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Idempotente Zahlen

Glinter Kohler und Jiirgen Spilker

Beide Verfasser sind pensionierte Professoren fiir Mathematik — in Wiirzburg bezie-
hungsweise in Freiburg, und beide verbindet die Freude an Problemen und Ideen aus
der elementaren Zahlentheorie und Analysis.

1 Einleitung

Es seien k, r und g natiirliche Zahlen und g > 2. Eine ganze Zahl n nennen wir
k-idempotent modulo ¢" oder kiirzer idempotent, wenn

¥ =n mod ¢

¢gilt. Das bedeutet im Falle # > 0, dass die letzten (rechtsstehenden) r Ziffern von # und
seiner k-ten Potenz n* im Stellenwertsystem zur Basis g iibereinstimmen. Wenn 7 selber
hochstens r Stellen hat, dann stellen die letzten » Ziffern von nk die Zahl  dar.

In den Abschnitten 2 und 3 bestimmen wir die sdmtlichen idempotenten Zahlen. Fiir be-
liebige £, r und g beschreiben wir also die Menge aller k-idempotenten Zahlen modulo
g". Wir wollen diese Menge mit
I"(g"
bezeichnen. Wegen
(n+x2")* =n* mod g

fiir beliebige ganze n und x gilt im Falle n € I*(g") stets auch n + xg”" e I¥(g") fiir
beliebige ganze x. Die Menge [ K (¢") besteht also aus vollstindigen Restklassen modulo

Die Zahlen O und 1 sind die einzigen ganzen Zahlen, die gleich ihren Quadraten sind.
Bei manchen anderen natiirlichen Zahlen bleiben beim Quadrieren wenigstens einige
Endziffern erhalten, beispielsweise in 6° = 36, 76> = 5776, 25 = 625. Diese ,.idem-
potenten®™ oder ,,automorphen® Zahlen kann man sdmtlich bestimmen. Die Autoren
tun das in diesem Artikel auch fiir hohere als zweite Potenzen und auch fiir die Ziffern-
darstellungen zu beliebigen Basen g > 2 anstelle von 10, Sie studieren zudem einige
zahlentheoretische Eigenschaften der idempotenten Zahlen.
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¢", und man muss zu ihrer Beschreibung nur die endlich vielen Restklassen angeben, aus
denen sie besteht. Die Kongruenzbedingung n* = n mod ¢" kann auch als Polynomglei-
chung X* = X im Restklassenring Z/g" Z gelesen werden.

In den Abschnitten 4 bis 7 behandeln wir zahlentheoretische Eigenschaften von idem-
potenten Zahlen. Wir diskutieren Nachkommen, verwandte, komplementire sowie Ge-
meinschatten von idempotenten Zahlen. Den quadratischen Fall (k = 2) hat C. Grof3 [1]
untersucht.

Notationen. Wie tiblich sei Z die Menge aller ganzen Zahlen, N = {1, 2, 3, .. .} die Menge
aller natiirlichen Zahlen und P die Menge aller Primzahlen. Fiir ¢, b € Z besagt a|b, dass
a ein Teiler von b ist; die Negation dieser Aussage wird mit ¢ { b notiert. Fir p € P
besagt p* || b, dass p%|b und p**! 4 b gilt. Den grohten gemeinsamen Teiler von @ und b
bezeichnen wir mit (a, b). Die Kongruenza = b mod m ist dquivalent mit m|(a — b). Mit
g ist stets eine ganze Zahl > 2 gemeint. Es bezeichne Py = { pelP | Pl g} die Menge
ihrer Primteiler und e>(g) die Anzahl der verschiedenen Primteiler von ¢, also die Anzahl
der Elemente von P,.

2 Kleine Potenzen

In diesem Abschnitt werden alle k-idempotenten Zahlen fiir die Exponenten k& € {1, 2, 3}
bestimmt. Fiir beliebige & gilt

g = () I*(p™). (1)
relig

und aus den Zahlen in den Mengen /¥ (p®") kann man mit dem Chinesischen Restsatz die
Zahlen im Durchschnitt 7*(g") bestimmen. Deshalb konnen wir uns auf Moduln g = p”
beschrinken, die Primzahlpotenzen sind.

