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Variations of a combinatorial problem on finite sets

Bas Lemmens

Bas LLemmens is a Warwick Zeeman Lecturer in the Mathematics Department at
the University of Warwick, England. He studied mathematics at the University of
Amsterdam and received his Ph.D. degree from the Free University in Amsterdam
in 2001. His mathematical interests include dynamical systems theory and geometry
of Banach spaces.

“Try, try again”, is popular advice. It is good advice. The insect, the mouse, and the man

Jollow it; but if one follows it with more success than the others it is because he varies his
problem more intelligently. This strategy for solving mathematical problems was recom-
mended to us by George Pélya [10, p. 209]. In this article we will take Pélya’s suggestion
and discuss two variations of a combinatorial problem on finite sets. These variations were
found by Koolen, Laurent, and Schrijver [9], and reveal a surprising connection with ge-
ometry. At present however, the problem is still unresolved. Perhaps you c¢an find another
variation that will lead to its solution.

The problem we are interested in is a generalization of Fisher’s inequality to multisets. We
shall see that such a generalization is closely related to sets in R” in which the taxicab
(or Manhattan) distance between any two distinct points is the same. On the other hand, it
will become clear to us in the third section that the problem can also be reformulated in
terms of pairwise touching simplices. In fact, we shall see that our problem is equivalent to
determining the maximum number of translated copies of a regular n-dimensional simplex
that can be placed in R” such that any two distinct ones touch but do not overlap. Fig. 1

In seinen Arbeiten zur statistischen Versuchsplanung entdeckte R.A. Fisher im Jahr
1940 die folgende iiberraschende Ungleichung: Sind Fi, ..., F,; verschiedene Teil-
mengen der Zahlenmenge {1, ..., n} mit der Eigenschaft, dass jede Menge F; genau
r Elemente und jeder Durchschnitt £; N Fr (j # k) genau A Elemente mit 0 <
A = r besitzt, so gilt m < zn. Im nachfolgenden Beitrag wird die Fishersche Unglei-
chung dahingehend verallgemeinert, dass in den zugrunde liegenden Mengen Elemente
mehrfach auftreten diirfen. Mit Hilfe dieses Ergebnisses gewinnt der Autor Erkennt-
nisse zu Fragestellungen aus der kombinatorischen Geometrie, z.B. der Frage nach der
maximalen Anzahl paarweise sich berithrender n-dimensionaler Simplices im R”.
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shows a possible configuration of three 2-dimensional simplices (equilateral triangles) in
the plane.

Fig. 1 Touching equilateral triangles

Can you imagine how many translated copies of a regular tetrahedron can be placed in R?
such any two distinct ones touch?

A generalization of Fisher’s inequality

Let us begin by recalling Fisher’s inequality.

Theorem 1 (Fisher). If Fy, ..., Fy are m distinct subsets of {1, ..., n} and there exist
integersr and A, with O < . <r, such that the size of each F; equals r and the intersection
of any two distinct sets F; and F; contains exactly ). elements, thenm < n.

The first ideas for this inequality were found by R.A. Fisher [7] in 1940. Fisher was a
statistician, who used a similar inequality in his theory for designing statistical experi-
ments to collect data. R.C. Bose [4] extended the ideas of Fisher in 1949 and proved the
inequality as stated in Theorem 1. Bose’s proof is short and elegant; it makes ingenious
use of linear algebra. Since then the linear algebra method has been refined and applied
to many problems in combinatorics. An extensive collection of examples can be found in
an unpublished book by Babai and Prankl [3] and in [1]. We give Bose’s proof in the next
paragraph.

First remark that the inequality is trivial if » = A, because m = 1 in that case. If, on the
other hand, r > A, we can use linear algebra in the following way: Let A = (a;;) be the
n x m incidence matrix given by a;; = 1ifi € F;,and a;; = 0ifi ¢ F;. Put M = ATA,
where AT denotes the transpose of A. Now note that Hij = ZZ=1 agidg; and hence m;; is
equal to the size of the intersection of F; with F;. Therefore, the m x m matrix M satisfies:

M=A +(r—M1, (1)

where J is the matrix with all entries equal to one. It suffices to prove that M has rank m.
Indeed, rank M = rank ATA < rank A < n, as A has n rows. We first show that M is
positive definite, that is, the inner product (x, Mx) > 0 for all x # 0. From equation (1) it
follows that

x,Mx) = X, AJJx)+ &, r—0Ix)
= XA ) =D XD,
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so that (x, Mx) > O for all x # 0, as r > A. To complete the proof remark that every
positive definite matrix is invertible, as Mx = 0 for some x # O implies {(x, Mx) = 0.
Thus M is invertible, and hence it has rank #1.

