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Leonhard Eulers Umgang mit langsam
konvergenten Reihen

Walter Gautschi

1 Das Basler Problem

Eines der brennendsten mathematischen Probleme Anfang des 18. Jahrhunderts, das zwar
schon im 17. Jahrhundert von Pietro Mengoli, und auch von John Wallis erwéhnt, aber erst
durch die fieberhaften, jedoch erfolglosen, Anstrengungen der hervorragendsten Gelehrten
wie Leibniz, Stirling, de Moivre und allen Bernoullis aktuell geworden ist, bestand darin,
die Summe der unendlichen Reihe

{ 1 1 1 1 |

tatgt et ()
durch bekannte Grossen auszudriicken. Ein frustrierter Jakob Bernoulli, damals wohl der
gelibteste Mathematiker im Umgang mit unendlichen Reihen, stellte das Anliegen [2]:
.. .sollte jemand das, was unseren Anstrengungen bis jetzt entgangen ist, finden und uns
mitteilen, so werden wir ihm sehr dankbar sein®. Wohl infolge der grossen diesbeztiglichen
Bemiihungen von Jakob und Johann Bernoulli ist das Problem als ,,Basler Problem™ in die
Geschichte der Mathematik eingegangen.

Es ist bekannt, dass Euler schon 1735 das Problem gelost, und fiir die fragliche Summe den
Wert % /6 angegeben hat (was ihn fast iiber Nacht weltberiihmt gemacht hat), doch waren
dieser Entdeckung — was fiir Fuler typisch ist — numerische Rechnungen vorausgegangen.
Diese sind durchaus nicht trivial, da es sich in (1) um eine sehr langsam konvergente Reihe
handelt: Fiir eine Genauigkeit von 10~¢ braucht man ungefihr 104 Glieder der Reihe, also
fiir sechs Dezimalstellen eine Million Glieder! Es ist daher interessant zu sehen, wie sich
Euler mit dieser Schwierigkeit auseinandergesetzt hat. Wie so oft bei Euler sind aus die-
sem speziellen Problem Resultate hervorgegangen, die einen sehr allgemeinen und weit-
tragenden Charakter haben. Als Beispiel hat er selbst seine Ideen auf die damals ebenso
schwierige Aufgabe angewandt, die sogenannte Fulersche Konstante genau zu berechnen.
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2 Eine erste Approximation zur Losung des Basler Problems

Wir schreiben
§ = E — 2
‘Uz ( )

In §22 von De summatione innumerabilium progressionum (Die Summierung einer un-
endlichen Reihe, E20; OL,14, S. 25411 eingereicht 1731, veroffentlicht 1738) beginnt
Euler mit der Integraldarstellung

Din(1 —¢
s:_f A= g
0 {

die man leicht durch Taylor Entwicklung von In(1 — #) und nachfolgender gliedweisen
Integration bestitigen kann. Mittels der Substitution ¢ +— 1 — ¢ kann man auch

[1 Int
s = — d¢
o 1—1

schreiben. Nun zerlegt Fuler das letzte Integral in zwei Teile, ein Integral von O bis x
(mit 0 < x < 1) und ein Integral von x bis 1, wobei er im letzteren wieder ¢ +— 1 — ¢
substituiert. Das gibt

* o Int Y1n(l — 1)
§=— dr — ——dr, y=1-x.
o 1—1 0 t

Partielle Integration im ersten Integral und Taylor Entwicklung von In(1 — ¢) liefert dann?

s—lnxln(l—x)—kz —I—y

v=1

Um die Konvergenzgeschwindigkeit der letzten Reihe zu maximieren, nimmt Euler x =
1/2, also y = 1/2, und bekommt

o0
1
s= 02+ ———. (3)
v=1

Wie man sieht, gelang es Euler, einen Faktor 27 in die Basler Reihe einzuschmuggeln.
Die Reihe in (3) konvergiert daher erheblich schneller als die urspriingliche Reihe in (2). In
der Tat, nimmt man »n Glieder der Reihe und bezeichnet die resultierende Approximation
von s mit s, so hat man das in Tabelle 1 gezeigte Konvergenzverhalten:

Lwir fiigen den Arbeiten von Euler deren Enestrdm-Index Zahlen (E-Zahlen) bei, sowie den Band der Ope-
ra omnia, in dem sie zu finden sind, wo Ol 14, z.B. Opera omnia, Serie 1, Vol. 14 bedeutet. Siche die Web
Seite http://www.math.dartmouth.edu/ euler des U.S. Euler Archivs fiir eine nach den E-Zahlen
geordnete kommentierte Liste simtlicher Werke von Euler.

