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Elemente der Mathematik

Idempotente Zahlen

Günter Köhler und Jürgen Spilker

Beide Verfasser sind pensionierte Professoren für Mathematik – in Würzburg
beziehungsweise in Freiburg, und beide verbindet die Freude an Problemen und Ideen aus
der elementaren Zahlentheorie und Analysis.

1 Einleitung

Es seien k, r und g natürliche Zahlen und g 2. Eine ganze Zahl n nennen wir
k-idempotent modulo gr oder kürzer idempotent, wenn

nk n mod gr

gilt. Das bedeutet im Falle n > 0, dass die letzten rechtsstehenden) r Ziffern von n und
seiner k-ten Potenz nk im Stellenwertsystem zur Basis g übereinstimmen. Wenn n selber
höchstens r Stellen hat, dann stellen die letzten r Ziffern von nk die Zahl n dar.

In den Abschnitten 2 und 3 bestimmen wir die sämtlichen idempotenten Zahlen. Für
beliebige k, r und g beschreiben wir also die Menge aller k-idempotenten Zahlen modulo
gr Wir wollen diese Menge mit

I k gr

bezeichnen. Wegen

n + xgr k nk mod gr

für beliebige ganze n und x gilt im Falle n I k gr stets auch n + xgr I k gr für
beliebige ganze x. Die Menge I k gr besteht also aus vollständigen Restklassen modulo

Die Zahlen 0 und 1 sind die einzigen ganzen Zahlen, die gleich ihren Quadraten sind.
Bei manchen anderen natürlichen Zahlen bleiben beim Quadrieren wenigstens einige
Endziffern erhalten, beispielsweise in 62 36, 762 5776, 252 625. Diese „
idempotenten“ oder „automorphen“ Zahlen kann man sämtlich bestimmen. Die Autoren
tun das in diesem Artikel auch für höhere als zweite Potenzen und auch für die
Zifferndarstellungen zu beliebigen Basen g 2 anstelle von 10. Sie studieren zudem einige
zahlentheoretische Eigenschaften der idempotenten Zahlen.
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gr und man muss zu ihrer Beschreibung nur die endlich vielen Restklassen angeben, aus

denen sie besteht. Die Kongruenzbedingung nk n mod gr kann auch als Polynomgleichung

Xk X im Restklassenring Z/grZ gelesen werden.

In den Abschnitten 4 bis 7 behandeln wir zahlentheoretische Eigenschaften von
idempotenten Zahlen. Wir diskutieren Nachkommen, verwandte, komplementäre sowie
Gemeinschaften von idempotenten Zahlen. Den quadratischen Fall k 2) hat C. Groß [1]
untersucht.

Notationen.Wie üblich sei Z dieMenge aller ganzen Zahlen, N {1,2,3, .} dieMenge
aller natürlichen Zahlen und P die Menge aller Primzahlen. Für a, b Z besagt a|b, dass

a ein Teiler von b ist; die Negation dieser Aussage wird mit a b notiert. Für p P
besagt pa b, dass pa|b und pa+1 b gilt. Den größten gemeinsamen Teiler von a und b
bezeichnen wir mit a,b). Die Kongruenza b mod m ist äquivalent mit m|(a-b). Mit
g ist stets eine ganze Zahl 2 gemeint. Es bezeichne Pg p P p |g die Menge
ihrer Primteiler und g) die Anzahl der verschiedenen Primteiler von g, also die Anzahl
der Elemente von Pg.

2 Kleine Potenzen

In diesem Abschnitt werden alle k-idempotenten Zahlen für die Exponenten k {1, 2, 3}
bestimmt. Für beliebige k gilt

Ik gr

pa g

Ik par 1)

und aus den Zahlen in den Mengen I k par kann man mit dem Chinesischen Restsatz die
Zahlen im Durchschnitt Ik gr bestimmen. Deshalb können wir uns auf Moduln g pr
beschränken, die Primzahlpotenzen sind.

