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Elemente der Mathematik

In Dreiecken einbeschriebene Dreiecke

Christian Blatter

Christian Blatter hat an der Universität Basel studiert. Von 1962 bis 1964 war er

Visiting Assistant Professor an der Stanford University. Anschliessend wurde er an

die ETH Zürich gewählt und wirkte dort bis zu seiner Emeritierung im Herbst 2000.

1 Die Dreieckskonfiguration K der Figur 1 hat Anlass zu unzähligen geometrischen
Ungleichungen gegeben; siehe dazu [1] und [3]. Ein Beispiel ist die Ungleichung

F0 min(F1, F2, F3) 1)

wobei Fi den Flächeninhalt des Teildreiecks i bezeichnet. Gedruckt ist sie zum ersten
Mal in dieser Zeitschrift erschienen, als Aufgabe von H. Debrunner [6]. In [7] und [5]
werden sowohl 1) wie die analoge Ungleichung

U0 min(U1, U2,U3)

für die Umfänge Ui der i mit P. Erdös und E. Trost in Verbindung gebracht.

Wie dem auch sei: In der jüngst erschienenen Arbeit [2] hat W. Janous die Ungleichung
1) zum Anlass genommen, um nach der besten Ungleichung vom Typ

F0 Mp(F1, F2, F3) 2)

zu fragen. Hier bezeichnet

Mp(x1, xn) :=
x

p

1 + + x
p

n

n

1/ p

-8 p =8,

Wählt man auf jeder Seite einesgegebenenDreieckseinen Punkt und verbindetdie drei
Punkte untereinander, so entstehen vier Teildreiecke. Gemäss einer Erdös und Debrunner

zugeschriebenen Ungleichung kann das zentrale Teildreieck 0 nicht das fl¨
achenkleinste der vier sein. Seither haben verschiedene Autoren dieses Resultat verschärft.
Auf den folgenden Seiten wird die Vermutung von Janous bewiesen, dass F0
mindestens gleich dem p-Mittel von F1, F2, F3 ist, wobei p := - log(3/2)/ log2 den
bestmöglichenWert für eine derartige Ungleichung darstellt.
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Figur 1

das p-Potenzmittel der n positiven Zahlen xi Die Funktion p Mp(x1, xn) ist
schwach) monoton wachsend. Für die speziellen Werte p := -8, 0 und 8 liefert sie

via einen Grenzübergang) bzw. das Minimum, das geometrische Mittel und das Maximum

der xi Auf Grund von 1) haben wir also

F0 M-8(F1, F2, F3)

2 Janous beweist F0 M-1(F1, F2, F3) harmonisches Mittel) und zeigt durch ein
Gegenbeispiel, dass 2) fur¨ p > - log(3/2)/ log 2 nicht mehr allgemein richtig ist. Die
bestmogliche“¨ Ungleichung von diesem Typ ware¨ also

”

F0 M-q F1, F2, F3) q :=
log(3/2)

log2
0.58496. 3)

Die Arbeit von Janous schliesst mit der Vermutung, dass 3) tatsächlich zutrifft. Diese
Vermutung soll in der vorliegenden Note bewiesen werden.

Wir setzen zur Abkürzung F0/Fi =: xi > 0 i 1,2,3). Die behauptete Ungleichung
3) ist dann äquivalent mit

x q
1 + xq

2 + xq
3 3. 4)

3 Die definitive“ Ungleichung über die Fi stammt von J.F. Rigby [4]: Die vier Zahlen”Fi 0 lassen sich genau dann als Teilflächen einer Konfiguration K auffassen, wenn

F3
0 + F1 + F2 + F3)F20 - 4F1F2F3 0 5)

ist, und zwar gilt das Gleichheitszeichen genau dann, wenn die drei Verbindungsgeraden
von je zwei Gegenecken durch einen Punkt gehen.