We wish to replace set with multisets in Fisher’s theorem. Intuitively a multiset is a set
with possibly repeated elements. More formally, a multiset on {1, ...,n} is a function
wA{l, ..., n} = NU{0}, where p(k) is regarded as the number of repetitions of k. We will
use the notation F = {11 a#"M} The size of F is given by |F| = > mk), and
the intersection of F with another multiset G = {1V, ..., n"™} is defined by F N G =
(150 nf@ where £ (k) = min{u k), v(k)} for all k.

Inspired by Fisher’s inequality we can now ask for the maximum number of distinct mul-
tisets I, ..., Iy on {1, ..., n} for which there exist integers » and A, with O < A < r,
such that each F; has size r and the intersection of any two distinct multisets F; and
F; has size A. We denote this number by ¢(n). The following example shows that ¢(n)
can be larger than n; Fy = {1%2,2°9 31 41}, B, = (19,22, 31 41}, F3 = {11, 21,32 4%,
Fy = {1',21.3% 42y and F5 = {1°,2°, 3% 42}, Itis easy to verify that r =4 and A = 2
in this example. Thus, our problem is to determine the values of ¢(#n).

How many points at the same distance?

As announced in the introduction our problem can be reformulated in terms of sets in R”
in which the points are all at the same distance from each other. To do this we need to
use the taxicab (Manhattan) distance instead of the usual Euclidean distance. Thus, the
distance between two points x and v in R” is given by

dx,y) =Y |x = wil-
k

From this formula it is easy to see why this distance is called the taxicab or Manhattan
distance, as it resembles the distance that a taxicab has to travel in the rectilinear streets of
Manhattan, A more common name in mathematics for the taxicab distance is £1-distance
and this is the name we shall be using here.

So we wish to study sets in R” in which the £;-distance between any two distinct points is
the same. Such sets are called £-equilateral sets. A simple example in R” is the set

[(41,0,...,0), (0,£1,0,...,0), ..., (0,...,0,£1)},

with 27 points that are all at £;-distance 2 from each other.

To obtain the exact variation of our problem we need to put one additional constraint on
the £1-equilateral sets. Indeed, we shall also require that the £;-equilateral set S in R” has
the property that >, s is the same for all s € S. For instance, the set S given by

S={2,0,11), 02,11, d,1,2,0), (1,1,0,2), 2,2,0,0)}

is an £q-equilateral set in which the ¢;-distance between any two distinct points is 4 and
> sy =4foralls € S. Let us denote the maximum size of such £1-equilateral sets in R”
by i(n). It turns out that the numbers ~(n) and ¢(n) are closely related; as matter of fact:
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Theorem 2. lforalln > 1, h(n) and ¢(n) are equal.

Proof. To show that p(n) < h(n); welet F = {Fy,..., F} be a collection of m dis-
tinct multisets on {1,...,n} such that |F;| = r for all i, and |F; N F;| = A for all
i # j.Foreach i, write F; = {1“1'(1), .A.,n'“i(”)} and define the vector s* € R" by

st = (ui(D), sy pi(n)). Put S = {s', ..., 5™} and remark that |S| = m, as F has size m.
Note also that ) , s, = >, pi(k) = |F;| = r for each i. Moreover,

ds'. sy = Isg — s}l
k
= Z(s,i —|—s,f — 2min{s;, s,g})
k
=Y )+ Yy =2 min{p k), (k)
k k k

= |Fi| +|Fj| = 2|F; N Fj|
=2r — 2\

for each i # j. This implies that S is an £;-equilateral set in R” of size m and Y ; s is the
same for all s € S. Therefore, ¢(n) < h(n) foralln > 1.

