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1 Thébault’s theorem

The following theorem is usually called Thébault’s theorem. We refer to Fig. 1.

Theorem 1. Let I, r be the incircle of a triangle ABC I is the center and r is the

radius), and T any point on the line BC. Let P, r1) and Q,r2) be two circles touching
the lines AT and BC and the circumcircle ABC. Then the three centers P, Q and I are
collinear and the following relations hold:

PI : I Q t2 1)

r1 + r2t 2 r 1 + t2 2)

where 2. AT B, and t tan

Thébault’s theorem was originally proposed in 1938 as a problem in the American
Mathematical Monthly by the French geometer Victor Thébault [14]. Thébault’s theorem
remained an open problem for some 45 years, until the proof appeared in 1983 [13]. This

Ende der dreissiger Jahre des letzten Jahrhunderts stellte der französische Geometer
Victor Thébault im American Mathematical Monthly eine Aufgabe zur Dreiecksgeometrie.

Überraschenderweise wurde die erste Lösung dieses Problems erst knapp ein
halbes Jahrhundert später veröffentlicht, ebenfalls im Monthly. Die Autoren liefern in
diesem Beitrag einen weiteren, elementaren Beweis des Satzes von Thébault, indem
sie eine Charakterisierung von Kreisen geben, die eine Dreiecksseite und den Umkreis
des Dreiecks berühren. Darüber hinaus diskutieren sie am Endemögliche Verallgemeinerungen

des Satzes von Thébault in drei Dimensionen.
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Fig. 1

proof used analytic geometry and involved lengthy computations. As it is often the case

in situations like this one, a series of new, short and more elegant proofs appeared after
that. So, for example, [15] and [5] use trigonometry,[12] and [7] are synthetic proofs, [10]
uses computer algebra software for an again analytic) proof etc. Some proofs actually
showed a more general claim than Thébault’s original theorem. But some proofs treated
only special cases; e.g. [3] treated only the case when AT is perpendicular to BC. Surprisingly,

there is a short and nice solution of the original problem which was received back
in 1975, but published only in 2003 [2], since in Editorial comment’s words) “. through
circumstances lost in the mists of time, it somehow fell through the cracks.” The solutions
[4] and [17] referred to a proof [16] in Dutch), which was prior to [2]. Let us note here
that a wrong version of formula 2) appeared in the original [14], but was corrected in [2].

In our approach here, in provingThébault’s theorem we first give a necessary and sufficient
condition that a circle touches one side and the circumcircle of a triangle Theorem 2). We
use this criterion to approve a geometric construction of “Thébault’s circles” Theorem 3),
and then we give a short proof of Thébault’s original theorem. Some easy consequences
of our considerations are also discussed Theorems 4 and 5).

Our results include all the results known to the authors that treat and generalize Thébault’s
original theorem. We shall make some comments later in the text.

Finally, based on some calculations, we note that more-or-less “obvious” space versions
of Th ébault’s theorem do not hold. So, the question is what is the space analogue of
Thébault’s theorem, if there is any at all.

2 Auxiliary results

Theorem 2. Suppose a circle K P, touches a line BC at the point U and let the

points A and P be on the same side of this line. Then the circle K touches the circle ABC
from the inside if and only if for the oriented distances BU and UC with BC a) we
have

BU · UC a. tan
A

2
a.a. 3)
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Proof. Let O, R) be the circumcircle of the triangle ABC, and let L be the midpoint of
BC. Then see Fig. 2) the oriented distance from O to the line BC is given by LO
R cos A. Note that this distance can be positive, but also negative if O is “below” the line
BC. Since UP we have the following equality

OP2 LU2 + - R cos A)2 4)

Since BU · UC LU - LB)(LC - LU) LU +
a

2

a

2 - LU
a2

4 - LU2

R2 sin2 A- LU2, we obtain

LU2 R2 sin2 A - BU · UC. 5)

The circle K touches the circle ABC from the inside if and only if OP2 R- 2. From
4) and 5) it follows that this is equivalent to

R2 sin2 A - BU · UC + - R cos A)2 R- 2

or, by rearranging a bit,
BU · UC 2R.(1 - cos A).

Since 2R(1- cos A) a
1- cos A

sin A
a tan

A

2
it follows that this is equivalent to the

equality 3).