Satz 1. Fiir beliebige Primzahlen p und natiirliche Zahlen k, r gilt

(2 IYpH=17Z,
(b)y IP(p)y=pZUP'Z+1),

PPZU(PZ+ DU PZ-1) fiir — p=3,
© PBpHh={ 2ZUu@'Z+Hu@1Z-1) fir p=2r>4,
ZUQRL+1) fiir p=2,r <3.

Beweis. Die Aussage (a) ist klar. Zur Begriindung der anderen Behauptungen nutzen wir
die Polynomzerlegungen

X2 X =X(X-1, X X=XX-DX+1D

aus. Eine ganze Zahl n gehort genau dann zu I2(p”), wenn p”|(n* — n) ist. Aquivalent
hierzu ist, dass die Primzahlpotenz p” einen der beiden Faktoren a oder n — 1 teilt, und
dies ist dquivalent zu

ne p'zZ oder ne(p’Z+1).

Damit ist (b) bewiesen,
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Eine ganze Zahl n gehort genau dann zu I3 (p”), wenn p*|(n° — n) ist. Aquivalent hierzu
ist im Falle p > 3, dass die Primzahlpotenz p” einen der drei Faktoren #, n — 1 oder
n + 1 teilt, Wie zuvor fiihrt das auf die in (¢) angegebenen Restklassen modulo p”. Nun
sei p = 2. Dann kdnnen wir nur schlieen, dassn € 1 Sy dquivalent zu

2 n oder 2n—DHn+1)

ist. Zu diskutieren ist der zweite Fall 27 |(n — 1){(n + 1). Dann ist jeder der beiden Faktoren
n — lund s + 1 gerade und genau einer durch 4 teilbar. Also ist dieser Fall dquivalent zu

27N -1 oder 27N+ 1).

Damit folgen die Aussagen in (¢) fiir p = 2. 0J

3 Beliebige Potenzen

Die Beweisidee in Satz 1 ist fiir Exponenten & > 3 nicht brauchbar, weil die Polynome
X* — X iiber Z nicht vollstindig in Linearfaktoren zerfallen. Stattdessen wird uns die be-
kannte Struktur der primen Restklassengruppe modulo p” zum Ziel fithren. Wie wir in der
Einleitung bereits bemerkt haben, besteht 1 ¥ (2") aus vollstdndigen Restklassen modulo
g". Wir bezeichnen (falls g und r aus dem Kontext hervorgehen) mit 77 die Restklasse von
n modulo g7, und wir setzen

") =meZ/dZ | nel ).

Mit a¥(g") bezeichnen wir die Anzahl der Elemente in 7%(¢"). Die Abbildung x mod i >
(x mod p*) pe|m 18t nach dem Chinesischen Restsatz ein Ringisomorphismus von Z/mZ.
auf das direkte Produkt der Ringe Z/ p®Z mit p* || m. Daher gilt

@ =[] T, (2)

rellg

und die Anzahl der Elemente ist eine multiplikative Funktion von g, also

a ¢y =[] d . (3)

rellg

Wir bezeichnen mit
(Z/mZ)* =m e Z/mZ | (n,m) =1}

die prime Restklassengruppe modulo m. Fiir Potenzen m = p” von Primzahlen p # 2
ist (Z/p"Z)* nach einem Resultat von Gauf3 eine zyklische Gruppe von der Ordnung
r _l(p — 1) ([2, Kap. 6, §2]). Jedes erzeugende Element der Gruppe heilit eine Pri-
mitivwurzel modulo p”. Wenn e eine Primitivwurzel modulo p ist, dann ist ¢ oder ¢ + p
eine Primitivwurzel zu jeder Potenz p”. Die Gruppe (Z/2"Z)* ist fiir r < 2 zyklisch und
fiir # > 3 ein direktes Produkt zweier zyklischer Gruppen der Ordnungen 22 und 2, die
von den Restklassen der Zahlen 5 und —1 erzeugt werden.



