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Elemente der Mathematik

Leonhard Eulers Umgang mit langsam
konvergenten Reihen

Walter Gautschi

1 Das Basler Problem

Eines der brennendsten mathematischen Probleme Anfang des 18. Jahrhunderts, das zwar
schon im 17. Jahrhundert von PietroMengoli, und auch von JohnWallis erwähnt, aber erst

durch die fieberhaften, jedoch erfolglosen, Anstrengungen der hervorragendstenGelehrten
wie Leibniz, Stirling, de Moivre und allen Bernoullis aktuell geworden ist, bestand darin,
die Summe der unendlichen Reihe

1 +
1

4 +
1

9 +
1

16 +
1

25 + · · · 1)

durch bekannte Grössen auszudrücken. Ein frustrierter Jakob Bernoulli, damals wohl der
geübteste Mathematiker im Umgang mit unendlichen Reihen, stellte das Anliegen [2]:

” sollte jemand das, was unseren Anstrengungen bis jetzt entgangen ist, finden und uns
mitteilen, so werden wir ihm sehr dankbar sein“. Wohl infolge der grossen diesbezuglichen¨
Bemuhungen¨ von Jakob und Johann Bernoulli ist das Problem als Basler Problem“ in die

”Geschichte der Mathematik eingegangen.

Es ist bekannt,dass Euler schon 1735 dasProblem gelöst, und für die fraglicheSumme den

Wert p2/6 angegeben hat was ihn fast über Nacht weltberühmt gemacht hat), doch waren
dieser Entdeckung – was für Euler typisch ist – numerische Rechnungen vorausgegangen.
Diese sind durchaus nicht trivial, da es sich in 1) um eine sehr langsam konvergente Reihe
handelt: Für eine Genauigkeit von 10-d brauchtman ungefähr 10d Glieder der Reihe, also

für sechs Dezimalstellen eine Million Glieder! Es ist daher interessant zu sehen, wie sich
Euler mit dieser Schwierigkeit auseinandergesetzt hat. Wie so oft bei Euler sind aus
diesem speziellen Problem Resultate hervorgegangen, die einen sehr allgemeinen und
weittragenden Charakter haben. Als Beispiel hat er selbst seine Ideen auf die damals ebenso

schwierige Aufgabe angewandt, die sogenannte Eulersche Konstante genau zu berechnen.
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2 Eine erste Approximation zur Lösung des Basler Problems

Wir schreiben

s
8

1

1

.2
2)

In §22 von De summatione innumerabilium progressionum Die Summierung einer
unendlichen Reihe, E20; OI,14, S. 25–411; eingereicht 1731, veröffentlicht 1738) beginnt
Euler mit der Integraldarstellung

s -
1

0

ln(1- t)
t

dt,

die man leicht durch Taylor Entwicklung von ln(1 - t) und nachfolgender gliedweisen
Integration bestätigen kann. Mittels der Substitution t 1- t kann man auch

s -
1

0

ln t
1 - t

dt

schreiben. Nun zerlegt Euler das letzte Integral in zwei Teile, ein Integral von 0 bis x

mit 0 < x < 1) und ein Integral von x bis 1, wobei er im letzteren wieder t 1 - t

substituiert. Das gibt

s -
x

0

ln t
1- t

dt -
y

0

ln(1- t)
t

dt, y 1- x.

Partielle Integration im ersten Integral und Taylor Entwicklung von ln(1- t) liefert dann2

s lnx ln(1- x) +
8

1

x. + y.
.2

Um die Konvergenzgeschwindigkeit der letzten Reihe zu maximieren, nimmt Euler x
1/2, also y 1/2, und bekommt

s ln 2)2

+
8

1

1

2.-1.2
3)

Wie man sieht, gelang es Euler, einen Faktor 2- in die Basler Reihe einzuschmuggeln.
Die Reihe in 3) konvergiertdahererheblich schneller als die ursprüngliche Reihe in 2). In
der Tat, nimmt man n Glieder der Reihe und bezeichnet die resultierende Approximation
von s mit s(n), so hat man das in Tabelle 1 gezeigte Konvergenzverhalten:

1Wir fügen den Arbeiten von Euler deren Eneström-Index Zahlen E-Zahlen) bei, sowie den Band der Opera

omnia, in dem sie zu finden sind, wo OI,14, z.B. Opera omnia, Serie I, Vol. 14 bedeutet. Siehe die Web

Seite http://www.math.dartmouth.edu/˜euler des U. S. Euler Archivs für eine nach den E-Zahlen
geordnete kommentierte Liste sämtlicher Werke von Euler.