Satz 1. Für beliebige Primzahlen p und natürliche Zahlen k, r gilt

a) I1(pr Z,
b) I2(pr prZ prZ + 1),

c) I3(pr

prZ prZ + 1) prZ - 1) für p 3,
2rZ 2r-1Z + 1) 2r-1Z - 1) für p 2,r 4,

2rZ 2Z + 1) für p 2,r 3.

Beweis. Die Aussage a) ist klar. Zur Begründung der anderen Behauptungen nutzen wir
die Polynomzerlegungen

X2 - X X(X - 1), X3- X X(X - 1)(X + 1)

aus. Eine ganze Zahl n gehört genau dann zu I2(pr wenn pr|(n2 - n) ist. Äquivalent
hierzu ist, dass die Primzahlpotenz pr einen der beiden Faktoren n oder n - 1 teilt, und
dies ist äquivalent zu

n prZ oder n prZ + 1).

Damit ist b) bewiesen.
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Eine ganze Zahl n gehört genau dann zu I3(pr wenn pr |(n3 - n) ist. Äquivalent hierzu
ist im Falle p 3, dass die Primzahlpotenz pr einen der drei Faktoren n, n - 1 oder
n + 1 teilt. Wie zuvor führt das auf die in c) angegebenen Restklassen modulo pr. Nun
sei p 2. Dann können wir nur schließen, dass n I 3(2r äquivalent zu

2r |n oder 2r |(n - 1)(n + 1)

ist. Zu diskutieren ist der zweite Fall 2r |(n-1)(n+1). Dann ist jeder der beiden Faktoren
n - 1 und n + 1 gerade und genau einer durch 4 teilbar. Also ist dieser Fall äquivalent zu

2r-1 |(n - 1) oder 2r-1
|(n + 1).

Damit folgen die Aussagen in c) für p 2.

3 Beliebige Potenzen

Die Beweisidee in Satz 1 ist für Exponenten k > 3 nicht brauchbar, weil die Polynome
Xk - X über Z nicht vollständig in Linearfaktoren zerfallen. Stattdessen wird uns die
bekannte Struktur der primen Restklassengruppe modulo pr zum Ziel führen. Wie wir in der
Einleitung bereits bemerkt haben, besteht I k gr aus vollständigen Restklassen modulo
gr Wir bezeichnen falls g und r aus dem Kontext hervorgehen)mit n die Restklasse von
n modulo gr und wir setzen

I k gr {n Z/grZ | n Ik gr )}.

Mit ak(gr bezeichnen wir die Anzahl der Elemente in I k gr Die Abbildung x modm
x mod pa)pa m ist nach dem Chinesischen Restsatz ein Ringisomorphismus von Z/mZ

auf das direkte Produkt der Ringe Z/paZ mit pa m. Daher gilt

Ik gr

pa g

Ik par 2)

und die Anzahl der Elemente ist eine multiplikative Funktion von g, also

ak gr
pa g

ak par 3)

Wir bezeichnen mit

Z/mZ)* {n Z/mZ | n, m) 1}
die prime Restklassengruppe modulo m. Für Potenzen m pr von Primzahlen p 2
ist Z/ prZ)* nach einem Resultat von Gauß eine zyklische Gruppe von der Ordnung
pr-1(p - 1) ([2, Kap. 6, §2]). Jedes erzeugende Element der Gruppe heißt eine
Primitivwurzel modulo pr. Wenn e eine Primitivwurzel modulo p ist, dann ist e oder e + p
eine Primitivwurzel zu jeder Potenz pr Die Gruppe Z/2rZ)* ist für r 2 zyklisch und
für r 3 ein direktes Produkt zweier zyklischer Gruppen der Ordnungen 2r-2 und 2, die
von den Restklassen der Zahlen 5 und-1 erzeugt werden.
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Satz 2. Es seien r und k natürliche Zahlen, k 2, p eine Primzahl, p 2. Es sei
d p-1, k-1), die Zahl s sei durch ps k-1) bestimmt, und e sei eine Primitivwurzel
modulo pr Dann gilt:

a) Die Gleichung xk x hat in Z/ prZ genau

ak pr 1 + pmin{r-1,s} · d

Lösungen.

b) Die sämtlichen Lösungen x 0 sind

x f j mit 1 j pr-1d für r= s,

x f jpr-1-s

mit 1 j psd für r> s.