Idempotente Zahlen 109

Satz 2. Ly seien r und k natiirliche Zahlen, k = 2, p eine Primzahl, p # 2. Es sei
d = (p—1,k—1),die Zahl s sei durch p* || (k—1) bestimmt, und e sei eine Primitivwurzel
modulo p*. Dann gilt:

(a) Die Gleichung x* = x hatin Z/p"Z genau
ak(pr) =1+ pmin{r—l,s} .d

Lisungen.
(b) Die similichen Losungen x # 0 sind

x=f mit 1<j<p™a fir r<s,
r—=1-s

x = f? mit 1<j<p’d fiir 1 >s.

Dabei ist
f= elr—1/d

Beweis. Die Losung x = 0 bringt den Summanden 1 in der Formel fiir a(p”). Losungen
x # 0 sind teilerfremd zu p; fiir diese ist also x* = x mod p” #quivalent zu

=1 mod p".

Somit ist a¥(p™) = 1 + b¥(p"), wobei b¥(p") die Anzahl der Losungen von x¥~1 = T in

(Z/p"Z)* ist. Jedes Element x dieser zyklischen Gruppe ist eindeutig in der Form x = e™
mit 1 <m < p"~!(p — 1) darstellbar. Damit wird x*~! = T zu ¢™*~1 = T. Aquivalent
hierzu ist, dass m(k — 1) ein Vielfaches der Gruppenordnung ist, also

PN = 1) Imk — D).

Es gilt p — 1 = dc, k — 1 = p*db, worin b und ¢ untereinander und zu p teilerfremde
natiirliche Zahlen sind. Wir setzen t = min{r — 1, s} und erhalten die Aquivalenzen

Pl p-Dmk-1) <= plelp'mb

— pleip'm

é pr_l_[clps_’m.

§—r+1

Zunichst sei t = r — 1. Die letzte Teilerbedingung lautet dann ¢ | p m, und das ist

wegen p 1 ¢ dquivalent zu ¢ | m. Die Losungen m sind
P p—1)

m=jc mit lsjgf:pfd.

Wir erhalten die Losungen x = e/ = (e(p‘l)/d)j = fJ.
Nun sei ¢ = 5. Dann lautet die Teilerbedingung p”~1=%¢ | m. Die Losungen m sind

P Hp-D _

m=jp c mit 1<j< P pd.

Wir erhalten die Losungen x = (e '¢)/ = (e "@w=1/d)) — 7ir" " Damit sind
alle Behauptungen bewiesen. O
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Die Primzahl 2 spielt eine Ausnahmerolle, weil die prime Restklassengruppe modulo 2"
fiir r > 3 nicht zyklisch ist.

Satz 3. Es seienk > 2 undr > 3 natiirliche Zahlen, und s und u seien durchk — 1 = 2%y
mit ungeradem u definiert. Dann gilt:

(a) Die Gleichung x* = x hat in Z/2"Z genau 2 Losungen, wenn k gerade ist, und
gendau _
ak(zr) =14+ 21+m1n{r—2,s}

Losungen, wenn k ungerade ist.

(b) Fiir gerades k sind 6_Lma,' 1 die einzigen Losungen. Fiir ungerades k sind die siimtli-
chen Losungen x # O gegeben durch

+5 mit 1<j<27% fiir r—2<s,
527 mit 1<j<s fiir r—2z>s.

Beweis. AuBer x = 0 hat x* = x nur ungerade Losungen, und diese gehoren zur Gruppe
(Z/2"Zy* und erfiillen x*~! = T. Alle Elemente x # 1 in dieser Gruppe haben gerade
Ordnung. Fiir ungerades k — 1 ist also x = 1 die einzige Losung von x*~1 = 1. Nun sei
k — 1 gerade, also s > 1. Es bestehen die Aquivalenzen
_ s\ U - s -
#1=1T = (xz) =1 < =1
Nach der Bemerkung vor Satz 2 hat jede Restklasse x € (ZJ2"Z)* eine eindeutige Dar-
stellung x = £ 5/ mit 1 < j < 272, Die Losungen der Gleichung x2 = T sind daher
durch
2r—2 |2SJ
gekennzeichnet. Die sdmtlichen nicht-trivialen Ldsungen sind also
+35/  mit 1§j§2r_2 fiir r—2<s,
L5 mit 1<j<s fiir r—2>s.
Damit sind alle Behauptungen des Satzes bewiesen. O

Beispiel 1 Die Sitze 2 und 3 besagen fiir k = 2, dass die Gleichung x? = x in jedem
der Ringe Z/p"Z nur die beiden trivialen Losungen O und 1 hat. Aus (3) folgt daher
a’(g") = 2“8, Nicht-triviale idempotente Zahlen modulo g” existieren also genau dann,
wenn ¢ mindestens 2 Primteiler hat ([1, Satz 2]).