Hier folgen wir Eulers Vorgehen in §196 der Institutiones calculi integralis, Vol. 1, E342, OL11, und nicht
der etwas umstindlicheren Herleitung in der zitierten Abhandlung.



Leonhard Eulers Umgang mit langsam konvergenten Reihen 3

n s Fehler

5  1.643543291695979 1.39x107%3
10 1.644920051673697 1.40x10~%
20 1.644934062865116 3.98x10~%
40  1.644934066848226 8.88x 10716

Tabelle 1: Konvergenzverhalten der Reihe in (3)

Euler benutzt die Formel (3), um s auf sechs Dezimalstellen zu berechnen.

3 Eine zweite Approximation

Der Ausgangspunkt hier ist die bekannte Trapezregel fiir die Integration einer Funktion f,

n+1 1 1
fl f(x)dx%Ef(1)+f(2)+'~+f(ﬂ)+Ef(fl-l—1),

die Euler, wie Gregory schon vor ihm, verfeinert indem er auf der linken Seite die Korrek-
turglieder

1 1

— 2) — D] ——[Ff2)— (1

=[F(1+2) = £+ D] = =[£2) = f(1)]
hinzufiigt. Man erhélt so, nach einfacher Umordnung,

n+1

n+l1 1 1
Zf(v) ~ /1 S{x)dx + E[Sf(ﬂ + D+ fin+2)]+ EUf(l) — F(2)].
v=1

Nimmt man an, dass f im Unendlichen verschwindet und ins Unendliche summiert und
integriert werden kann, so bekommt man, wenn 1 — 00,

o o0 1
;f(v)~[1 Jx+ =177 (1) ~ 721 )

Mit Bezug auf das Basler Problem hat Euler in §14 von Methodus universalis serierum
convergentium summas quam proxime inveniendi (Eine allgemeine Methode, Approxima-
tionen zu Summen konvergenter Reihen zu finden, B46; OL, 14, S. 101-107; eingereicht
1735, veroffentlicht 1741) nun die sehr niitzliche Idee, fiir ein bestimmites vg > 1 die
ersten vg Glieder der Reihe direkt zu summieren,

120) 1

D5 =5% (5)

v=1

und dann (4) auf F(x) = (vo + x)~2 anzuwenden. Das gibt

1 1 7 1
s — — . 6
T |:(v0—|—1)2 (v0—|—2)2] (6)
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Die Resultate fiir verschiedene Wahlen von v sind in Tabelle 2 zusammengestellt:

Vo N~ Fehler

10 1.644919055011046 1.50x10~%
20 1.644932866546282 1.20x107%
40 1.644933981455983 8.54x107%
80  1.644934061144287 5.70x10~%
160 1.644934066479512  3.69x10~10

Tabelle 2: Die Approximation (6) in Abhingigkeit von vy

Euler wihlte vg = 10 und erhielt § ~ 1.644920, wo aber die zwel letzten Ziffern 19 statt
20 heissen sollten. Im Vergleich mit der ersten Approximation s von (3) konvergiert
diese zweile bedeutend langsamer, enthilt aber den Keim einer wesentlich allgemeineren
und wirksameren Methode, die im néchsten Abschnitt beschrieben werden soll.

4 Die Euler-Maclaurin Summationsformel

Offensichtlich ging es Euler nicht nur um die Summe aller reziproken Quadrate, son-
dern viel allgemeiner um irgendeine Funktion f summiert iiber alle natiirlichen Zah-
len, Y 02, f(v). Dies fiihrte zu einer seiner frithen Glanzleistungen — heute die Euler-
Maclaurin Formel genannt, weil auch Maclaurin sie sechs Jahre spiter, unabhéingig von
Euler, gefunden hat. Fuler gibt sie zuerst ochne Beweis in Methodus generalis summan-
di progressiones (Eine allgemeine Methode zur Summierung von Reihen, E25; OL,14,
S.42-72; eingereicht 1732, veroffentlicht 1738) an, und leitet sie in Inventio summae cui-
usque seriei ex dato termino generali (Bestimmung der Summe irgend einer Reihe von
einem allgemeinen Term, E47; Ol,14, S. 108-123; eingereicht 1735, veroffentlicht 1741)
vollstidndig her. In moderner Schreibweise hat sie die Gestalt