Dabei ist
f e(p-1)/d

Beweis. Die Lösung x 0 bringt den Summanden 1 in der Formel für ak pr Lösungen
x 0 sind teilerfremd zu p; für diese ist also xk x mod pr äquivalent zu

xk-1 1 mod pr

Somit ist ak pr 1 + bk pr wobei bk(pr die Anzahl der Lösungen von xk-1 1 in
Z/prZ)* ist. Jedes Element x dieser zyklischen Gruppe ist eindeutig in der Form x em

mit 1 m pr-1(p - 1) darstellbar. Damit wird xk-1 1 zu em(k-1) 1. Äquivalent
hierzu ist, dass m(k - 1) ein Vielfaches der Gruppenordnung ist, also

pr-1 p - 1) |m(k - 1).

Es gilt p - 1 dc, k - 1 psdb, worin b und c untereinander und zu p teilerfremde
natürliche Zahlen sind. Wir setzen t min{r - 1, s} und erhalten die Äquivalenzen

pr-1 p - 1) | m(k - 1) pr-1c| psmb

pr-1c| psm

pr-1-t c | ps-tm.

Zunächst sei t r - 1. Die letzte Teilerbedingung lautet dann c | ps-r+1m, und das ist
wegen p c äquivalent zu c |m. Die Lösungen m sind

m jc mit 1 j pr-1(p - 1)
c

ptd.

Wir erhalten die Lösungen x ecj e(p-1)/d j f j

Nun sei t s. Dann lautet die Teilerbedingung pr-1-sc| m. Die Lösungen m sind

m j pr-1-sc mit 1 j
pr-1(p- 1)

pr-1-sc
ptd.

Wir erhalten die Lösungen x epr-1-s c j epr-1-s p-1)/d j
f jpr-1-s

Damit sind
alle Behauptungen bewiesen.
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Die Primzahl 2 spielt eine Ausnahmerolle, weil die prime Restklassengruppe modulo 2r
für r 3 nicht zyklisch ist.

Satz 3. Es seien k 2 und r 3 natürliche Zahlen, und s und u seien durch k- 1 2su

mit ungeradem u definiert. Dann gilt:

a) Die Gleichung xk x hat in Z/2rZ genau 2 Lösungen, wenn k gerade ist, und
genau

ak 2r 1 + 21+min{r-2,s}

Lösungen, wenn k ungerade ist.

b) Für gerades k sind 0 und 1 die einzigen Lösungen. Für ungerades k sind die sämtli¬

chen Lösungen x 0 gegeben durch

± 5j mit 1 j 2r-2 für r - 2 s,

± 52r-2-s j mit 1 j s für r- 2 s.

Beweis. Außer x 0 hat xk x nur ungerade Lösungen, und diese gehören zur Gruppe

Z/2rZ)* und erfüllen xk-1 1. Alle Elemente x 1 in dieser Gruppe haben gerade

Ordnung. Für ungerades k - 1 ist also x 1 die einzige Lösung von xk-1 1. Nun sei
k - 1 gerade, also s 1. Es bestehen die Äquivalenzen

xk-1 1 x2s
u

1 x2s 1.

Nach der Bemerkung vor Satz 2 hat jede Restklasse x Z/2rZ)* eine eindeutige
Darstellung x ± 5 j mit 1 j 2r-2. Die Lösungen der Gleichung x2s 1 sind daher
durch

2r-2
|2s j

gekennzeichnet. Die sämtlichen nicht-trivialen Lösungen sind also

± 5j mit 1 j 2r-2 für r - 2 s,

± 52r-2-s j mit 1 j s für r - 2 s.