4 Nachkommen

Streicht man bei einer idempotenten Zahl n € I¥(g") mit r > 2 die Ziffer bei ¢" !,
dann erhilt man eine idempotente Zahl m € I*(¢"~"). Denn aus n*¥ = n mod ¢" und
n=>Y avg’ =dar—1g" " +mmit 0 < a, < g, folgt

1

I =gk =n=m mod g .

k
m-=(n—a,-18
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Man erhilt also durch Streichen vorderer Ziffern eine Folge idempotenter Zahlen zu fal-
lenden Moduln ¢"~', ¢"~2, ..., g. Ein Beispiel hierzu ist die Folge idempotenter Zahlen
625 € I2(10%), 625 € 12(10%), 25 € I2(10%), 5 € I%(10). (Das Streichen der ersten Ziffer
61in 625 € I2(10%) liefert keine Zahl in 72(10°%).)

Interessant erscheint uns die umgekehrte Prozedur: Kann man durch Vorschalten einer ge-
eigneten Ziffer eine idempotente Zahl in eine ebensolche zu einem hoheren Modul iiber-
fithren? Wir behandeln das Problem allgemeiner fiir beliebige Polynome und wenden das
Ergebnis dann auf den Spezialfall X* — X an.

Definition. Es sei f(X) ein Polynom mit Koeffizienten aus Z, undes sein € Z, f(n) =
0 mod g". Eine ganze Zahl 7 heit ein Nachkomme von n (beziiglich f(X) und g"), falls

F@) =0 mod g™t und #=n mod g
gilt.

Lemma 4. Es sei f(X) ein Polynom mit Koeffizienten aus Z. und f’(X) seine Ableitung,
undes sein € Z, f(n) =0 mod g". Dann gilt:
(a) Wenn f'(n) und g teilerfremd sind, dann hat n. einen Nachkommen.

(b) Ist g = p eine Primzahl, dann ist die Anzahl der Nachkommen von n modulo p”
gleich

IL, falls  f'(n) 0 mod p,
P, falls f'ny=0mod p und f(n)=0 mod pf‘H,
0, falls  f'(n)=0 mod p wund f(n)#0 mod p™+'.

Beweis. Jeder denkbare Nachkomme von n kann in der Form # = n + xg" mit x € Z
geschrieben werden. Fiir jeden Exponenten j gilt (n+xg")/ =n’ + jn/~lxg" mod g" 1,
und es folgt £ () = f(n)+ f'(n)xg” mod g’*t'. Somitist# genau dann ein Nachkomme
von #, wenn x eine Losung der linearen Kongruenz

fn)

7

+ f/(m)x =0 mod g

ist. Diese Kongruenz ist losbar, wenn f/(n) und g teilerfremd sind. Nun sei ¢ = p ei-
ne Primzahl. Dann kann die lineare Kongruenz als lineare Gleichung iiber dem Korper
Z/ pZ gelesen werden, und die Anzahl der L.osungen x modulo p ist durch die Liste in (b)
gegeben., O

Wir wenden das Lemma auf idempotente Zahlen an:

Satz 5. Die Zahlenk — 1 und g seien teilerfremd. Dann besitzt jede Zahln € 1%(g") einen
Nachkommen # € I*(g"t1).

