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Elemente der Mathematik

Une preuve de 12 + 13 + 15 + 17 +
1
11+ &c. l. l

inspirée par Euler

Yves-François S. Pétermann

En 1874, F. Mertens [11, 13)] démontre ce qu’il appelle la première formule de
Legendre 1,

“
G

2

1

q ll G + E- H + d,” 1)

où l désigne le logarithme naturel, q un nombre premier, où E est la constante d’Euler,
H := k=2 1/k 1/qk il donne la valeur E - H 0,2614972128 et où |d|
4l(G +1)+ 2/(G lG). Sa preuve est élémentaire, mais loin d’être facile; elle ne fait appel
à aucune hypothèse non démontrée, et donc en particulier n’utilise pas le théorème des

nombrespremiers qui ne sera établi que 22 ans plus tard. C’est essentiellement celle qu’on
trouve dans la plupart des manuels de théorie analytique des nombres, à commencer par
l’ouvrage classique de Landau [7, §26–28]. Citons également le non moins classique
Hardy et Wright [6, Theorem 427]; parmi les ouvrages plus récents on pourra retenir ceux
de Tenenbaum [12, Théorème I.1.9] et de Bateman et Diamond [1, Theorem 4.10]). La
démonstration passe par un r ésultat auxiliaire, qu’on appelle maintenant fréquemment le
premier théorème de Mertens [11, 5)]: “[. ] wie gross auch n sei, ohne Rücksicht auf
das Zeichen

l q

q - l n 2 ”

où la somme est sur les premiers q n, avec n 5).

Edmund Landau [7, §7] se réfère à la Formule de Legendre 1) en précisant “[. ] deren
Beweis Legendre und Tschebyschef erfolglos beschäftigt hatte [. ]”. En réalité, chacun
des deux auteurs, A.M. Legendre [8, 2ème et 3ème éd.] au d ébut du 19ème siècle, et P.L.

1. A l’exception du commentaire suivant le “Theorema 7” d’Euler ci-dessous, j’ai choisi d’être très fidèle aux

diversesnotations et dans la mesure du possible à la typographie) originales des auteurs anciens cités, et de revenir

à une notation plus moderne dès que je ne cite plus un auteur. Ainsi des symboles différents pourront remplir
le même rôle: j’espère que le lecteur ne m’en tiendra pas rigueur. J’utilise tout au long, malgré sa désuétude, la
pratique et concise notation d’Euler “l” pour le logarithme naturel (“l. l” pour log log).
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Cebysev 2 [2] dans les années 1850, démontre la formule, mais en utilisant sa version,
conjecturale alors, du théorème des nombres premiers: pour Legendre, à qui on attribue
habituellement la paternité de cette conjecture3 [8, 2ème éd. p. 394, 3ème éd. vol. 2 p. 65;
voir aussi 1ère éd. p. 19] “La formule qui résout cette question est

y
x

log x - 1,08366
”

– où, comme on le sait maintenant, la constante 1,08366 n’est pas optimale et doit être
remplacée simplement par 1! Quant a` Cebysev, il conside` re une approximation
asymptotiquement équivalente et plus exacte, due essentiellement à P.J.G. Lejeune Dirichlet4),

notant que “l’intégrale
x

2

dt
logt

pour x très grand, exprime avec assez de précision combien il y a de nombres premiers
inférieurs à x”. Mais rien n’indique que ces deux auteurs aient tenté d’obtenir
inconditionnellement – c’est-à-dire, à l’époque, sans utiliser le théorème des nombres premiers –
cette formule, ni d’ailleurs une version plus faible de 1), comme par exemple

p=X
p premier

1

p ~ l l X X .8). 2)

Pourtant en 1737 déjà Leonhard Euler [3] avait énoncé le th éorème suivant, qui était bien
connu de Cebysev et de Mertens.

