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Introduction
Let us
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consider a figure formed by a triangle ABC and its three inscribed squares

X1X2Y3Z4, Y1Y2Z3X4, Z1Z2X3Y4, where the sides X1X2, Y1Y2, Z1Z2 are on the sides
AB, BC, CA of the triangle, and these three squares are homothetic to the external
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squares

BAB A CBC B AC A C respectively, from the vertices of CAB; see Fig. 1. We will
call this figure “Lucas’ configuration”.

In fact, there are another three squares inscribed in the triangle ABC. These are the three
squares X X Z Y Y Y X Z Z Z Y X where the sides X X Y Y Z Z are on
the sides A B B C C A of the triangle, and these three squares are homothetic to the
internal squares ABA B BCB C CAC A respectively, from the vertices of CAB.
We will call this figure “Lucas’ internal configuration”; but the results and conditions are

similar to Lucas’ configuration.

In [3], I.Panakis shows the relations found by Édouard Lucas between the circumcircles of
the triangles AX4Z3, BY4X3, CZ4Y3 and the length of the sides of the triangle ABC. In
[1], A.P. Hatzipolakis and P. Yiu show that these three circumcircles are mutually tangent
to each other, and tangent to the circumcircle of ABC; see Fig. 1.

In this note we show that Lucas’ configuration has more geometric peculiarities. We find
the following result:

Der vorliegende Beitrag ist eine Variation zur sogenannten Lucas-Konfiguration.Diese
ist beschrieben durch ein Dreieck und die ihm einbeschriebenen drei Quadrate, deren
eine Seite jeweils auf einer der Dreiecksseiten liegt. Der Autor beweist nun das
bemerkenswerte Resultat, dass die zwölf Eckpunkte der drei Quadrate in zwei Klassen mit je
sechs Punkten zerfallen, so dass die Punkte beider Klassen jeweils einen Kegelschnitt
beschreiben. Eine Klasse beschreibt dabei sogar eine Ellipse.
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2 Result

Theorem. Let ABC be a triangle and let X1X2Y3Z4, Y1Y2Z3X4, Z1Z2X3Y4 be its three
inscribed squares forming Lucas’ configuration. Then:

a) The vertices X1, X2, Y1, Y2, Z1, Z2 are on a conic.

b) The vertices Y3, Z4, Z3, X4, X3, Y4 are on an ellipse.

See Figs. 2, 3 and 4.

To prove the result we will concentrate our efforts on finding the equations of the conic.

We point out that, in the case of the three squares X1 X2Z3Y4 Y1Y2 X 3Z4 Z 1 Z 2Y3 X4
which form the Lucas’s internal configuration, the result is the same, but the vertices Z3
Y4 X3 Z 4 Y3 X 4 are on a conic which is not necessarily an ellipse.
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Proof. To prove the result, let ABC be the triangle; we may assume that AB is the longest
side, and we can consider a Cartesian system of coordinates such that

A 0, 0), B 1, 0), C a, b) with a 0, 1], b 0, 1].
In this system, after a calculation we have:

X1 a, 0), X2 a + b, 0), Y3 a + b,b), Z4 a,b),
Y1 b +1,-a + 1), Y2 a + b,-a + b + 1), Z3 a,b), X4 1, 0),

Z1 a2 + ab,ab + b2 Z2 a2 ab), X3 a2 + b2 0),

Y4 a2 + b2 + ab, b2

where and have positive values:

1

b + 1

b
a2 + b2- 2a + b + 1

1

a2 + b2 + b

Then, with a long but straightforward calculation, we find that the points X1, X2, Y1, Y2,

Z1, Z2 verify the following equation

Ax2 + By2 + Cxy + Dx + Ey + F 0

with
A b2 b + 1)2

B -3a4- a2b2 + b4 + 6a3 + ab2 + 2b3 - 3a2 + b2

C b(2a - 1)(2a2 + b2 - 2a),

D -b2 b + 1)(2a + b),

E -b(2a + b)(a2 + b2 - ab - a + b),

F ab2 a + b).
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Also, with another long but straightforward calculation, we find that the points Y3, Z4, Z3,
X4, X3, Y4 verify the following equation

Ax2 + By2 + Cxy + Dx + Ey + F 0

with

A b2 a2 + b2 + b)(a2 + b2 - 2a + b + 1),

B a6 + 2a4b2 + a2b4- 3a5 + b5 + 3a4b- 4a3b2 + 4a2b3 - ab4 + 4a4 + 2b4

- 6a3b + 5a2b2 - 4ab3- 3a3 + 2b3 + 3a2b - 3ab2 + a2 + b2

C -b(2a- 1)(a2 + b2 - a + b)2

D -b2 a4 + b4 + 2a2b2 - 2a3 + 2a2b - 2ab2 + 2b3 + a2 + 2b2

E b(a5 + 2a3b2 + ab4- 3a4 - 2b4 + 2a3b - 5a2b2 + 2ab3 + 3a3 - 2a2b

+ 4ab2 - 2b3- a2- b2

F b3 a2 + b2

Now that we have the previous equations, we can easily check that the first one
corresponds to a conic which is not necessarily an ellipse, whereas the second one necessarily
corresponds to an ellipse.

Remark. If instead of considering the three inscribed squares we consider the three
inscribed equilateral triangles each with a side parallel to a side of ABC, then we can find
similar results; see some of them in [2].
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