Fig. 2

Denote, as usual, by p := a + b + c)/2 the half-perimeter of the triangle ABC, by
A B C

its area, by r its inradius, and put a := tan ß tan
2 := 2 := tan

2

Then, since a
r

p - a
ß

r
p - b

r
p - c

it follows

ß.
r2

p - b)(p - c)

p- a

p
6)
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and then, from aß.
r

p- a ·
p- a

p
r
p

it follows

aß.
r2

7)

The following theorem may be viewed as a recipe for constructing by ruler and compass)

circles that touch a given circle from the inside and two given chords. We refer to Fig. 3.

Theorem 3. ([15], [4], [8]) Let I, r be the incircle of a triangle ABC, and T any point
on the line BC. Let the perpendiculars from I to the bisectors of the angles AT B and

ATC meet BC at the points U and V and let the normals to BC at U and V meet
these bisectors at P and Q, respectively. Then the circles with centers P and Q and radii
r1 PU and r2 QV touch the lines AT and BC and the circle ABC from the inside.

Proof. Let t tan where 2 AT B. Further, let D be the foot of the perpendicular

from I to BC, and I D r be the inradius of ABC. Then UD rt BD r cot
B

2r
ß

and also DC
r

Hence, BU BD - UD
r

ß - rt r
ß

1 -ßt), and UC

UD + DC rt +
r r

1 + t).

From 7) we therefore infer

BU · UC a(1- ßt)(1 + t). 8)

Fig. 3

Let ha be the height from the vertex A of ABC. Then see Fig. 3)

BT ha(cot B + cot 2
2

a

1- ß2

2ß +
1 - t2

2t
rp

aßt t - ß2t + ß -ßt2 rp
aßt t + ß)(1-ßt).
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Using 6) we also get

UT BT - BU
rp

aßt
1 - ßt) t + ß -

a

p t

aßt
1-ßt)

p - a

p t + ß
aßt

1-ßt ß.t + ß)

at
1-ßt)(1 + t).

Since r1 UT · tan UT · t it follows

r1
a

1 -ßt)(1 + t). 9)

From 8) and 9) we conclude
BU · UC ar1a.

By Theorem 2 it follows that the circle P, r1) touches the circle ABC from the inside.
The same conclusion holds for the circle Q,r2). By the formal substitutions ß and

t 1 from 9) we get the analogous formulat

r2
a

1- t
1 +

ß

t at2 t + ß)(t - 10)

Since the line IU is normal to the bisector T P of the angle AT B between the lines AT
and BC, it follows that U IU n AT is the touching point of the line AT with the circle
P, r1). This is one of the claims in [9].

By completing the isosceles triangle UTU to the rhomb UTU X, it follows that the
point I is equally distant from the lines UT andUX. Hence, the incircle I,r touches the

line UX, parallel to AT passing through U. A similar claim is valid for the parallel to AT
passing through V These claims proved for Thébault’s external theorem – see Remark 2)
are in the paper [5].

Remark 1. Let Ia be the excenter to BC of ABC. By the same construction as in
Theorem 3 with I replaced by Ia, we get two more circles touching BC and AT and the
circle ABC externally.

3 Proof of Thébault’s theorem
We now give a short proof of Theorem 1 based on our auxiliary results. With the same

notations as before we reason as follows:

From 9) and 10), and using 6) we have

a [(1-ßt)(1 + t) + t + ß)(t - )]r1 + r2t2

[1 - ß. + t2 ß. t2

a - ]
rp
a

1 -ß. 1 + t2 r 1 + t 2
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and this proves formula 2) from Theorem 1. The obtained equality can also be written in
r1 r r r2

the formr1-r r - r2)t 2, or equivalently - - t By looking at Fig. 3, this
rt r

is equivalent to
PU - I D

UD
I D -QV

DV
11)

This means that the points P, I and Q are collinear. Also,

PI
I Q

UD
DV

rt
r
t

t 2

4 Some related results

In [7] and [8] the collinearity of P, Q and I is also proved. In [13], formula 9) is given in
the form

r1
r

ra - r [ra - rt2 - b - c)t], 12)

and analogously for r2, where ra is the radius of the excircle to BC of the triangle ABC.
Namely, from r paß. ra pa, and a p(1-ß. b p(1- .a), c p(1- aß),
it follows b - c pa(ß - Hence, the right-hand side of 12) is given by

r
a- aß. [a- aß. t2 - a(ß - t]

r
1-ß.