Theorema 19. Summa series reciprocae numerorum primorum

1

2 +
1

3 +
1

5 +
1

7 +
1

11 +
1

13 + &c.

est infinite magna; infinities tamen minor, quam summa seriei harmonicae 1 + 12 + 13 +
14 + 15 + &c. Atque illius summa est huius summae quasi logarithmus.

L’ énoncé dans le titre de cette note [3] est la dernière ligne de la démonstration que donne
Euler de ce théorème; dans la suite de symboles l. l l désigne le logarithmenaturel, “
logarithmus hyperbolicus” – l. l étant ce même logarithme itér é – et désigne une quantité

2. Une transcription acceptable pour tous de caractères cyrilliques en caractères romains est parfois un vrai
casse-tête. Excepté lorsque je reproduis une citation, j’ai finalement préféré l’écriture Cebysev aux épellations
Tchebichef, Tchebychef, Tchébicheff, Tschebyscheff, Tshebysheff, Chebyshev, Chebeshev un survol de la
littérature m’a livré en quelques minutes 16 transcriptions différentes du nom de ce mathématicien!) parce que

c’est aussi le choix des Mathematical Reviews de l’A.M.S.

3. Il faut cependant mentionnerune note manuscritedeC.F.Gauss datée de 1791, dansun livre qu’il possédait,

où il écrit: “Primzahlen unter a(= 8)
a
la” voir [5, [1] p. 11], et également [5, [9] p. 493 et [13] p. 495]). En

référence à 1) ci-dessus mentionnons également une note dans le même livre datée de 1796 où il indique:

“1 + 12 + 13 + 15 + 17 +
1
11 + · · · 1x pro x inf.) llx + V V esse Const. suspicor prope 1,266. ” voir [5, [3]

p. 12]).
4. “[. ] la véritable expression-limite étant 1

log(n) .” Précision manuscrite de L.D. sur l’exemplaire de [9]

1838) envoyé à Gauss; voir [10, note **) en bas de page, p.372].
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infinie. A la fin de son raisonnement, il écrit

“1 +
1

2 +
1

3 +
1

4 + &c. ”
puis quelques lignes après précise la “valeur” de cette somme, l D’où le résultat, la
somme infinie du théorème étant à son tour le logarithme de cette “somme harmonique”).
Pour bien comprendre les sens distincts que donne Euler aux évaluations et l qu’il
donne, on peut par exemple se référer à son travail ultérieur [4]. Euler pose Exemplum 1,

p. 228) x 1 dans la relation

“l
1

1- x
x +

x2

2 +
x3

3 +
x4

4 +
x5

5 +
x6

6 + &c.”

et obtient donc

“l
1

1- 1
l 1 +

1

2 +
1

3 +
1

4 +
1

5 + &c.”,

ce qui nous informe du comportement asymptotique de la série harmonique. Il note
ensuite: “At Logarithmus numeri infinite magni ipse est infinite magnus, ex quo erit [. ]

1 +
1

2 +
1

3 +
1

4 +
1

5 +
1

6 +
1

7 + &c. ,”

ce qu’aujourd’hui nous pourrions traduire par: “donc la série harmonique diverge”.

A cause de l’utilisation qu’il fait de nombres infinis – qui rebutaient moins les math´
ematiciens jusque vers le début du 19ème siècle – on ne peut pas qualifier le raisonnement
d’Euler de preuve au sens moderne du terme, et il me semble certain que déjà Cebysev

ne pouvait pas le considérer comme telle Legendre, quant à lui, ne paraît gêné ni par

l’énoncé ni par la démonstration du Théorème 7 d’Euler ci-dessous, puisqu’il utilise ce

dernier comme un résultat établi). Euler proposera plus tard [4] un autre argument dont je
parlerai aussi plus loin, et qui fait également appel à des nombres infinis.

Cependant les idées d’Euler contenues dans ses deux arguments de 1737 et 1748 peuvent
être exploitéespour obtenir une preuve (“moderne”!) de 2), qui ne fait appel ni au premier
théorème deMertens, ni à celui des nombres premiers, et qui, s’il est vrai qu’elle nécessite

un choix approprié de divers paramètres, n’en est pas moins conceptuellement beaucoup
plus simple. Je ne conserve pas systématiquement la notation d’Euler; le symbolisme plus
moderne et concis par lequel elle est par endroits remplacée devrait être reconnaissable.

