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1 Thébault’s theorem
The following theorem is usually called Thébault’'s theorem. We refer to Fig. 1.

Theorem 1. Let (I, r) be the incircle of a triangle AABC (I is the center and r is the
radius), and T any poini on the line BC. Let (P, r1) and (Q, r2) be two circles touching
the lines AT and BC and the circumcircle ABC. Then the three centers P, () and I are
collinear and the following relations hold:
PI:IQ =12 (D)
r 4t =r(1+ 1), (2)
where 26 = ZATB, and T = tané.

Thébault’s theorem was originally proposed in 1938 as a problem in the American Math-
ematical Monthly by the French geometer Victor Thébault [14]. Thébault’s theorem re-
mained an open problem for some 45 years, until the proof appeared in 1983 [13]. This

Ende der dreissiger Jahre des letzten Jahrhunderts stellte der franzosische Geometer
Victor Thébault im American Mathematical Monihly eine Aufgabe zur Dreiecksgeo-
metrie. Uberraschenderweise wurde die erste Losung dieses Problems erst knapp ein
halbes Jahrhundert spiter veroffentlicht, ebenfalls im Monthly. Die Autoren liefern in
diesem Beitrag einen weiteren, elementaren Beweis des Satzes von Thébault, indem
sie eine Charakterisierung von Kreisen geben, die eine Dreiecksseite und den Umkreis
des Dreiecks bertihren. Dartiber hinaus diskutieren sie am Ende mogliche Verallgemei-
nerungen des Satzes von Thébault in drei Dimensionen.
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Fig. 1

proof used analytic geometry and involved lengthy computations. As it is often the case
in situations like this one, a series of new, short and more elegant proofs appeared after
that. So, for example, [15] and [5] use trigonometry, [12] and [7] are synthetic proofs, [10]
uses computer algebra software for an (again analytic) proof etc. Some proofs actually
showed a more general claim than Thébault’s original theorem. But some proofs treated
only special cases; e.g. [3] treated only the case when AT is perpendicular to BC. Surpris-
ingly, there is a short and nice solution of the original problem which was received back
in 1975, but published only in 2003 [2], since (in Editorial comment’s words) “.. . through
circumstances lost in the mists of time, it somehow fell through the cracks.” The solutions
[4] and [17] referred to a proof [16] (in Dutch), which was prior to [2]. Let us note here
that a wrong version of formula (2) appeared in the original [14], but was corrected in [2].

In our approach here, in proving Thébault’s theorem we first give a necessary and sufficient
condition that a circle touches one side and the circumcircle of a triangle (Theorem 2). We
use this criterion to approve a geometric construction of “Thébault’s circles” (Theorem 3),
and then we give a short proof of Thébault’s original theorem. Some easy consequences
of our considerations are also discussed (Theorems 4 and 5).

Our results include all the results known to the authors that treat and generalize Thébault’s
original theorem. We shall make some comments later in the text.

Finally, based on some calculations, we note that more-or-less “obvious”™ space versions
of Thébault’s theorem do not hold. So, the question is what is the space analogue of
Thébault’s theorem, if there is any at all.

2 Auxiliary results

Theorem 2. Suppose a circle K = (P, p) touches a line BC af the point U and let the
points A and P be on the same side of this line. Then the circle IC touches the circle ABC
from the inside if and only if for the oriented distances BU and UC (with BC = a) we
have

A
BU~UC:a,0tan3:apa. 3)
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Proof. Let (O, R) be the circumcircle of the triangle ABC, and let L be the midpoint of
BC. Then (see Fig. 2) the oriented distance from O to the line BC is given by LO =
R cos A. Note that this distance can be positive, but also negative if O is “below” the line
BC. Since U P = p, we have the following equality

OP? = LU?+ (p — Rcos A)>. 4

2
smmmeczaﬂ—Lm@C—LUp:@U+f)ﬁ—Ljy:%—LU%=

2/ \2
R%sin® A — LUZ, we obtain
LU? = R?sin® A — BU - UC. (5)

The circle K touches the circle ABC from the inside if and only if O P? = (R — p)?. From
(4) and (5) it follows that this is equivalent to

R?sinf® A — BU - UC + (p — Rcos A)? = (R — p)?,

ot, by rearranging a bit,
BU -UC =2Rp(l —cos A).

