, they are well-known), we obtain

(e V= . .
F_m_gﬁ(S(n,k—z)—S(n,k—t—1)) (2.3)

and
k—1

S k) — S,k — 1) = Z

=

anw—n”_%—**W) 24)

it \Nk—0i) (k—i—1D)

The last two formulas will lead us to the desired results in Theorem 3.2 and Theorem 3.5.

3 Bounds for K,, K,

First we want to establish an upper bound for K, which is already given in [7]. Previously
we are beginning with a result, which is evident.

Lemma 3.1. Letn € N, n > 2. Then there is a unique s, € (2, o0) such that

1\ n <1 for 2<Xx< sy,
x(l——) =1 for x=sy,
& >1 for Xx>s$,.

Theorem 3.2. Letn € N, n > 2, and let K, be given by Theorem 1.1. Furthermore let
sn be the unique root of x(1 — %)” = 1 in the interval (2, o) (see Lemma 3.1). Then
Ky < sul

Proof. Let k = K. Then, by (2.3),

n—1 # n 1
(kk—l)!(l_k(l_%) ):%_((I;c——ll))lzo

Hence k(1 — $)* < 1, and then Lemma 3.1 implies K, = k < s5,. Hence K, < [sy]. O
Before giving a lower bound for K;f we establish two further lemmas.

Lemma 3.3. Let n € N. Then the function

o =40 ) a2

is strictly convex on the interval [1, o).

Proof. 1t is easy to show that f”(x) > 0O forall x > 1. O
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Lemma 3.4, Letn € N, n > 3, and let s, be given by Lemma 3.1. Then there is a unique
rn € (2, 8,) such that

i 1 n—1 1w >2 for 2<Xx <1y,
—(1+—) +e-bDl-—) =2 fr x=n
= r = - <2 for 1y, <X <8y

Proof. For abbreviation we put

)= i 1 (1 Ty : 1)H + - 1)(1 - x;)n
Obviously

(i) £2) > 2.

Now let x = s§,. Then Lemma 3.1 implies

| :x(l - %)n - (x— 1)(1 — xlj)n and

1 1\—* 1 1 n—1
1:—(1——) :—(1+ ) .
X X x—1 x—1

These two relations imply

(i) g(sy) < 2.

With the function f given in Lemma 3.3 we have g(x) = f(x — 1), and then it follows
from Lemma 3.3 that g ist strictly convex on the interval [2, co). With regard to (i), (ii),
this implies that there is a unique ry, € (2, s,) such that

>2 for 2<Xx<ry,
2(x) §=2 for Xx =ry,
<2 for ry <X <$. O

Now we are prepared to establish a lower bound for K.

Theorem 3.5. Letn € N, n > 3, and let K, be given by Theorem 1.1 and (1.3). Further-
more let ry be the unique root of

1 1 n—1 1 "
(1+ ) +(x—1)(1——) =
x—1 x—1 x—1

in the interval (2, s,) (see Lemma 3.4), where sy is given by Lemma 3.1. Then [r,] < K.

Proof. Our aim is to apply (2.4).
Letk = [ry], hence k > 2. Then, fori =0, 1,...,k — 1 we put

=D =i k=D 1
B = (k—i)!_(k—i—l)!_(k—i)!(l e ’)(1 k—i) )
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Sincel <k —i <r, < 8y, it follows from Lemma 3.1 that

A; >0 fori=0,1,...,k—1. (3.1)
Moreover, fori = 0,1, ...,k — 2 one has
1 . n—1 . n . . b3
Ai—AH_l:m((k—l) —2(k—l—1) —|—(k—l—1)(k—l—2))

(k —i — )" 1 1 n—1
= (——(1+ ——)
k—i—1N\k—i-—1 k—i—1
k (1 Ly,
rei (=) ),
( ) k—i—1
Since2 <k —i < ry, it follows then from Lemma 3.4 that
A — A1 =0 for i =0,1,...,k—2. (3.2)
In particular, we obtain fori =k — 2
Aps — Aoy =2""1—-2>22_2-0. (3.3)

With respect to (3.1), we obtain from (3.2), (3.3)

A Ay ,
—_— > fi =0,1,....k=2 34
TR e 34
and in particular
Ag_2 AV
. 3.5
& -2~ k=1 (3:3)
According to (3.1), (3.4), (3.5), it follows from (2.4) that
k—1 A,
_ iR
Sn.k) — Stn.k—1) =Y (~1) = > 0.
i=0
Hence K} > k = [ra]. O

This section shall end with some examples illustrating the results of Theorems 3.2 and 3.5:

n | 1025 50 100 250 500 1000 2500 5000 10000

[8n] 6 10 17 29 61 107 190 415 755 1383
[7s] 5 9 16 27 58 103 185 407 745 1370
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4 Exact values of K,,

In many cases the exact values of K,,, K can be determined by a procedure first published
by Comtet and Fiolet [4], which shall be described here.

We know that the partial sums of (2.2) successively overcount and undercount the number
S(n, k) (see [8]). Thus, forl =0, 1,..., k — 1 the expressions

l

D k=i A -1y
; il '(k—iw_; k- 1-10)!
—Z(— >1’j1 ’l)), Z( 1 <z+1)( )(1——)”

are successively upper and lower bounds for the difference S(n, k) — S(n, kK — 1). Putting
for abbreviation

l

v, kD) = Y (=1 + 1)(’5) (1- %)"

i=0
we have for/ =0, 1, ..., k — 1 the relations

n
= Fv(n,k,l), if [ is even,

Sn, k) —Sn, k-1 i 4.1)
> FU(VL, k, D), iflis odd.
Using (4.1), Theorem 1.1, (1.3), we obtain
leven A vin,k,l) <0 = K,=<k-1,
4.2)

lodd A vin,k l)>0 = K>k
Now let us apply (4.2) to our last example of Section 3, which gives us
1370 < KikOOOO < Kiooop < 1383.

As a first step we check v(10000, k, I) for k = 1383. Then [ = 6 is the first even number
such that »(10000, 1383, [) is negative, namely

v(10000, 1383, 6) = —0.000510. ..
Thus, by (4.2), K10000 < 1382. Already a second step shows us that
v (10000, 1382, 7) = 0.000314... >0
and therefore (4.2) implies K ;| loooo = 1382,

Hence Kiooog = KiKOOOO = 1382,
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This example shows us that the upper bound [s,] from Theorem 3.2 is much sharper than
the lower bound from Theorem 3.5. This fact will be emphasized by many other examples.
(According to (1.4), (4.2), it is quite easy to determine K41, if the value of K, is given.)

In the overwhelming majority of cases we obtain K, = [s,] — 1 and only in a few cases
K, = [sy]. So we can fall into temptation to suppose that K, > [s,] — 1 for all n > 3. But
no elementary proof of this inequality can be offered.
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