L’ingrédient essentiel utilisé par Euler est le résultat suivant de [3].

Theorema 7. Factum continuum in infinitum ex his fractionibus 2·3·5·7·11·13·17·19
1·2·4·6·10·12·16·18&c. ubi

numeratores sunt omnes numeri primi, denominatores vero unitate deficiunt a numeratoribus.

Hoc factum inquam aequale est summae huius seriei

1 +
1

2 +
1

3 +
1

4 +
1

5 +
1

6 + &c.

estque adeo infinitum.
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Euler établit cette relation ainsi. Il appelle x la somme de la série harmonique; il note que

1

2
x

m=0( 2)

1

m
d’où

1

2
x

m 0(2)

1

m ;

puis que
1

3 ·
1

2
x

m 0(2)

m=0( 3)

1

m
d’où

2

3 ·
1

2
x

m 0(2)
m 0(3)

1

m ;

&c. : finalement

1 · 2 · 4 · 6 · 10 · 12 · 16 · 18 · 22 · &c.

2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · &c.
x

m 0( p)
pour tout nombre premier p

1

m
1.

La principale difficulté se situe ici et découle évidemment du fait que x n’est pas une

quantité finie). Désignons par pk le k-ème nombre premier. Si l’on tente de procéder de

façon similaire pour produire la preuve correcte d’une relation entre deux quantités finies,
en traitant par exemple la somme x(y) := m=y 1/m, on obtient après la k-ème étape

une expression pour pk-1)···2·1

pk ···3·2
x(y) qui contient, à part la somme “principale”

m=y
m 0( pi
i=1,...,k

1

m

une quantité exprimée par 2k- 1 autres sommes de termes de la forme 1/m où m satisfait
certaines conditions de divisibilité), et dont il semble très difficile de contrôler suffisamment

la taille. On peut cependant s’inspirer de l’autre argument d’Euler voir [4, §272
sqq.], nous y reviendrons plus bas), et écrire

2 · 3· · · pk

1 · 2 · · · pk - 1)

k

i 1

1-
1

pi
-1

p|m.p= pi
pourun i.[1,k]

1

m
3)

Euler démontre son Théorème 19 en utilisant son Théorème 7, et l’écriture en série de

Taylor pour l(p/(p- 1)) -l(1- 1/p):

“Ponatur 12 + 13 + 15 + 17 +
1
11 + &c. A atque 1

22 +
1

32 +
1

52 +
1
72 + &c. B et

1
23 +

1
33 +

1
53 +&c. C. atque ita porro omnes potestates peculiaribus litteris designando;

erit posito e pro numero cuius logarithmus hyperbolicus est 1

eA+ 12 B+ 13 C+
1
4 D+&c. 1 +

1

2 +
1

3 +
1

4 +
1

5 +
1

6 +
1

7 + &c.”,

d’où, facilement,
A l.l. 4)
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Dans ce qui suit, afin d’adapter le raisonnement d’Euler aux exigences modernes, consid

érons un nombre réel positif X avec pk X < pk+1. A l’aide de 3) nous obtenons

A1 +
1

2
A2 +

1

3
A3 +

1

4
A4 + &c. l

m<pk+1

1

m
l

m= X

1

m
l. l X,

où l’on aura posé A : i=k 1/ pi ce qui peut s’écrire

p=X

1

p
l.l X - H X 2), 5)

où H .315718 est la constante de Mertens en 1).