1 |
Ef(0)+f(1)+~~+f(n—1)+—f(ﬂ)

(7

[ f(x)dX+Z (2”;, LR — DO + Ra.

w0 By, By, Bg, ... die Bernoullischen Zahlen bezeichnen, die Jakob Bernoulli in seiner
Ars conjectandi eingefiihrt hat und durch die Entwicklung

i |z| < 2m,

(2 )‘ ’

eZ—l

definiert sind. Euler gibt nie ein Restglied an, aber es kann hier auf verschiedene Art
geschrieben werden, z.B. in der Form (vgl. Stoer und Bulirsch [6, §3.3])

Baym+2 (2M+2)
Ry = me ), k<& <k+ 1. 8

Die Konstanten By, hat Euler rekursiv berechnet und damals noch nicht als Bernoullische
Zahlen erkannt,
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In (7), (8) wird vorausgesetzt, dass die (2M + 2)-te Ableitung von f auf Ry = [0, o0]
stetig ist. Nimmt man weiterhin an, dass alle Ableitungen von f ungerader Ordnung bis
zur Ordnung 2M — 1, und f selbst im Unendlichen verschwinden, und f ins Unendliche
integrierbar ist, so folgt aus (7), (8), wenn n — o0,

o's) oo 1 M B2,u, ~
§j = d——O—E:— =00y + Ry, 9
v:1f(v) fo f(x)dx 2f( ) 2 20! I 0) M )
_ By - (2M+2)
Ry = oMo ;;:of &), k<& <k+1 (10)

Die unendliche Reihe in (10) konvergiert unter der Voraussetzung, dass fM+2) quf R,
positiv und monoton abnehmend ist, und auch f¥*1 im Unendlichen verschwindet,

f(2M+2)(X) =0, f(2M+3)(X) <0, x€ R+; f(2M+1)(OO) = 0.

Dann gilt ndmlich

n—1 n—1 n—1
0< Y fOM(g) < 3 M) = pOMID0) 43 " M (1)
k=0 k=0

k=1
< PR O) + [0 MR gr = MR ) 4 pEMEG 1y - M )

und daher, wenn 1 — ©Q,

n—1
0= s < rEH20) — rEH ).
k=0
Insbesondere muss auch f 2M+2) im Unendlichen verschwinden, und man zeigt wie oben,
dass die fragliche Reihe das Cauchy-Bolzano Konvergenzkriterium erfiillt. Es folgt

B
IRy < % [f @M+ 0) — rMHD ). (11)
5 Anwendungen

In §§31-32 von E47 wendet Euler die Formel (9) (ohne Restglied!) auf das Basler Problem
an, und in §8§25-26 auch auf die Berechnung der Eulerschen Konstanten.

5.1 Anwendung auf das Basler Problem

Wie schon in (5) summiert Euler die ersten vy (= 10) Glieder der Basler Reihe direkt,
=1 = 1
sz O+Z(v0+v)2 ( )
U=1 U:l
und berechnet die Summe der iibrigen Glieder durch Anwendung von (9) auf die Funktion
1

———— 13
(vo + x)?2 L

fx)=
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Diese erfiillt wegen £ (x) = (—1)"(m + D!(vo + x)~"*+2) alle in §4 gemachten Vor-
aussetzungen, so dass (9), (11), auf (13) angewandt, Folgendes liefert:

o0 M
1 11 By,
S A o g + R (14)
; (vo+v)2 vo 2 (2) Z; UZM'H
| Boamr42| 2M +3
IRyl < QM; 1+ (15)

Yo

Man sieht, dass das Restglied im absoluten Betrag, bis auf den Faktor (1 4+ (2M 4+ 3)/vp),
kleiner ist als das erste vernachlissigte Glied der Reihe auf der rechten Seite von (14).
Letztes ist ja fiir alternierende (konvergente) Reihen bekannt; hier allerdings haben wir es
mit einer divergenten (asymptotischen) Reihe zu tun. Wegen (vgl. z.B. [1, eq 23.1.15])

202M +2)! 20M +2)! 1
Q)M+ * Bam+2| < Qn)2M+2 | p-@M+)
gilt auch
202M + 2)! 2M +3 B
il < gy (1 75/ (1=2®0). e

was fiir grosse M mit (15) praktisch identisch ist.