) l —cosA A -y ‘
Since 2R(1 — cos A) = asin—A = ¢tan > it follows that this is equivalent to the
equality (3). U

Fig. 2

Denote, as usual, by p := (a + b + ¢)/2 the half-perimeter of the triangle AABC, by A

its area, by r its inradius, and put « := tan 5, B = tan 5, y = tan 5.
r r r )

. B= LY = , it follows

p—a p—b p—c

Then, since o =

2 p—a

_ — ) 6
(p—b)¥p—c) p (©)

By
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r p—a r .
and then, from «By = - —— = —, it follows
pP—d P P
py =" M
o = —.
LN

The following theorem may be viewed as a recipe for constructing (by ruler and compass)
circles that touch a given circle from the inside and two given chords. We refer to Fig. 3.

Theorem 3. ([15], [4], [8]) Let (I, r) be the incircle of a triangle AABC, and T any point
on the line BC. Let the perpendiculars from 1 to the bisectors of the angles ZAT B and
LATC meet BC at the points U and V, and let the normals to BC at U and V meet
these bisectors at P and Q, respectively. Then the circles with centers P and Q and radii
r1 = PU andry = QV touch the lines AT and BC and the circle ABC from the inside.

Proof. Lett = tan ®, where 20 = ZAT B. Further, let D be the foot of the perpendicular
B
from I to BC, and ID = r be the inradius of AABC. Then UD =rt, BD = rcotz =

r r r
L, and also DC = — . Hence, BU = BD —UD =— —rv= —=(1 — Br),and UC =
B v B B
UD+DC=rr+—=—(1+y1).
Y Y
From (7) we therefore infer
BU -UC = Aa(l — Bt)(1 + y1). (8)

Fig. 3

Let i, be the height from the vertex A of AABC. Then (see Fig. 3)

2A (1—p82 1-—12
BT = hg{cotB +cot20) = — +
a 28 21

_ P g p gy = L4 pya - o).
apt apc
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Using (6) we also get

=0 (o =)
Ulr'=BT—-BU=—({-p0)|lt+p——1
apr P

TSR Lo W O DY
= o= ﬁf)( . r+ﬁ)—aﬁr(1 BBy +B)

A

= —{ =)l +y7).

ar

Sinceriy =UT -tan® = UT - 7, it follows
A
r = E(l - Bl +y7). )]

From (8) and (9) we conclude
BU -UC =an.

By Theorem 2 it follows that the circle (P, r1) touches the circle ABC from the inside.
The same conclusion holds for the circle ((, 7). By the formal substitutions g <> y and
T < % from (9) we get the analogous formula

A ¥ B A
n==(1-L)(1+5)=Sc+pe-». (10)

a 4 T ar
O
Since the line 71U is normal to the bisector T P of the angle ZAT B between the lines AT

and BC, it follows that Y = IU N AT is the touching point of the line AT with the circle
(P, r1). This is one of the claims in [9].

By completing the isosceles triangle AUTU’ to the thomb UTU’X, it follows that the
point I is equally distant from the lines UT and U X. Hence, the incircle (1, r ) touches the
line U X, parallel to AT passing through U. A similar claim is valid for the parallel to AT
passing through V. These claims (proved for Thébault’s external theorem — see Remark 2)
are in the paper [5].

Remark 1. Let I, be the excenter to BC of AABC. By the same construction as in
Theorem 3 with I replaced by 1;, we get two more circles touching BC and AT and the
circle ABC externally.

3 Proof of Thébault’s theorem

We now give a short proof of Theorem 1 based on our auxiliary results. With the same
notations as before we reason as follows:

From (9) and (10), and using (6) we have
A
r 4t = =B A+yD) + T+ B — )
A
=—[l-py+ 2 — Byl

_ %(1 —ByA+ 12 = r(1 +12),
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and this proves formula (2) from Theorem 1. The obtained equality can also be written in
r.—r r—r

the formry —r = (r — rz)rz, or equivalently lr = . = 7. By looking at Fig. 3, this

i

is equivalent to

PU—-ID 1D - Qv
up DV
This means that the points P, I and Q are collinear. Also,

(1)

Pl UD rt
—_— i — = — = T,
10 DV L

4 Some related results

In [7] and [8] the collinearity of P, 0 and [ is also proved. In [13], formula (9) is given in
the form
[ra —rt2 — b — oO)7l, (12)

=
Fg—1T1

and analogously for rp, where r is the radius of the excircle to BC of the triangle AABC.
Namely, from r = pafy,rqs = pe,anda = p(1 — By), b= p(1l —ya), c = p(l —ap),
it follows b — ¢ = pa (B — y). Hence, the right-hand side of (12) is given by

r

— ' le—apyrt—alf -yl = (1-pye®—pr+yo)

o —afy 1 — By
— %(1 _ By + y),

and this is the right-hand side of (9).