2Hier folgen wir Eulers Vorgehen in §196 der Institutiones calculi integralis, Vol. 1, E342, OI,11, und nicht
der etwas umständlicheren Herleitung in der zitierten Abhandlung.
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n s(n) Fehler

5 1.643543291695979 1.39×10-
03

10 1.644920051673697 1.40×10-
05

20 1.644934062865116 3.98×10-
09

40 1.644934066848226 8.88×10-
16

Tabelle 1: Konvergenzverhalten der Reihe in 3)

Euler benutzt die Formel 3), um s auf sechs Dezimalstellen zu berechnen.

3 Eine zweite Approximation
Der Ausgangspunkt hier ist die bekannteTrapezregel für die Integration einer Funktion f

n+1

1
f x)dx ˜

1

2
f 1) + f 2)+ ·· · + f n) +

1

2
f n + 1),

die Euler, wie Gregory schon vor ihm, verfeinert indem er auf der linken Seite die
Korrekturglieder

1
12[ f n + 2)- f n + 1)]-

1
12[ f 2) - f 1)]

hinzufügt. Man erhält so, nach einfacher Umordnung,

n+1

1

f ˜
n+1

1
f x)dx +

1
12[5 f n + 1) + f n + 2)] +

1
12[7 f 1)- f 2)].

Nimmt man an, dass f im Unendlichen verschwindet und ins Unendliche summiert und
integriert werden kann, so bekommt man, wenn n.8,

8
1

f ˜
8

1
f x)dx +

1
12[7 f 1)- f 2)]. 4)

Mit Bezug auf das Basler Problem hat Euler in §14 von Methodus universalis serierum
convergentium summas quam proxime inveniendi Eine allgemeine Methode, Approximationen

zu Summen konvergenter Reihen zu finden, E46; OI,14, S. 101–107; eingereicht
1735, veröffentlicht 1741) nun die sehr n ützliche Idee, für ein bestimmtes .0 > 1 die
ersten .0 Glieder der Reihe direkt zu summieren,

.0

1

1

.2
s0, 5)

und dann 4) auf f x) .0 + x)-2 anzuwenden. Das gibt

s ˜ s0 +
1

.0 + 1 +
1

12

7

.0 + 1)2 -
1

.0 + 2)2
6)
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Die Resultate für verschiedeneWahlen von .0 sind in Tabelle 2 zusammengestellt:

.0 s ˜ Fehler

10 1.644919055011046 1.50×10-
05

20 1.644932866546282 1.20×10-
06

40 1.644933981455983 8.54×10-
08

80 1.644934061144287 5.70×10-
09

160 1.644934066479512 3.69×10-
10

Tabelle 2: Die Approximation 6) in Abhängigkeit von .0

Euler wählte .0 10 und erhielt s ˜ 1.644920, wo aber die zwei letzten Ziffern 19 statt

20 heissen sollten. Im Vergleich mit der ersten Approximation s(n) von 3) konvergiert
diese zweite bedeutend langsamer, enthält aber den Keim einer wesentlich allgemeineren
und wirksameren Methode, die im nächsten Abschnitt beschrieben werden soll.

4 Die Euler-Maclaurin Summationsformel
Offensichtlich ging es Euler nicht nur um die Summe aller reziproken Quadrate,
sondern viel allgemeiner um irgendeine Funktion f summiert über alle natürlichen Zahlen,

8 1 f Dies führte zu einer seiner frühen Glanzleistungen – heute die Euler-
Maclaurin Formel genannt, weil auch Maclaurin sie sechs Jahre später, unabhängig von
Euler, gefunden hat. Euler gibt sie zuerst ohne Beweis in Methodus generalis summandi

progressiones Eine allgemeine Methode zur Summierung von Reihen, E25; OI,14,
S. 42–72; eingereicht 1732, veröffentlicht 1738) an, und leitet sie in Inventio summae
cuiusque seriei ex dato termino generali Bestimmung der Summe irgend einer Reihe von
einem allgemeinen Term, E47; OI,14, S. 108–123; eingereicht 1735, veröffentlicht 1741)
vollständig her. In moderner Schreibweise hat sie die Gestalt