Damit sind alle Behauptungen des Satzes bewiesen.

Beispiel 1 Die Sätze 2 und 3 besagen für k 2, dass die Gleichung x2 x in jedem
der Ringe Z/prZ nur die beiden trivialen Lösungen 0 und 1 hat. Aus 3) folgt daher
a2(gr 2.(g). Nicht-triviale idempotente Zahlen modulo gr existieren also genau dann,
wenn g mindestens 2 Primteiler hat ([1, Satz 2]).

4 Nachkommen

Streicht man bei einer idempotenten Zahl n Ik gr mit r 2 die Ziffer bei gr-1,

dann erhält man eine idempotente Zahl m Ik gr-1). Denn aus nk n mod gr und
n a.g. ar-1gr-1

+ m mit 0 a. < g, folgt

mk n-ar-1gr-1 k nk n m mod gr-1
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Man erhält also durch Streichen vorderer Ziffern eine Folge idempotenter Zahlen zu
fallenden Moduln gr-1, gr-2, g. Ein Beispiel hierzu ist die Folge idempotenter Zahlen
625 I2(104), 625 I2(103), 25 I 2(102), 5 I 2(10). Das Streichen der ersten Ziffer
6 in 625 I 2(104) liefert keine Zahl in I2(103).)

Interessant erscheint uns die umgekehrte Prozedur: Kann man durch Vorschalten einer
geeigneten Ziffer eine idempotente Zahl in eine ebensolche zu einem höheren Modul
überführen? Wir behandeln das Problem allgemeiner für beliebige Polynome und wenden das

Ergebnis dann auf den Spezialfall Xk - X an.

Definition. Es sei f X) ein Polynom mit Koeffizienten aus Z, und es sei n Z, f n)
0 mod gr Eine ganze Zahl n heißt ein Nachkomme von n bezüglich f X) und gr falls

f 0 mod gr+1 undn n n mod gr

gilt.

Lemma 4. Es sei f X) ein Polynom mit Koeffizienten aus Z und f X) seine Ableitung,
und es sei n Z, f n) 0 mod gr Dann gilt:

a) Wenn f n) und g teilerfremd sind, dann hat n einen Nachkommen.

b) Ist g p eine Primzahl, dann ist die Anzahl der Nachkommen von n modulo pr

gleich

1, falls f n) 0 mod p

p, falls f n) 0 mod p und f n) 0 mod pr+1

0, falls f n) 0 mod p und f n) 0 mod pr+1

Beweis. Jeder denkbare Nachkomme von n kann in der Form n n + xgr mit x Z
geschrieben werden. Für jeden Exponenten j gilt n+xgr j n j

+ jn j-1xgr mod gr+1,

und es folgt f f n)+ f n)xgr mod gr+1. Somit istn n genau dann ein Nachkomme
von n, wenn x eine Lösung der linearen Kongruenz

f n)
gr + f n)x 0 mod g

ist. Diese Kongruenz ist lösbar, wenn f n) und g teilerfremd sind. Nun sei g p eine

Primzahl. Dann kann die lineare Kongruenz als lineare Gleichung über dem Körper

Z/pZ gelesen werden, und die Anzahl der Lösungen x modulo p ist durch die Liste in b)
gegeben.

Wir wenden das Lemma auf idempotente Zahlen an:

Satz 5. Die Zahlen k-1 und g seien teilerfremd. Dann besitzt jede Zahl n I k gr einen
Nachkommen n I k gr+1).

