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The conics of Lucas’ configuration

Blas Herrera Gémez

Blas Herrera Gomez obtained his Ph.D. in mathematics at the University Autonoma of
Barcelona in 1994. Presently, he is professor of applied mathematics at the University
Rovira i Virgili of Tarragona. His main fields of interest are: classical and differential
geometry, and the application of geometry to fluid mechanics.

1 Introduction

Let us consider a figure formed by a triangle ABC and its three inscribed squares
X1 XoY37Z4, 1Yo Z3Xy, Z172X3Y4, where the sides X1 Xo, Y1Y2, Z177 are on the sides
AB, BC, CA of the triangle, and these three squares are homothetic to the external squares
BAB'A’, CBC'B', ACA'C’, respectively, from the vertices of CAB; see Fig. 1. We will
call this figure “TLLucas’ configuration”.

In fact, there are another three squares inscribed in the triangle ABC. These are the three
squares X X,Z%Y;, Y{Y} X\ 7!, Z1Z,Y X)), where the sides X| X/, Y{Y}, Z{Z) are on
the sides A’B’, B'C’, C' A’ of the triangle, and these three squares are homothetic to the
internal squares ABA”B"”, BCB"C", CAC" A", respectively, from the vertices of CAB,
We will call this figure “Lucas’ internal configuration’; but the results and conditions are
similar to Lucas’ configuration.

In [3], 1. Panakis shows the relations found by FEdouard Lucas between the circumcircles of
the triangles AX, 73, BY X3, CZ4Y3 and the length of the sides of the triangle ABC. In
[1], A.P. Hatzipolakis and P. Yiu show that these three circumcircles are mutually tangent
to each other, and tangent to the circumcircle of A BC; see Fig. 1.

In this note we show that Lucas’ configuration has more geometric peculiarities. We find
the following result:

Der vorliegende Beitrag ist eine Variation zur sogenannten Lucas-Konfiguration. Diese
ist beschrieben durch ein Dreieck und die ihm einbeschriebenen drei Quadrate, deren
eine Seite jeweils auf einer der Dreiecksseiten liegt. Der Autor beweist nun das bemer-
kenswerte Resultat, dass die zwOlf Eckpunkie der drei Quadrate in zwei Klassen mit je
sechs Punkten zerfallen, so dass die Punkte beider Klassen jeweils einen Kegelschnitt
beschreiben. Eine Klasse beschreibt dabei sogar eine Ellipse.
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Fig. 1

2 Result

Theorem. Let ABC be a triangle and let X1X,Y37Z4, Y1Y273X4, Z172X3Y4 De its three
inscribed squares forming Lucas’ configuration. Then:

a) The vertices X1, X», Y1, Yo, Z1, Zo are on d conic.

b) The vertices Y3, Z4, 73, X4, X3, Yq are on an ellipse.
See Figs. 2, 3 and 4.
To prove the result we will concentrate our efforts on finding the equations of the conic.
We point out that, in the case of the three squares X} X, ZiY,, VY, X Z), Z1 Z}Y;X],

which form the Lucas’s internal configuration, the result is the same, but the vertices Z5,
Y,, X}, Z,, Y}, X are on a conic which is not necessarily an ellipse.
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Fig. 3 Fig. 4

Proof. To prove the result, let ABC be the triangle; we may assume that A B is the longest
side, and we can consider a Cartesian system of coordinates such that

A=1(0,0), B=(1,0), C={(a,b) with a € (0,1], b € (0, 1].
In this system, after a calculation we have:
X1 =14a,0), Xo=T(a+b,0), s=Ta+b,b), Zy=1a,b),
Yi=Ab+1,—a+1), Yo=Ala+b,—a+b+1), Zz = Aa,b), Xq4=A(1,0),
Z1= A@® +ab,ab +b?), Zy = A@?, ab), X3 = Aa®+b2,0),
Yy = A@® + b* +ab, b?)
where I', A and A have positive values:

1 b 1
:—’A: ,A:—.
b+ 1 az+b?2-2a+b+1 al+ b2 +b

Then, with a long but straightforward calculation, we find that the points X1, Xo, Y1, Y2,
Z1, Zp verify the following equation

I'

AX?+ BY> 4+ Cxy+Dx+Ey+F =0

with
A=D*b+ 1),
B = —3a* —a?b® + b* + 64> + ab® + 2b° — 3% + b,
C =bQRa—1)2a> +b* - 2a),
D = —b*b+ )Q2a+Db),
E=—bQRa+b){a®>+b*>—ab—a+D),
F=ab*(a+Db).
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Also, with another long but straightforward calculation, we find that the points Y3, Z4, Z3,
X4, X3, Yy verity the following equation

Ax?+ By> 4+ Cxy+Dx+ Ey+F =0
with
A=02@+p>+b)@®+b*-2a+b+ 1),
B =a® +2a*b? + a®b* — 3a° + b° + 3a*b — 4a°D? + 44%0° — ab* + 4a* + 20"
— 6a°b + 5a%b? — 4ab® — 3a° + 2b° + 3a°h — 3ab® + a® + b2,
C=—-bQa—a*+b*—a+b)?
D = —b%@a* + b* 4+ 2a°p? — 2a° +2a%p — 2ab? + 203 + 4% + 2b?),
E =b(@® +2a°b? + ab* — 3a* — 2b* + 2a°b — 54°b7 + 2ab® + 3a® — 24°b
+ 4ab® —2b° —a® — b?),
F=0p@’+h?.
Now that we have the previous equations, we can easily check that the first one corre-

sponds to a conic which is not necessarily an ellipse, whereas the second one necessarily
corresponds to an ellipse. O

Remark. If instead of considering the three inscribed squares we consider the three in-
scribed equilateral triangles each with a side parallel to a side of ABC, then we can find
similar results; see some of them in [2].
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