Man kann sich die Menge | J,-, I*(¢") als Graphen oder ,.Stammbaum® vorstellen, und
dieser besteht unter den Voraussetzungen in Satz 5 aus endlich vielen, unendlich langen
(und moglicherweise verzweigten) Ketten von Nachkommen.
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Beweis des Satzes. Es sei n € 1¥(g"). Dann gilt (kn*~! — 1, g} = 1. Denn anderenfalls
wire p |(kn*~1 — 1) und p |g fiir eine Primzahl p, und wegen g”|(n* — n) folgt hieraus
der Reihe nach p {n, p |(n*~1 = 1), p |(k — Dn*~und p |(k — 1. g), im Widerspruch zur
Voraussetzung (k — 1, g) = 1. Somit ist Lemma 4(a) auf das Polynom f(X) = X* — X
anwendbar, und man erhilt eine Zahl 7 mit den behaupteten Eigenschaften 77 € I¥(g"+1)
und 7 =n mod g". O

Beispiel 2 Die Voraussetzung der Teilerfremdheit von £ —1 und g ist im quadratischen Fall
(k = 2) stets erfiillt. Auf diese Voraussetzung kann nicht verzichtet werden. Beispielsweise
besitzt 125 € I°(10%) keinen Nachfolger. Denn anderenfalls hitte

(125 +x10°) =125+ x 10° mod 10*

eine Losung x € Z. Hieraus folgt 1257 — 125 + x 10°(3 - 125 — 1) = 0 mod 10* und
125% — 125 =0 mod 2 - 10° im Widerspruch zu 125 — 125 = 1953 . 10°.

In der folgenden Tabelle sind alle Elemente der Mengen T"(lOf yfirk < 3undr < 4
aufgelistet, wobei anstelle der Restklassen 7 ihre Vertreter n mit 0 < n < 107 angegeben
sind. Ein Verfahren zur Berechnung der Tabellenwerte ergibt sich aus dem Beweis von
Lemma 4. Aus den Sitzen 2 und 3 und aus dem Chinesischen Restsatz erhédlt man die
Losungsanzahl ¢ (10" = a®(2M)a*(5) =5-3 = 15 fiir r > 3.

k=2 k=3
r=1 0,1, 5, 6 0, 1, 4, 5, 6, 9
o= 0,1, 25, 176 0, 1,51, 24, 25,18 76: 49, 99
r=>3 0, 1, 625, 376 0, 1,251, 624, 125,375, 376, 249,499,
501, 751, 023, 875, 749, 999
r=4 0, 1, 625, 9376 0, 1,3751, 624, 625,4375, 9376, 1249, 4999,
5001, 8751, 5625, 9375, 6249, 9999

In einer zweiten Anwendung des Lemmas geben wir die Anzahl der Nachkommen einer
idempotenten Zahl an, falls der Modul eine Primzahlpotenz ist.

Satz 6. Die Anzahl der Nachkommen einer idempotenten Zahl n € I*(p”) modulo einer
Primzahlpotenz p” ist

1, falls kn*'#£1 mod p,
p, falls knf"'=1 mod p, n¥=n mod p't!,
0, falls kn*'=1mod p, n* #£n mod p't..

Beweis. Man wendet L.emma 4(b) auf das Polynom f(X) = X* — X an. [

Beispiel 3 Wir geben den ,,Stammbaum®™ fiir n° = n mod 2 an. Die Relation ,,ist
Nachkomme von* stellen wir durch einen Pfeil dar, und anstelle der Restklassen 7 geben
wir ihre Vertreter n mit 0 < n < 27 an. Aus Satz 3 folgt a’>(2"y = 1+2% =9 firr > 4,
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Fiir » > 4 stehen also jeweils 9 Zahlen in der r-ten Zeile. Von den 8 Zahlen # 0 in der
r-ten Zeile haben 4 keine Nachkommen, und die iibrigen 4 Zahlen n haben die beiden
Nachkommen n und n + 2", Verfolgt man eine von O und 1 verschiedene idempotente
7Zahl n im Stammbaum von oben nach unten, dann stirbt sie irgendwann aus, das hei3t
sie hat keinen Nachfolger mehr: Sie tritt letztmalig in der r-ten Zeile auf, wobei r durch
27 || (n* — 1) definiert ist.

il RN
i VANEVAN

| /\ /\ /\ /\
B2 2 I
RER S

5 Verwandte idempotente Zahlen

Wir betrachten Paare idempotenter Zahlen, die aus denselben Primteilern von g zusam-
mengesetzt sind.