Man kann sich die Menge
r=0 I k gr als Graphen oder „Stammbaum“ vorstellen, und

dieser besteht unter den Voraussetzungen in Satz 5 aus endlich vielen, unendlich langen
und möglicherweise verzweigten) Ketten von Nachkommen.
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Beweis des Satzes. Es sei n Ik gr Dann gilt knk-1- 1 g 1. Denn anderenfalls

wäre p |(knk-1 - 1) und p |g für eine Primzahl p, und wegen gr |(nk - n) folgt hieraus
der Reihe nach p n, p |(nk-1- 1), p |(k - 1)nk-1 und p |(k-1,g), imWiderspruch zur
Voraussetzung k - 1,g) 1. Somit ist Lemma 4(a) auf das Polynom f X) Xk - X
anwendbar, und man erhält eine Zahl n mit den behaupteten Eigenschaften n Ik gr+1)
und n n mod gr

Beispiel 2 Die Voraussetzungder Teilerfremdheit von k-1 und g ist im quadratischen Fall
k 2) stets erfüllt.Auf diese Voraussetzung kannnicht verzichtetwerden. Beispielsweise

besitzt 125 I3(103) keinen Nachfolger. Denn anderenfalls hätte

125 + x 103 3 125 + x 103 mod 104

eine Lösung x Z. Hieraus folgt 1253 - 125 + x 103(3 · 1252 - 1) 0 mod 104 und
1253- 125 0 mod 2 · 103 im Widerspruch zu 1253- 125 1953 · 103.

In der folgenden Tabelle sind alle Elemente der Mengen Ik 10r für k 3 und r 4
aufgelistet, wobei anstelle der Restklassen n ihre Vertreter n mit 0 n < 10r angegeben
sind. Ein Verfahren zur Berechnung der Tabellenwerte ergibt sich aus dem Beweis von
Lemma 4. Aus den Sätzen 2 und 3 und aus dem Chinesischen Restsatz erhält man die
Lösungsanzahl a3(10r a3(2r a3(5r 5 · 3 15 für r 3.

k 2 k 3

r 1 0, 1, 5, 6 0, 1, 4, 5, 6, 9

r 2 0, 1, 25, 76 0, 1, 51, 24, 25, 75, 76, 49, 99

r 3 0, 1, 625, 376 0, 1, 251, 624, 125, 375, 376, 249, 499,
501, 751, 625, 875, 749, 999

r 4 0, 1, 625, 9376 0, 1, 3751, 624, 625, 4375, 9376, 1249, 4999,
5001, 8751, 5625, 9375, 6249, 9999

In einer zweiten Anwendung des Lemmas geben wir die Anzahl der Nachkommen einer
idempotenten Zahl an, falls der Modul eine Primzahlpotenz ist.

Satz 6. Die Anzahl der Nachkommen einer idempotenten Zahl n Ik pr modulo einer
Primzahlpotenz pr ist

1, falls knk-1 1 mod p,

p, falls knk-1 1 mod p, nk n mod pr+1,

0, falls knk-1 1 mod p, nk n mod pr+1.

Beweis. Man wendet Lemma 4(b) auf das Polynom f X) Xk - X an.

Beispiel 3 Wir geben den „Stammbaum“ für n5 n mod 2r an. Die Relation „ist
Nachkomme von“ stellen wir durch einen Pfeil dar, und anstelle der Restklassen n geben

wir ihre Vertreter n mit 0 n < 2r an. Aus Satz 3 folgt a5(2r 1 + 23 9 für r 4.
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Für r 4 stehen also jeweils 9 Zahlen in der r-ten Zeile. Von den 8 Zahlen 0 in der

r -ten Zeile haben 4 keine Nachkommen, und die übrigen 4 Zahlen n haben die beiden
Nachkommen n und n + 2r Verfolgt man eine von 0 und 1 verschiedene idempotente
Zahl n im Stammbaum von oben nach unten, dann stirbt sie irgendwann aus, das heißt
sie hat keinen Nachfolger mehr: Sie tritt letztmalig in der r -ten Zeile auf, wobei r durch
2r n4 - 1) definiert ist.

r

1 0 1

2 0 1 3

3 0 1 5 3 7

4 0 1 9 5 13 3 11 7 15

5 0 1 17 9 25 7 23 15 31

6 0 1 33 17 49 15 47 31 63

5 Verwandte idempotente Zahlen
Wir betrachten Paare idempotenter Zahlen, die aus denselben Primteilern von g
zusammengesetzt sind.