1

2
f 0) + f 1)+ · · · + f n- 1) +

1

2
f n)

n

0
f x)dx +

M

µ=1

B2µ

2µ)! [
f 2µ-1)(n) - f 2µ-1)(0)] + RM,

7)

wo B2, B4, B6, die Bernoullischen Zahlen bezeichnen, die Jakob Bernoulli in seiner
Ars conjectandi eingeführt hat und durch die Entwicklung

z

ez - 1
1-

1

2
z +

8

µ=1

B2µ

2µ)!
z2µ |z| < 2p,

definiert sind. Euler gibt nie ein Restglied an, aber es kann hier auf verschiedene Art
geschrieben werden, z.B. in der Form vgl. Stoer und Bulirsch [6, §3.3])

RM B2M+2

2M + 2)!

n-1

k 0

f 2M+2)(.k k < .k < k + 1. 8)

Die Konstanten B2µ hat Euler rekursiv berechnet und damals noch nicht als Bernoullische
Zahlen erkannt.
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In 7), 8) wird vorausgesetzt, dass die 2M + 2)-te Ableitung von f auf R+ [0,8]
stetig ist. Nimmt man weiterhin an, dass alle Ableitungen von f ungerader Ordnung bis

zur Ordnung 2M - 1, und f selbst im Unendlichen verschwinden, und f ins Unendliche
integrierbar ist, so folgt aus 7), 8), wennn.8,

8
1

f 8
0

f x)dx -
1

2
f 0)-

M

µ=1

B2µ

2µ)!
f 2µ-1)(0) + RM, 9)

RM B2M+2

2M + 2)!

8

k 0

f 2M+2)(.k k < .k < k + 1. 10)

Die unendliche Reihe in 10) konvergiert unter der Voraussetzung, dass f 2M+2) auf R+
positiv und monoton abnehmend ist, und auch f 2M+1) im Unendlichen verschwindet,

f 2M+2)(x) > 0, f 2M+3)(x) < 0, x R+; f 2M+1)(8) 0.

Dann gilt nämlich

0 <
n-1

k 0

f 2M+2)(.k) <
n-1

k 0

f 2M+2)(k) f 2M+2)(0) +
n-1

k 1

f 2M+2)(k)

< f 2M+2)(0) +
n-1

0
f 2M+2)(x)dx f 2M+2)(0) + f 2M+1)(n- 1)- f 2M+1)(0),

und daher, wennn.8,
0 <

n-1

k 0

f 2M+2)(.k) < f 2M+2)(0)- f 2M+1)(0).

Insbesondere muss auch f 2M+2) im Unendlichen verschwinden, und man zeigt wie oben,
dass die fragliche Reihe das Cauchy-Bolzano Konvergenzkriteriumerfüllt. Es folgt

|RM| < |B2M+2|
2M + 2)! [

f 2M+2)(0)- f 2M+1)(0)]. 11)

5 Anwendungen
In §§31–32 von E47 wendet Euler die Formel 9) ohne Restglied!) auf das Basler Problem
an, und in §§25–26 auch auf die Berechnung der Eulerschen Konstanten.

5.1 Anwendung auf das Basler Problem

Wie schon in 5) summiert Euler die ersten .0 10) Glieder der Basler Reihe direkt,

s
8

1

1

.2
s0 +

8
1

1

.0 +
2

12)

und berechnet die Summe der übrigen Glieder durch Anwendung von 9) auf die Funktion

f x)
1

.0 + x)2
13)
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Diese erfüllt wegen f m)(x) (-1)m(m + 1)!(.0 + x)-(m+2) alle in §4 gemachten
Voraussetzungen, so dass 9), 11), auf 13) angewandt, Folgendes liefert:

8
1

1

.0 + 2

1

.0 -
1

2

1

.2
0

+
M

µ=1

B2µ

2µ+1
0

+ RM, 14)

|RM| < |B2M+2|
2M+3
0

1 +
2M + 3

.0
15)

Man sieht, dass das Restglied im absoluten Betrag, bis auf den Faktor 1+(2M + 3)/.0),
kleiner ist als das erste vernachlässigte Glied der Reihe auf der rechten Seite von 14).
Letztes ist ja für alternierende konvergente) Reihen bekannt; hier allerdings haben wir es

mit einer divergenten asymptotischen) Reihe zu tun. Wegen vgl. z.B. [1, eq 23.1.15])

2(2M + 2)!
2p)2M+2 < |B2M+2| <

2(2M + 2)!
2p)2M+2 ·

1

1 - 2-(2M+1)

gilt auch

|RM| <
2(2M + 2)!