Definition. Zwei idempotente Zahlen ny € I¥(¢") und np € I*¥(g"?) heilen verwandt,
falls fiir alle Primteiler p von g gilt: Genau dann ist p |nq, wenn p |np ist. Wir nennen
dann auch die Restklassen 771, fiz verwandt.

Fiir jedes k ist die Verwandtschaft offenbar eine Aquivalenzrelation auf Upsi £ k(") und

auch auf jeder Menge I* (¢"), und der Begriff der Verwandtschaft von Restklassen ist
wohldefiniert und eine Aquivalenzrelation auf U,,zl o (¢") und auf 1 : (g"). Diese Aqui-
valenzklassen nennen wir Verwandtschaftsklassen.

Es sei k ungeradeund n € 1 5 (¢"). Dann sind die idempotenten Zahlen n und# = g" —n €
I* (¢") verwandt. Denn fiir jede Nullstelle x ist auch —x eine Nullstelle des Polynoms
X* — X, und offenbar teilen Primteiler p von g entweder beide Zahlen # und # oder keine

davon. Fiir ungerade k zerfillt also I*(g") \ (g’” YA (% g+ g Z)) in Paare verwandter

Zahlen. (Fiir ungerade ¢ ist % ¢" + ¢"Z durch die leere Menge zu ersetzen.) Eine Ver-

wandtschaftsklasse in 7% (¢") kann aus mehreren solchen Paaren bestehen. Die Tabelle in
Beispiel 2 enthilt Verwandtschaftsklassen, die aus 4 bezichungsweise 8 Zahlen bestehen.
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Satz 7. Es sei k > 2. Es bezeichne Pq die Menge der Primteiler von g und w(g) die
Anzahl der Elemente von Pg. Dann gilt:

(a) Zu jedem r > 1 und zu jeder Teilmenge Q C P, gibt es eine idempotente Zahl
n e I*(g mit {p e Py | pln} = Q. Zujeder idempotenten Zahi n € I*(g") und
zit jeder natiirlichen Zahl ¥ > r gibt es eine mit n verwandte Zahl i € v (g?); in
Jeder anderen Generation gibt es mit n verwandte idempotente Zahlen 7.

(b) Fiir jedes r = 1 besteht eine Bijektion zwischen den Verwandischafisklassen idem-
potenter Zahlen in 1* (¢") und der Menge aller Teilmengen von P,. Die Anzahl der
Verwandtschaftsklassen ist 2.

Beweis. Fiir n € I*(g") setzen wir Q(n) = {p € Py ‘ p|n}. Aus der Definition
verwandter idempotenter Zahlen folgt unmittelbar, dass Q(#) = Q(n) fiir alle mit n ver-
wandten Zahlen 71 € I*(g") gilt. Desgleichen folgt Q(n1) # Q(n2), falls ny € I¥(g™)
und np € 1F (g") nicht miteinander verwandt sind. Also induziert n — Q(n) eing in-
jektive Abbildung zwischen den Verwandtschaftsklassen in 7¥(¢”) und den Teilmengen
von Py

Es sei eine Teilmenge 0 € P, gegeben. Diese bestimmt eine Zerlegung ¢ = ¢f mit
natiirlichen Zahlen ¢ und ¢, worin ¢ ein Potenzproduktder Primzahlen p € Q istund p {¢
fiiralle p € Q gilt. Inshesondere sind ¢ und ¢ teilerfremd. Zu jedem r > 1 gibtes also nach
dem Chinesischen Restsatz eine ganze Zahl n mit n = 0 mod ¢ und n = 1 mod 1.
Es folet n”* = 0 = n mod ¢ und nf = 1 = n mod ¢, also n* = n mod g,
und somit ist n € Ik(gf ). Offenbar gilt @(n) = Q. Damit ist eine Bijektion zwischen
den Verwandtschaftsklassen und den Teilmengen von Py gefunden. Die Anzahl dieser
Teilmengen ist 2¢(¢), Damit sind alle Behauptungen des Satzes bewiesen. — Zur leeren
Teilmenge von Py gehort die Verwandtschaftsklasse der idempotenten Zahl 1, und zur
Menge P, selber gehort die Klasse der idempotenten Zahl 0. U