Definition. Zwei idempotente Zahlen n1 I k gr1 und n2 Ik gr2 heißen verwandt,
falls für alle Primteiler p von g gilt: Genau dann ist p |n1, wenn p |n2 ist. Wir nennen
dann auch die Restklassen n1, n2 verwandt.

Für jedes k ist die Verwandtschaft offenbar eine Äquivalenzrelation auf
r=1 I k gr und

auch auf jeder Menge I k gr und der Begriff der Verwandtschaft von Restklassen ist
wohldefiniert und eine Äquivalenzrelation auf

r=1 Ik gr und auf Ik gr Diese
Äquivalenzklassen nennen wir Verwandtschaftsklassen.

Es sei k ungerade und n I k gr Dann sind die idempotenten Zahlen n und gr-n
Ik gr verwandt. Denn für jede Nullstelle x ist auch -x eine Nullstelle des Polynoms
Xk -X, und offenbar teilen Primteiler p von g entweder beide Zahlen n und

n

n oder keine

davon. Für ungerade k zerfällt also Ik gr \ grZ 12 gr + grZ in Paare verwandter

Zahlen. Für ungerade g ist 12 gr + grZ durch die leere Menge zu ersetzen.) Eine
Verwandtschaftsklasse in Ik gr kann aus mehreren solchen Paaren bestehen. Die Tabelle in
Beispiel 2 enthält Verwandtschaftsklassen, die aus 4 beziehungsweise 8 Zahlen bestehen.
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Satz 7. Es sei k 2. Es bezeichne Pg die Menge der Primteiler von g und g) die
Anzahl der Elemente von Pg. Dann gilt:

a) Zu jedem r 1 und zu jeder Teilmenge Q Pg gibt es eine idempotente Zahl
n Ik gr mit p Pg p | n Q. Zu jeder idempotenten Zahl n Ik gr und

zu jeder natürlichen Zahl r r gibt es eine mit n verwandte Zahl n I k gr); in
jeder anderen Generation gibt es mit n verwandte idempotente Zahlen n.

b) Für jedes r 1 besteht eine Bijektion zwischen den Verwandtschaftsklassen
idempotenter Zahlen in Ik gr und der Menge aller Teilmengen von Pg. Die Anzahl der
Verwandtschaftsklassen ist 2.(g).

Beweis. Für n Ik gr setzen wir Q(n) p Pg p | n Aus der Definition
verwandter idempotenter Zahlen folgt unmittelbar, dass Q( Q(n) für alle mit n
verwandten

n
Zahlen n I k gr gilt. Desgleichen folgt Q(n1) Q(n2), falls n1 I k gr1

und n2 I k gr2 nicht miteinander verwandt sind. Also induziert n Q(n) eine
injektive Abbildung zwischen den Verwandtschaftsklassen in Ik gr und den Teilmengen
von Pg.

Es sei eine Teilmenge Q Pg gegeben. Diese bestimmt eine Zerlegung g qt mit
natürlichen Zahlen q und t, worin q ein Potenzproduktder Primzahlen p Q ist und p t

für alle p Q gilt. Insbesondere sind q und t teilerfremd.Zu jedem r 1 gibt es also nach
dem Chinesischen Restsatz eine ganze Zahl n mit n 0 mod qr und n 1 mod tr
Es folgt nk 0 n mod qr und nk 1 n mod tr, also nk n mod gr
und somit ist n I k gr Offenbar gilt Q(n) Q. Damit ist eine Bijektion zwischen
den Verwandtschaftsklassen und den Teilmengen von Pg gefunden. Die Anzahl dieser
Teilmengen ist 2.(g). Damit sind alle Behauptungen des Satzes bewiesen. – Zur leeren
Teilmenge von Pg gehört die Verwandtschaftsklasse der idempotenten Zahl 1, und zur
Menge Pg selber gehört die Klasse der idempotenten Zahl 0.