Beste Genauigkeit erhidlt man, wenn M = Mpi s0 gewdhlt wird, dass die obere Schranke
in (16) am kleinsten ist. Mit Eulers Wahl vy = 10 findet man

Mop =30,  |Rpzpy| < 1.4966 x 107%. (17)

Die FEuler-Maclaurin Formel (14), zusammen mit (12) fiir vg = 10, ermoglicht es also, die
Basler Reihe s mindestens auf 26 Dezimalstellen genau zu berechnen. In der Tat findet
man (mit 50-stelliger Arithmetik) die Approximation

§ ~ 1.64493 40668 4822643647 24151 6562,

mit einem Fehler von 1.030 x 10727, Euler hat vermutlich mit M = 12 gerechnet (ob-
wohl er (14) nur fiir M = 7 explizit ausschreibt) und so s zu 20 Dezimalstellen genau
erhalten. Sehr wahrscheinlich hat dieses genaue Resultat ihm die Identifikation mit n? /6
nahegelegt.

5.2 Berechnung der Eulerschen Konstanten
Die Eulersche Konstante ist durch den Grenzwert

n
. 1
V:nlif%o(zz‘ln”)

v=1
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definiert. Wie zuvor summiert man zunichst die ersten vg (< 1) Glieder der Reihe direkt,

und schreibt dann

R 1 n—vg 1

- =4 S, 5§ = .
DS =s+ 2 T
v=1 v=1

Auf s kann die Euler-Maclaurin Formel (7) angewandt werden, wo n durch n — vy zu
ersetzen ist, und f durch

X) = )
fx) —
Man erhilt
M
1 1 By, 1 1
s=lnn—-Inyy — — + — — -+ — Ry, 18
Vo 2”°+2”+MZ—:1 Zu(nzu-Fng)'F M (18)

und fiir den Rest, dhnlich wie in §35.1,

2(2M + 2)! Vo Vo \ 2M+2 B
R e sclan JBaE 1 — (—) (1 2 <2M+1>)‘
Rl < P2y [ T 2M+2( 7 )}/

Addiert man so — Inz auf beiden Seiten von (18), und lidsst # — oo, sowohl in (18) als
auch in der Abschitzung des Restglieds, so bekommt man

1 M B, 1
— 5y —Invy — — 2 4 Ry, 19
Y =50 0 2v0+i 2Mv2“+M (19)
p=1 0
WO
Ryl < —=2 <" [y (1—2< +>). 20
Ryl < <zmo>2M+2vo( +2M+2)/ (20)

Fiir den optimalen Wert von M erhilt man wieder Myp = 30, und
-5
|RMopt| < 2.301 x 107, 2D
Euler berechnete v auf diese Weise, mit vg = 10, zu 16 korrekten Dezimalstellen, wahr-
scheinlich mit der Wahl M = 7, hiitte aber mit M = 30 mehr als zehn weitere Dezimal-
zahlen erhalten konnen, ndmlich

y = .57721 56649 01532 86060 65120 89914,

mit einem Fehler von 1.688 x 10728,
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6 Die Eulersche Reihentransformation

In dem Werk Institutiones calculi differentialis cum eius usu in analysi finitorum ac doc-
trina serierum (Grundlagen des Differentialkalkiils mit Anwendungen auf die endliche
Analysis und Reihen, E212; OL10; veroffentlicht 1755) leitet Euler in Part II, Ch. 1:
De transformatione serierum (Uber Reihentransformationen), §3, unter anderem folgende

Transformation her,
o] o0 5 n+1
v+1 n
Saxt =3 () A
=0 n=0
wo A der Differenzenoperator Ada, = dy4+1 — d, bedeutet. Fiir x = —1 geht sie tiber in
(0.8} (0.8} (_1)71
Y —Day =) ST Ao, (22)
v=0 n=0

was heute als Eulersche Reihentransformation bekannt ist®. Dafiir gibt er viele Beispie-
le, unter anderem auch solche, die divergente Reihen betreffen, z.B. die relativ harmlose
Reihe

s=1-14+1-1+1-1=x---,
fiir die @, = 1, also Aag = A%ay = --- = 0, und daher 5 = % ist. Eine waghalsigere
Reihe ist

o
s=Y (=D’ + 1),
=0
tiir die Euler durch geistreiche Manipulationen s = .4036524077 findet. Den exakten Wert
kann man durch das Exponentialintegral £1(x) = [ e¢~'dt/1 ausdriicken,
s=1-—eFE (1) =.4036526376768...,
wotraus man sieht, dass Euler sich in den letzten vier Ziffern seines Resultats geirrt hat.