Remark 2. Let P" and Q' be the centers of the circles touching BC and AT and the circle
ABC externally. By the same argument as in the above proof of Thébault’s theorem, it
follows that P’, I, and Q' are collinear. This was also proved in [5]. This is sometimes
called Thébault’s external theorem.

Remark 3. Recall that the general Appolonius’ problem asks to construct (by ruler and
compass) all circles that touch three given circles (possibly of infinite radii) in a plane.
Our Theorem 3 and Remark 2 provide a simple solution to a special case of Appolonius’
problem when we are given a circle and two of its chords. In fact, many instances of the
general Appolonius’ problem can be reduced via appropriate inversions to the above case.

Theorem 4. ([13]) With the same notations as in Theorem 3, the equality r1 = rp holds if
and only if the point T coincides with the touching point D' of the line BC and the excircle
of the triangle ABC to the side BC.

Proof. By using (9) and (10), the equality r1 = rp is equivalent to
(1-n)l+y)t =T+ —y)
S By —th —prl+ ) +yrd+H =0 (13)
& By(l—1t5) —Br+yr =0.
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l(f + B)(1 — Br),anda = p(l — By),
apc

the equality BT = BD' is equivalent to y(t + B8)(1 — Bt) = Bt (1 — By). And as it turns
out easily, the last equality is equivalent to (13). U

p
From the equalities BD' = CD = —, BT =
14

The circles (P, r1) and (Q, r2) touch each other if and only if UT = T'V. From the proof
of Theorem 3, we have UT = ry /7, and by substituting = by 1/7, it follows TV = rpt.
So, UT = TV becomes 72 = r1/¥2. Hence, from formula (1) in Theorem 1 we have
PI:T1Q =ry:ry. Butthis means that the point 7 is the tangency point of the two circles.
Therefore, we have proven the following theorem:

Theorem 5. ([6], [11]) Suppose two circles fouch each other externally at the point 1,
they both touch internally the circle ABC, both touch at I the line Al, and both touch the
line BC on the side of the point A. Then 1 is the incenter of the triangie AABC.

5 Is there any space version of Thébault’s theorem?

The main part of Thébault’s theorem is the collinearity of the circle centers P,  and I, as
was claimed in Theorem 1. One would hope the following space version should be true.

Space version 1. (“Four spheres with coplanar centers™) Let I be the incenter of a tetra-
hedron ABCD, and let T be any point of the face AABC (or even the plane ABC). Let
P be the center of the sphere which touches the three sides of the tetrahedron TBCD (i.e.,
all except BCD) and touches the circumsphere 2 of our tetrahedron ABCD. The point
Q (for the teirahedron TACD), and the point R (for the tetrahedron T AB D) are defined
analogously. Then the four points P, (0, R and I are coplanar.

Unfortunately, this is false in general. A counterexample is a 3-sided pyramid ABCD,

where the base AABC is a regular triangle of side length ¢ and the altitude is DT = h,

ah
where T is the center of AABC. The inradius of ABCD isr = while

a+ a2+ 12n?

the radius p of the sphere touching the planes BT C, BT D, CT D and the circumsphere

va*+4n? —a
X of ABCD is given by p = +4h - . It turns out that p # r.

Another “obvious” space version of Thébault’s theorem would be the following statement:

Space version 2. (“Three spheres with collinear centers”™) Let T be a point on the edge
AB of a tetrahedron ABCD. Let P be the center of the sphere touching the planes T AC,
TAD, TCD and the circumsphere ¥ of the teirahedron ABCD. Similarly, let Q be the
center of the sphere touching the planes TBD, TCD, TBC and the sphere x. Let I be
the incenter of our tetrahedron ABCD. Then the points P, I and Q are collinear.

It turns out that this space version is also wrong. A counterexample here is a regular tetra-
hedron and the midpoint 7" of one of the edges of the tetrahedron.

So, the question is what is a space version of Thébault’s theorem? Is there any reasonable
version at all?
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