Bemerkung. Mit ähnlichen Ideen wie im Beweis von Satz 7 findet man eine Parametrisierung

von I2(gr): Jeder Teilmenge Q Pg wird in diesem Beweis eine Zerlegung g qt
zugeordnet. Man verifiziert nun, dass durch

Q tr.(qr

+ grZ

eine injektive Abbildung der Potenzmenge von Pg nach I 2(gr definiert ist; hierbei
bezeichnet die Eulersche Funktion. Die Abbildung ist sogar bijektiv, weil die Anzahl
a2(gr 2.(g) der Elemente der beiden Mengen nach Beispiel 1 gleich sind.

Satz 8. Die idempotenten Zahlen n I k gr und n Ik gr seien verwandt, und es sei

r r Dann gilt
nk-1 nk-1 mod gr

Im Ziffernsystem zur Basis g stimmen die k - 1)- ten Potenzen von n und n in den letzten

r Ziffern überein.

Bemerkung. Der Spezialfall k 2 ist [1, Satz 4]. – Für k 3 ist die Aussage n
n mod gr nicht immer wahr, wie die Zahlen 125 I 3(103) und 625 I3(104) mit
625 125 mod 103 in Beispiel 2 zeigen.
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Beweis des Satzes. Wie im Beweis von Satz 7 zerlegen wir g qt in teilerfremde Faktoren
q und t, worin q ein Potenzprodukt derjenigen Primteiler von g ist, die auch n und somit
auch teilen. Aus nk n mod gr undn k nn mod gr folgt dann, da n und n
teilerfremd zu t sind,

n 0 mod qr nk-1 1 mod tr

n 0 mod qr k-1 1 mod trn

also n n mod qr und nk-1 nk-1 mod tr Somit folgt nk-1 nk-1 mod gr

6 Komplementäre idempotente Zahlen
Wir diskutieren eine Eigenschaft idempotenter Zahlen, die zur Verwandtschaft komplementär

ist.

Definition. Zwei idempotente Zahlen n1 Ik gr1 und n2 Ik gr2 heißen komplementär,

falls für alle Primteiler p von g gilt: Genau dann ist p |n1, wenn p n2 ist.

Korollar 9. Es sei n I k gr und k 2. Zu jeder natürlichen Zahl r gibt es dann eine
zu n komplementäre idempotente Zahl n Ik gr

Beweis. Wie im Beweis von Satz 7 bezeichne Q(n) dieMenge der gemeinsamenPrimteiler
von g und n, und es sei T n) Pg \ Q(n) die Menge der Primteiler p von g mit p n.
Nach Satz 7(a) gibt es zu jeder natürlichen Zahl r ein n I k gr mit Q( T n). Diesen
Zahl n ist komplementär zu n.

Bemerkung. Nach Satz 7 ist die Verwandtschaftsklasse einer zu n komplementären Zahl
nicht jedochn n selber, eindeutig durch n bestimmt. Beispiele entnimmt man der Liste in

Beispiel 2.

Satz 10. Es sei k 2. Die Zahlen n1 und n2 in I k gr seien komplementär. Dann gilt

nk-1
1 + nk-1

2 1 mod gr

n1n2 0 mod gr

Beweis. Für n Ik gr seien Q(n) und T n) wie im Beweis von Korollar 9 erklärt.
Dann gilt Q(n1) T n2), Q(n2) T n1), und es besteht eine Zerlegung g qt in
teilerfremde Faktoren q und t, worin q nur Primteiler in Q(n1) und t nur Primteiler in
Q(n2) hat. Aus den Voraussetzungen folgt qr tr |n1(nk-1

1 - 1) und qrtr |n2(nk-1
2 - 1), und

somit

n1 0 mod qr nk-1

1 1 mod tr n2 0 mod tr nk-1
2

1 mod qr

Wegen der Teilerfremdheit von q und t ist damit die zweite Behauptung klar, und wegen
nk-1

1 n1 0 mod qr nk-1
2 n2 0 mod tr folgt auch die erste Behauptung.