2p.0)2M+2 .0
1 +

2M + 3

.0
1- 2-(2M+1) 16)

was für grosse M mit 15) praktisch identisch ist.

Beste Genauigkeit erhält man, wenn M Mopt so gewählt wird, dass die obere Schranke

in 16) am kleinsten ist. Mit Eulers Wahl .0 10 findet man

Mopt 30, |RMopt | < 1.4966 × 10-26 17)

Die Euler-Maclaurin Formel 14), zusammen mit 12) für .0 10, ermöglicht es also, die
Basler Reihe s mindestens auf 26 Dezimalstellen genau zu berechnen. In der Tat findet
man mit 50-stelliger Arithmetik) die Approximation

s ˜ 1.6449340668 48226 4364724151 6562,

mit einem Fehler von 1.030 × 10-27. Euler hat vermutlich mit M 12 gerechnet
obwohl er 14) nur für M 7 explizit ausschreibt) und so s zu 20 Dezimalstellen genau
erhalten. Sehr wahrscheinlich hat dieses genaue Resultat ihm die Identifikation mit p2/6
nahegelegt.

5.2 Berechnung der Eulerschen Konstanten

Die Eulersche Konstante ist durch den Grenzwert

lim
n.8

n

1

1

- lnn
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definiert. Wie zuvor summiert man zunächst die ersten .0 (< n) Glieder der Reihe direkt,

s0

.0

1

1

und schreibt dann
n

1

1
s0 + s, s

n-.0

1

1

.0 +
Auf s kann die Euler-Maclaurin Formel 7) angewandt werden, wo n durch n - .0 zu

ersetzen ist, und f durch

f x)
1

.0 + x

Man erhält

s ln n- ln .0 -
1

2.0 +
1

2n +
M

µ=1

B2µ

2µ -
1

n2µ +
1
2µ
0

+ RM, 18)

und für den Rest, ähnlich wie in §5.1,

|RM| <
2(2M + 2)!
2p.0)2M+2.0

1 +
.0 1 .0

2M + 2 - n
2M+2

1 - 2-(2M+1)

Addiert man s0 - lnn auf beiden Seiten von 18), und lässt n 8, sowohl in 18) als

auch in der Abschätzung des Restglieds, so bekommt man

s0 - ln .0-
1

2.0 +
M

µ=1

B2µ

2µ
1
2µ
0

+ RM, 19)

wo

|RM| <
2(2M + 2)!
2p.0)2M+2.0

1 +
.0

2M + 2
1- 2-(2M+1) 20)

Für den optimalenWert von M erhält man wieder Mopt 30, und

|RMopt| < 2.301 × 10-27 21)

Euler berechnete auf diese Weise, mit .0 10, zu 16 korrekten Dezimalstellen,
wahrscheinlich mit der Wahl M 7, hätte aber mit M 30 mehr als zehn weitere Dezimalzahlen

erhalten können, nämlich

.5772156649 01532 8606065120 89914,

mit einem Fehler von 1.688 × 10-28.
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6 Die Eulersche Reihentransformation
In dem Werk Institutiones calculi differentialis cum eius usu in analysi finitorum ac
doctrina serierum Grundlagen des Differentialkalküls mit Anwendungen auf die endliche
Analysis und Reihen, E212; OI,10; veröffentlicht 1755) leitet Euler in Part II, Ch. 1:

De transformatione serierum Über Reihentransformationen), §3, unter anderem folgende
Transformation her,

8
0

a.x.+1 8
n 0

x
1- x

n+1

na0,

wo der Differenzenoperator a. a.+1 - a. bedeutet. Für x -1 geht sie über in

8
0
(-1).a.

8

n 0

(-1)n

2n+1
na0, 22)

was heute als Eulersche Reihentransformation bekannt ist3. Dafür gibt er viele Beispiele,

unter anderem auch solche, die divergente Reihen betreffen, z.B. die relativ harmlose
Reihe

s 1- 1 + 1- 1 + 1 - 1± · · ·
für die a. 1, also a0 2a0 · ·· 0, und daher s 12 ist. Eine waghalsigere
Reihe ist

s
8

0
(-1) + 1)!,

für die Euler durch geistreicheManipulationen s .4036524077 findet. Den exaktenWert
kann man durch das Exponentialintegral E1(x) 8

x e-tdt/t ausdrücken,

s 1 - eE1(1) .4036526376768

woraus man sieht, dass Euler sich in den letzten vier Ziffern seines Resultats geirrt hat.