Bemerkun_g. Mit dhnlichen Ideen wie im Beweis von Satz 7 findet man eine Parametrisie-
rung von I Z(g’ ): Jeder Teilmenge Q <€ P wird in diesem Beweis eine Zerlegung ¢ = ¢
zugeordnet. Man verifiziert nun, dass durch

Q e [fﬁﬂ(qr) + ng

eine injektive Abbildung der Potenzmenge von P, nach T7(g") definiert ist; hierbei be-
zeichnet ¢ die Eulersche Funktion. Die Abbildung ist sogar bijektiv, weil diec Anzahl
a’(g") = 2*®) der Elemente der beiden Mengen nach Beispiel 1 gleich sind.

Satz 8. Die idempotenten Zahlenn € 1 R (e") und ¥ < gt (g7) seien verwandt, und es sei
r < 7. Dann gilt

k—1

-l =gt

mod g'.

Im Ziffernsystem zur Basis g stimmen die (k — 1)-ten Potenzen von n und il in den letzten
r Ziffern iiberein.

Bemerkung. Der Spezialfall £ = 2 ist [1, Satz 4]. — Fiir £ > 3 ist die Aussage n =
# mod g" nicht immer wahr, wie die Zahlen 125 € I°(10%) und 625 € I°(10*) mit
625 # 125 mod 107 in Beispiel 2 zeigen.
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Beweis des Satzes. Wie im Beweis von Satz 7 zerlegen wir ¢ = ¢f in teilerfremde Faktoren
g und 1, worin g ein Potenzprodukt derjenigen Primteiler von g ist, die auch # (und somit
auch 7) teilen. Aus #* = n mod ¢" und ¥ = # mod g" folgt dann, da n und &

teilerfremd zu ¢ sind,

n=0 mod q", n*~'=1 mod 1",
=0 mod q?, i 1=1 mod t?,
alson =7 mod ¢" und n*~! = 7~ mod ¢. Somit folgt n* ' = #*~! mod g’. O

6 Komplementire idempotente Zahlen

Wir diskutieren eine Eigenschaft idempotenter Zahlen, die zur Verwandtschaft komple-
mentar ist.

Definition. Zwei idempotente Zahlen n; € I*(g") und ny € I*(g") heiben komplemen-
tdr, falls fiir alle Primteiler p von g gilt: Genau dann ist p [n1, wenn p { ny ist.

Korollar 9. Essein € I*(g") und k > 2. Zu jeder natiirlichen Zahl 7 gibt es dann eine
zu n komplementiire idempotente Zahl 7 € I* (g").

Beweis. Wie im Beweis von Satz 7 bezeichne Q(n) die Menge der gemeinsamen Primteiler
von g und 7, und es sei T'(n) = Py \ Q(n) die Menge der Primteiler p von g mit p 1 n.
Nach Satz 7(a) gibt es zu jeder natiirlichen Zahl 7 ein # € I¥(¢”) mit Q@) = T'(n). Diese
Zahl 7 ist komplementir zu 7. O

Bemerkung. Nach Satz 7 ist die Verwandtschaftsklasse einer zu #n komplementiren Zahl
71, nicht jedoch 7 selber, eindeutig durch n bestimmt. Beispiele entnimmt man der Liste in
Beispiel 2.

Satz 10. Es sei k > 2. Die Zahlen ny und ny in 1¥(g") seien komplementiir. Dann gilt

n’i_l +n§_1 = 1 mod g,
mny = 0 mod g’

Beweis. Fiir n e I* (g") seien Q(n) und T(n) wie im Beweis von Korollar 9 erklirt.
Dann gilt Q(n1) = T#2), Q(n2) = T(ny), und es besteht ¢ine Zerlegung ¢ = gt in
teilerfremde Faktoren ¢ und ¢, worin g nur Primteiler in Q(n1) und ¢ nur Primteiler in

Q(ny) hat. Aus den Voraussetzungen folgt g” 1" |nl(n'f_1 —Lyund g"t" |n2(n§_1 —1),und
Somit
n1 =0 mod g, n'{‘l =1mod ¢, ny=0mod?, ng_l =1 mod ¢.