Beispiel 4 Es sei k 2, und wir nehmen n j I k gr mit 1 n j < gr für j 1,2
an. Aus Satz 10 folgt dann n1 + n2 gr + 1, und im Ziffernsystem zur Basis g ist
n1 + n2 100 01 und n1n2 *. * 00 .0 mit r - 1 beziehungsweise r Nullen ([1,

Satz 6]). Insbesondere gibt es zu jeder Zahl n I 2(gr im Intervall 1 n < gr genau
eine komplementäre Zahl in diesem Intervall.
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7 Gemeinschaften idempotenter Zahlen

In diesem Abschnitt verallgemeinern wir die Aussagen über zwei komplementäre Zahlen
auf mehrere solche Zahlen.

Definition. Es sei m 2. Die idempotenten Zahlen n1, n2, nm I k gr bilden eine

Gemeinschaft der Größe m, falls die Mengen Tj T n j p Pg p n j für
j 1, m eine Zerlegung von Pg in disjunkte Teilmengen bilden.

Beispielsweise bilden zwei komplementäreZahlen eine Zweier-Gemeinschaft. Die Zahlen
6, 10, 15 in I2(30) bilden eine Dreier-Gemeinschaft. Eine triviale Gemeinschaft ist 1, 0,

0. Wir zeigen, dass es in jeder Menge Ik gr nicht-triviale kleine Gemeinschaften
gibt:

Satz 11. In jeder Menge Ik gr existiert eine Gemeinschaft der Größe m aus paarweise
verschiedenen Zahlen, falls 2 m g) + 1 ist.

Beweis. Wegen m g)+ 1 gibt es eine Zerlegung von Pg in m verschiedene, paarweise
disjunkte Teilmengen T1, Tm. Beispielsweise kann T1, Tm-1 aus jeweils einem
Primteiler und Tm aus den restlichen Primteilern von g bestehen.) Zu jedem j 1, m
wähle man nach Satz 7(a) eine idempotente Zahl n j I k gr mit Q(n j Pg \ Tj. Diese
Zahlen n1, nm bilden eine Gemeinschaft. Wir zeigen, dass sie paarweise verschieden
sind: Für j l ist Tj Tl Es gibt also einen Primteiler p von g, der genau einer dieser
Mengen angehört, und wir dürfen p Tj p Tl annehmen. Es folgt p|nl p n j, also
n j nl

Es besteht die folgende Verallgemeinerung von Satz 10:

Satz 12. Es sei k 2, und n1, n2, nm sei eine Gemeinschaft der Größe m in Ik gr

Dann gilt

nk-1
1 + nk-1

2 + + nk-1
m 1 mod gr

nµn. 0 mod gr

für alle Indizes µ

Beweis. Zu jedem p Pg gibt es genau einen Index µ mit p Tµ und p T. für alle
µ. Es sei pa g. Dann gilt par |(nkµ - nµ), und wegen p nµ folgt par |(nk-1

µ - 1),

also nk-1
µ 1 mod par Für alle µ gilt p |n. und par |(nk - n. und hieraus folgt

par |n., also n. 0 mod par und somit auch nk-1 0 mod par Aufsummieren ergibt
nk-1

1 + nk-1
2 + + nk-1

m 1 mod par Das gilt für alle p Pg, und somit folgt die
erste Behauptung.

Es seien Indizes µ gegeben, und es sei p Pg, pa g. Dann gilt p Tµ oder
p T. Es genügt, den Fall p T. zu diskutieren. Wie im ersten Teil des Beweises folgt
dann n. 0 mod par Hieraus folgt auch nµn. 0 mod par Das gilt für alle p Pg,
und somit folgt die zweite Behauptung.
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