Ein klassisches Beispiel bei Euler in op. cit., §11.I) ist die sehr langsam konvergente
Reihe

s
8

0

(-1)

+ 1
ln2,

für welche Eulers Transformation die wesentlich schneller konvergierende Reihe

s
8

n 0

1

n + 1)2n+1

liefert. Etwas interessanter ist die Leibnizsche Reihe ibid., §11.II)

s
8

0

(-1)

2. + 1
p
4

3Nach Otto Spiess [5, §5, Fussnote 1] benutzte Euler diese Transformation bereits 1743 in einem Brief an

Goldbach.
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für die a. 1/(2. + 1) und na0 (-1)n22nn!2/(2n + 1)! ist, also

s
8

n 0

2n-1n!
2

2n + 1)!

Das allgemeine Glied, nach Stirlings Formel, ist für n .8 äquivalent p
2n 2-(n+1), so

dass die Konvergenzbeschleunigunghier etwa gleich gross ist wie im vorherigen Beispiel.

Allgemein kann man sagen, dass 22) gültig ist, falls die Reihe auf der linken Seite von
22) die nicht notwendigerweise alternierend, also a. > 0, sein muss) konvergiert. Dann

konvergiert auch die Reihe auf der rechten Seite, und zwar zum selben Grenzwert, aber
nicht notwendigerweise schneller. Man hat Konvergenzbeschleunigung dann, wenn alle

a. > 0, die Folge {a.}8 0 vollständig monoton, d.h. (-1)n nak > 0 ist für alle n, k

0, 1, 2, und a.+1/a. a > 12 gilt. Die Konvergenzbeschleunigung ist in der Tat um
so beträchtlicher, je grösser a ist Knopp [4, Satz 155]; der Operator ist bei Knopp als

rückwärtiger Differenzenoperator definiert, also ist er das Negative unseres Operators).

7 Die Lambertsche Reihe
Zum Schluss noch eine kleine Perle aus Eulers Werkzeugkasten für unendliche Reihen,
die zwar nichts mit dem Vorhergehenden zu tun hat, aber dennoch einen Einblick gestattet

in Eulers Einfallsreichtum. Es handelt sich um die Lambertsche Reihe

s(x)
8

1

1

x. - 1
x > 1, 23)

speziell für den Fall wo x 10, dem Euler im Zusammenhang mit einem missglückten
Interpolationsversuch begegnet ist vgl. [3], wo s(10) -S(0)). Die Reihe tritt an verschiedenen

Stellen der Arbeit Consideratio quarumdam serierum, quae singularibus proprietatibus

sunt praeditae Betrachtung einiger Reihen, die sich durch spezielle Eigenschaften
auszeichnen, E190; OI,14, S. 516–541; eingereicht 1750, veröffentlicht 1753) auf, z.B. in
§§28–29. Dort entwickelt Euler jedes Glied der Reihe 23) in eine geometrische Reihe in
Potenzen von 1/x, und sammelt dann alle Glieder mit gleicher Potenz. So erhält er

s
1

x +
2

x2 +
2

x3 +
3

x4 +
2

x5 +
4

x6 +
2

x7 +
4

x8 +
3

x9 + · · ·

Ein Meister im Aufspüren von versteckten regelmässigen Mustern, Euler bemerkt nun,
dass der Zähler in jedem Bruch genau gleich der Anzahl der Teiler der entsprechenden
Potenz von 1/x ist, also z.B. in 4/x6 ist 4 gleich der Anzahl der Teiler 1, 2, 3, 6 von 6.

Wenn x 10, kann das Resultat m ühelos in Dezimalform hingeschrieben werden, was

Euler bis auf 30 Stellen tut:

s .12232 42434 26244 5262644283 44628

Hier ist die Anzahl der Teiler stets kleiner als 10; wenn sie grösser oder gleich 10 ist,
müssen kleine Anpassungen vorgenommen werden. Das ist zum ersten Mal an der 49-ten
Dezimalstelle der Fall.

Dank. Für den Vorschlag in Fussnote 2 danke ich dem anonymen Begutachter der Arbeit.
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