Wegen der Teilerfremdheit von ¢ und ¢ ist damit die zweite Behauptung Kklar, und wegen
n 1 =n1 =0 mod ¢", n5™' = ny =0 mod ¢ folgt auch die erste Behauptung. O
Beispiel 4 s sei £k = 2, und wir nehmen n; € IF(g") mit 1 < nj < g firj=12
an. Aus Satz 10 folgt dann a; + ny = ¢" + 1, und im Ziffernsystem zur Basis g ist
n1 412 =100...0lund nigsnp = *...%00...0 mit r — 1 beziehungsweise r Nullen ([1,
Satz 6]). Insbesondere gibt es zu jeder Zahl n € I?(g”) im Intervall 1 < n < g” genau
eine komplementidre Zahl in diesem Intervall.
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7 Gemeinschaften idempotenter Zahlen

In diesem Abschnitt verallgemeinern wir die Aussagen iiber zwei komplementire Zahlen
auf mehrere solche Zahlen.

Definition. Es sei m > 2. Die idempotenten Zahlen ny, 712, ..., 0, € Ik(gr) bilden eine
Gemeinschaft der Grope m, falls die Mengen Tj = T(n;) = {p € Py | p 1t n;} fir
j=1,..., meine Zerlegung von P, in disjunkte Teilmengen bilden.

Beispielsweise bilden zwei komplementire Zahlen eine Zweier-Gemeinschaft. Die Zahlen
6, 10, 15 in I%(30) bilden eine Dreier-Gemeinschaft. Eine triviale Gemeinschaft ist 1, 0,
..., 0. Wir zeigen, dass es in jeder Menge I* (") nicht-triviale kleine Gemeinschaften
gibt:

Satz 11. In jeder Menge I*(g") existiert eine Gemeinschaft der Grifie m aus paarweise
verschiedenen Zahlen, falls 2 < m < w(g) + 1 ist.

Beweis. Wegen m < w(g)+ 1 gibt es eine Zerlegung von P, in m verschiedene, paarweise
disjunkte Teilmengen 11, ..., Ty,. (Beispielsweise kann 77, ..., Ty—1 aus jeweils einem
Primteiler und 7, aus den restlichen Primteilern von ¢ bestehen.) Zujedem j =1,....m
withle man nach Satz 7(a) eine idempotente Zahl n; € I* (¢")mit Q(n;) =P, \ T;. Diese
Zahlen ny, . .., ny bilden eine Gemeinschaft. Wir zeigen, dass sie paarweise verschieden
sind: Fiir j # [ ist T; # T;. Es gibt also einen Primteiler p von g, der genau einer dieser
Mengen angehort, und wir diirfen p € 7T;, p ¢ T; annehmen. Es folgt pln;, p 1 n;, also
nj # n. [

Es besteht die folgende Verallgemeinerung von Satz 10:

Satz 12. Esseik > 2, undny, ny, ..., Ny sei eine Gemeinschaft der Grofle m in Ik(g’”).
Dann gilt
At sl = 1med o,
nyny, = 0 mod g

fiir alle Indizes (0 # v.

Beweis. Zu jedem p € Pg gibt es genau einen Index u mit p € T), und p ¢ T, fiir alle
v # w. Es sei p* || g. Dann gilt p* |(n¥, — n,,), und wegen p 1 n,, folgt p** |51 — 1),
also n*~! =1 mod p* . Fiir alle v # g gilt p |n, und p* [(a% — n,), und hieraus folgt
P |1y, also n, =0 mod p® und somit auch 1571 = 0 mod p*". Aufsummieren ergibt
n]{_l + ng_l + ...+ 751 =1 mod p* . Das gilt fiir alle p € Py, und somit folgt die
erste Behauptung.

Es seien Indizes n # v gegeben, und es sei p € Py, p¥ || ¢. Dann gilt p ¢ T;, oder
p € T,. Es geniigt, den Fall p ¢ T, zu diskutieren. Wie im ersten Teil des Beweises folgt
dann n, =0 mod p*". Hieraus folgt auch n,n, =0 mod p®". Das gilt fiir alle p € Py,
und somit folgt die zweite Behauptung. O
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