Pour terminer la démonstration de 2) il reste à vérifier l’inégalité complémentaire et

moins précise)

p=X

1

p
l. l X(1 + o(1)) X .8). 6)

Mais il semble très difficile d’obtenir 6) directement à partir de 3), et que l’on ne peut pas

éviter d’introduire, comme le fera Euler dans son autre preuve que nous suivons depuis là,

une variable n et unproduit légitimement infini lorsque n > 1!) généralisant le“Theorema
7” ci-dessus [4, § 274] voir également [3, Theorema 8]): “si enim ponatur

P
1

1-
1

2n · 1-
1

3n · 1 -
1

5n · 1-
1

7n · 1-
1

11n · &c.

fiet

P 1 +
1

2n +
1

3n +
1

4n +
1

5n +
1

6n +
1

7n +
1

8n + &c., 7)

ubi omnes numeri naturales nullo excepto occurrunt.” Euler pose [4, § 277]

“M 1 +
1
2n +

1
3n +

1
4n +

1

5n +
1
6n +

1
7n + &c.,

N 1 +
1

22n +
1

32n +
1

42n +
1

52n +
1

62n +
1

72n + &c.”

Il en déduit, à l’aide de 7) [4, §278], que

“lM -
1

2
lN +1

1
2n +

1

3n +
1
5n +

1
7n +

1
11n + &c.

+
1

3

1
23n +

1
33n +

1

53n +
1

73n +
1

113n + &c.

+
1

5

1
25n +

1
35n +

1

55n +
1

75n +
1

115n + &c.

+
1

7

1
27n +

1
37n +

1

57n +
1

77n +
1

117n + &c. 8)

&c.”
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Au §279 il note: “Si n 1 erit M 1+ 12 + 13 + 14 +&c.= l &N pp
6 ”. Il en déduit

le résultat déjà cité

“ 1

2 +
1

3 +
1

5 +
1

7 +
1

11 + &c. l.l .” 4)

Remarque. Il est de prime abord difficile de comprendre pourquoi Euler utilise ici la
formule 8), puisque la soustraction effectuée de 12 lN n’a pour effet sur la série qu’il
obtient pour lM que de supprimer des termes dont la somme converge lorsque n 1. La
raison en est probablement un souci de gen´ eralit´ e:´ dans l’exemple qu’il donne ensuite dans

son ouvrage [4, § 280] la formule 8) lui livre en effet, lorsque cette fois n 2, une serie´
pour l52

L’identité 8) est correcte lorsque n > 1. Elle peut se récrire

l
k 1

1

kn
p premier

1

pn +
1

2
l

k 1

1

k2n +
k 3

k impair

1

k
p premier

1

pkn
9)

Plus simplement, si l’on tient compte de la remarque en italiques ci-dessus, on a

l
k 1

1

kn
p premier

1
pn +

k 2

1

k
p premier

1
pkn

10)

Or des arguments élémentaires montrent, d’une part que la quantité
k=1

1
kn - 1

n-1 reste
toujours comprise entre 0 et 1 lorsque n > 1, et d’autre part que la dernière somme de 10)
converge uniformément pour tout n 1 les deux dernières sommes de 9) si l’on veut
rester fidèle à 8)!). Ainsi nous avons

1

pn
l

1

n- 1 + O(1) n 1+).

Posons maintenant, mettons pour X > X0, n := l X f X))-1
+ 1, où f X) o(l X)

X .8). Alors les relations

l
1

n - 1
l.l X + l f X)

et Xn-1 e( f X))-1

sont satisfaites. Ainsi si p X, alors pn pe( f X))-1
et donc

e- f X)-1

p=X

1

p
p= X

1

pn
p

1

pn l. l X + l f X) + O(1) X > X0).

Le choix f X) l. l X pour X > e) livre l’estimation optimale avec cette méthode)

p= X

1

p
l. l X + l. l. l X + O(1) X > e),

ce qui termine la démonstration de 6), et donc de 2).



Une preuve de 12 + 13 + 15 + 17 +
1
11+ &c. l. l inspirée par Euler 173
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Références

[1] Bateman, P.T.; Diamond, H. G.: Analytic number theory. An introductory course. World Scientific Publi¬

shing Co. Pte. Ltd., Hackensack, NJ 2004.
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