1- ß. t2 - ßt + t)
rp
a

1-ßt)(1 + t),

and this is the right-hand side of 9).

Remark 2. Let P and Q be the centers of the circles touching BC and AT and the circle
ABC externally. By the same argument as in the above proof of Thébault’s theorem, it
follows that P Ia and Q are collinear. This was also proved in [5]. This is sometimes
called Thébault’s external theorem.

Remark 3. Recall that the general Appolonius’ problem asks to construct by ruler and

compass) all circles that touch three given circles possibly of infinite radii) in a plane.
Our Theorem 3 and Remark 2 provide a simple solution to a special case of Appolonius’
problem when we are given a circle and two of its chords. In fact, many instances of the
general Appolonius’ problem can be reduced via appropriate inversions to the above case.

Theorem 4. ([13]) With the same notations as in Theorem 3, the equality r1 r2 holds if
and only if the point T coincides with the touching point D of the line BC and the excircle
of the triangle ABC to the side BC.

Proof. By using 9) and 10), the equality r1 r2 is equivalent to

1 -ßt)(1 + t)t2 t + ß)(t -
ß. 1- t 4 -ßt(1 + t2

+ t(1 + t 2 0 13)

ß. 1- t 2 -ßt + t 0.
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From the equalities BD CD
r

BT
rp

aßt t + ß)(1-ßt), and a p(1-ß.
the equality BT BD is equivalent to t +ß)(1-ßt) ßt(1- ß. And as it turns
out easily, the last equality is equivalent to 13).

The circles P, r1) and Q, r2) touch each other if and only if UT TV. From the proof
of Theorem 3, we have UT r1/t and by substituting t by 1/t it follows TV r2t
So, UT TV becomes t2 r1/r2. Hence, from formula 1) in Theorem 1 we have

PI : I Q r1 : r2. But this means that the point I is the tangency point of the two circles.
Therefore, we have proven the following theorem:

Theorem 5. ([6], [11]) Suppose two circles touch each other externally at the point I
they both touch internally the circle ABC, both touch at I the line AI and both touch the
line BC on the side of the point A. Then I is the incenter of the triangle ABC.

5 Is there any space version of Thébault’s theorem?

The main part of Thébault’s theorem is the collinearity of the circle centers P, Q and I, as

was claimed in Theorem 1. One would hope the following space version should be true.

Space version 1. (“Four spheres with coplanar centers”) Let I be the incenter of a
tetrahedron ABCD, and let T be any point of the face ABC or even the plane ABC). Let
P be the center of the sphere which touches the three sides of the tetrahedron T BCD i.e.,

all except BCD) and touches the circumsphere of our tetrahedron ABCD. The point
Q for the tetrahedron T ACD), and the point R for the tetrahedron T ABD) are defined
analogously. Then the four points P, Q, R and I are coplanar.

Unfortunately, this is false in general. A counterexample is a 3-sided pyramid ABCD,
where the base ABC is a regular triangle of side length a and the altitude is DT h,

ah
where T is the center of ABC. The inradius of ABCD is r

a +
va2 + 12h2

while

the radius of the sphere touching the planes BTC, BT D, CT D and the circumsphere

of ABCD is given by
va2 + 4h2 - a

4h · a. It turns out that r

Another “obvious” space version of Thébault’s theorem would be the following statement:

Space version 2. (“Three spheres with collinear centers”) Let T be a point on the edge

AB of a tetrahedron ABCD. Let P be the center of the sphere touching the planes T AC,
T AD, TCD and the circumsphere of the tetrahedron ABCD. Similarly, let Q be the
center of the sphere touching the planes T BD, TCD, T BC and the sphere Let I be

the incenter of our tetrahedron ABCD. Then the points P, I and Q are collinear.

It turns out that this space version is also wrong. A counterexample here is a regular
tetrahedron and the midpoint T of one of the edges of the tetrahedron.

So, the question is what is a space version of Thébault’s theorem? Is there any reasonable
version at all?
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