Ein klassisches Beispiel (bei Euler in op. cit., §11.1) ist die sehr langsam konvergente
Reihe

fiir welche Eulers Transformation die wesentlich schneller konvergicrende Reihe

e 1
s = —_—
Z (n+ 1)2n+1

liefert. Etwas interessanter ist die Leibnizsche Reihe (ibid., §11.11)
o ('«

s=) mii= 1

3Nach Otto Spiess [5, §5, Fussnote 1] benutzte Euler diese Transformation bereits 1743 in einem Brief an
Goldbach.
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fiir die g, = 1/2v + 1) und A”ag = (—1)"2%"n12 /(20 + 1)! ist, also
00 211—1,,“2

s = —— %
!
= 2n+1)!

Das allgemeine Glied, nach Stirlings Formel, ist fiir 1 — 0o dquivalent /2 2=+D g0
dass die Konvergenzbeschleunigung hier etwa gleich gross ist wie im vorherigen Beispiel.

Allgemein kann man sagen, dass (22) giltig ist, falls die Reihe auf der linken Seite von
(22) (die nicht notwendigerweise alternierend, also 4, > 0, sein muss) konvergiert. Dann
konvergiert auch die Reihe auf der rechten Seite, und zwar zum selben Grenzwert, aber
nicht notwendigerweise schneller. Man hat Konvergenzbeschleunigung dann, wenn alle
a, > 0, die Folge {a,};-, vollstindig monoton, d.h. (—=1)"A"ax > 0O ist fiir alle n, k =
0,1,2,...,und a@yy1/ay = a > % gilt. Die Konvergenzbeschleunigung ist in der Tat um
so betrdchtlicher, je grosser a ist (Knopp [4, Satz 155]; der Operator A ist bei Knopp als
rickwirtiger Differenzenoperator definiert, also ist er das Negative unseres Operators).

7 Die Lambertsche Reihe

Zum Schluss noch eine kleine Perle aus Fulers Werkzeugkasten fiir unendliche Reihen,
die zwar nichts mit dem Vorhergehenden zu tun hat, aber dennoch einen Einblick gestattet
in Eulers Einfallsreichtum, Es handelt sich um die Lambertsche Reihe
Fe 1
5(x) = , x> 1, 23
=2 = (23)

v=1

speziell fiir den Fall wo x = 10, dem Euler im Zusammenhang mit einem missgliickten In-
terpolationsversuch begegnetist (vgl. [3], wo s(10) = —5(0)). Die Reihe tritt an verschie-
denen Stellen der Arbeit Consideratio quarumdam serierum, quae singularibus proprie-
tatibus sunt praeditae (Betrachtung einiger Reihen, die sich durch spezielle Figenschaften
auszeichnen, E190; OL 14, S. 516-541; eingereicht 1750, veroffentlicht 1753) auf, z.B. in
§828-29. Dort entwickelt Euler jedes Glied der Reihe (23) in eine geometrische Reihe in
Potenzen von 1/x, und sammelt dann alle Glieder mit gleicher Potenz. So erhilt er

il 2 2 3 2 4 2 4 3
—+x—4+x—5+x—6+x—7+x—8+x—9+"‘-

Fin Meister im Aufspiiren von versteckten regelmaissigen Mustern, Fuler bemerkt nun,
dass der Zihler in jedem Bruch genau gleich der Anzahl der Teiler der entsprechenden
Potenz von 1/x ist, also z.B. in 4/X6 ist 4 gleich der Anzahl der Teiler 1,2, 3, 6 von 6.
Wenn x = 10, kann das Resultat miihelos in Dezimalform hingeschrieben werden, was
Euler bis auf 30 Stellen tut:

§ =.1223242434 26244 52626 4428344628 .. . .

Hier ist die Anzahl der Teiler stets kleiner als 10; wenn sie grosser oder gleich 10 ist,
miissen kleine Anpassungen vorgenommen werden. Das ist zum ersten Mal an der 49-ten
Dezimalstelle der Fall.

Dank. Fiir den Vorschlag in Fussnote 2 danke ich dem anonymen Begutachter der Arbeit.
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