Wir beweisen hier nur einen Teil des Satzes von Rigby, nämlich die Ungleichung 5) für
erwiesene Teilflächen Fi Dabei dürfen wir o.B.d.A. von einem gleichseitigen Dreieck
der Seitenlänge 1 ausgehen; sein Flächeninhalt beträgt F v3/4. Mit den Bezeichnungen

der Figur 2 hat man

F0 1- s t - t u - u s)F

s + s t + t u + u - s t u + u - t u(s + s - u s(t + t F

stu + s t u F
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Figur 2

und folglich

F30 + F1 + F2 + F3)F2
0 F - 4F1F2F3 stu - s t u 2F3 00 - 4F1F2F3 F2

wie behauptet.

Wird 5) ebenfalls durch die Variablen xi := F0/Fi ausgedrückt, so resultiert die ¨
aquivalente Bedingung

x1x2x3 + x1x2 + x2x3 + x3x1 4. 6)

4 Damit stehen wir vor der folgenden Aufgabe: Wir müssen zeigen, dass unter der
Nebenbedingung 6) die Ungleichung 4) gilt.

Offensichtlich genügt es, Tripel x1, x2, x3) der Form x1 x2 x3 =: y zu betrachten,

für die in 6) das Gleichheitszeichen steht. Dann ist 0 < y 1, und man hat

1 + y)x1x2 + y(x1 + x2) 4. 7)

Wir halten y ]0, 1] zunächst fest und schreiben x1, x2 in der Form

x1 :=
2

1 + y
x2 :=

2

1 + y
s 8)

wobei und s nach 7) durch

+
y

2
s +

y
2

1 +
y

2

2
9)

y2

miteinander verknupft¨ sind. Die Gleichung 9) definierteine Hyperbel in der s)-Ebene.
Wegen x1 x2 y > 0 genugt¨ es, den in 1,1) beginnenden und im Punkt .1,s1),
s1 1 + y), endenden Hyperbelbogen zu betrachten. Es sei daher

t t) s(t) 0 t 1)
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eine Parameterdarstellung von wobei

t) > 0, t) s(t) s1 :=
y
2

1 + y) 0 t 1)

zugrundegelegt wird. Aus 9) folgt

s +
y
2 + s +

y

2
0

und damit ergibt sich

d

dt
q

+ sq q( q-1
+ sq-1

s
q.
+ y/2

q-1

+
y
2 - sq-1 s +

y
2

Die Funktion f(t) := tq-1 t+ y2 ist im Intervall s1 t .1 monoton wachsend, denn
dort gilt

f t tq-2 qt + q - 1)
y

2 t q-2 y

2
q(2 + y)- 1 0

Dies beweist
d

dt
q

+ sq q.
+ y/2 f( - f(s) 0

woraus wir den Schluss

q t) + sq t) q 0) + sq 0) 2 0 t 1)

ziehen dürfen. Mit 8) folgt daher: Ist x3 := y das kleinste der drei xi so gilt

xq
1 + x

q

3 2
2

2 + x
q

1 + y

q

+ yq 0 < y 1)

5 Damit verbleibt zu beweisen, dass die Funktion

f y) := 2
2

1 + y

q

+ yq - 3 3(1 + y)-q
+ yq - 3

für 0 < y 1 nichtnegativ ist. Der spezielle Wert von q es ist 2q 3/2) hat f 0)
f 1) 0 zur Folge, mit verschiedener Qualität der zwei Nullstellen, weshalb wir anstelle
von f die Funktion

g(y) := y-q f y) 1 + 3y-q 1 + y)-q - 1

betrachten. Man berechnet

g y) -3qy-q-1 1 + y)-q - 1 - 3qy-q 1 + y)-q-1

3qy-q-1 1 + y)-q-1 1 + y)q+1 - 1 + 2y)

Die Funktion y) := 1 + y)q+1 - 1 + 2y) ist konvex und verschwindet wegen des

speziellen Wertes von q bei y 0 und y 1. Hieraus folgt y) 0 0 < y 1) und
damit g y) 0 0 < y 1). Wegen g(1) 0 zieht dies g(y) 0 0 < y 1) und
schliesslich f y) 0 0 < y 1) nach sich.
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