To prove the opposite inequality; we assume that the equilateral set is contained in the
integer lattice Z”. It is known that we may do this without loss of generality. In fact, this
was proved by Koolen, Laurent, and Schrijver [9] by using so called cut metrics [6]. So
let S be an £-equilateral set in Z" with i (n) elements, and suppose that Y , sx = r for
all s € S. By translating § we may also assume that each element of S has nonnegative
integer coordinates. For each s € S we define a multiset Fy = {1°1, ..., n*}. Clearly, the
multisets Fy are distinct, and |Fy| = >, s = r for all s € S. Let D denote the distance
between points in § and remark that

|Fy N F| =) min{s, ) =1/2) (s +1x — |se — ) = @r — D)/2
k k

for all § # ¢ in S. Hence, ¢(n) = h(n) for all n > 1, which completes the proof of

Theorem 2. O

There are some known results for i2(n). To begin, Koolen, Laurent, and Schrijver [9] have
proved thath(n) =nforl <n <3, h(4) =5,and hi(n) = n+ 1 forn > 4. Alternatively,
if n = 4 and n is even, we can derive the lower bound, # + 1, from the following £1-
equilateral set in R”:

st = (a,0,1,1,...,1,1)
2 = (0,a,1,1,...,1,1)
s = (1, 1,a,0,...,1,1)
st = (1,1,0,a,....1.1)
s = (1,1,1,1,...,a,0)
s o= (1,1,1,1,...,0,a)
st = (0,0,2,2,...,2,2),
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1,1,2,0
1,1,0,2
2,0,1,1
0,2,1,1
(2,2,0,0,4)  (1,1,1, 3. 55
0,0,2,2,4)  (1,1,1,1,0,4)  (0,0,2,2,2,2,0,0) (0,0,0,2,2,2,0,0,2,2

(2,2,2,2,0)  (2,2,2,2,0,0) (0,0,2,2,0,0,2,2) (0,0,2,0,2,2,0,2,0,0,2,2)

(2,2,0,0,2,2) (0,2,0,2,2,0,2,0) (0,0,2,2,0,2,2,0,2,0,0,2)

(0,0,2,2,2,2)  (0,2,2,0,2,0,0,2) (0,0,2,2,2,0,2,2,0,2

(0,2,0,0,2,2,2,2,2,0

(0,2,0,2,2,0,2,0,0,0

(0,2,2,0,2,0,0,0,2,2

0,0,2,2,0

Table 1 Equilateral sets

where a = n—2and ), sy = 2n — 4. For odd # it is not so easy to write down an explicit
example of size n + 1. Other interesting examples are listed in Table 1.

These examples were found with the help of a computer, and indicate that the lower bound
for h(n) can be improved. Indeed, the first examples show that £(5) > 7 and h(6) > O.
Even though the examples seem to have a lot of structure no better general lower bound
for i(n) is known at present than n + 1.

An upper bound for (n) has been obtained by Alon and Pudlik [2]. They proved that
the maximum size of an £;-equilateral set in R” (without the restriction on the sums of the
coordinates) is at most cnlogn for all n > 1. Closely related to this result is a conjecture of
Kusner [8] which says that the maximum size of an £;-equilateral set in R” is 2n. We have
already seen, at the beginning of this section, the obvious example of an £;-equilateral set
in R” that attains the upper bound of 2x. In fact, this is the only example known of size
2n. At present Kusner’s conjecture is proved for n = 1, 2 and 3 in [5], and for n = 4 in
[9]. In connection with these results it also worth mentioning that it can be shown that the
size of every £1-equilateral set in R” does not exceed A(2n — 1) + 1 [9]. Therefore it is
interesting to investigate if i (#) is linear in n.

Pairwise touching regular simplices

The second variation of our problem concerns regular simplices. Regular simplices are
generalizations of equilateral triangles in the plane and regular tetrahedrons in 3-dimen-
sional space, to general n-dimensional spaces. A number of them are depicted in Fig. 2.
For our problem we wish to place translated copies of a regular n-dimensional simplex
in R” such that any two distinct ones touch but do not overlap. Fig. 1 shows a possible
configuration of three translated copies of a regular 2-dimensional simplex in R? that are
pairwise touching. The problem is to determine how many regular z-dimensional simplices
we can place in R” in this way. Let us denote this number by ¢ (n). You might well wonder
how 1 (n) could be related to ¢ (n). Surprisingly,f(n—1) and ¢(n) are equal foralln > 1. A
convenient way to prove this equality is to first show the following result and subsequently
to apply Theorem 2.
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n=20 n=1 n=2 n=73

Fig. 2 Regular simplices

Theorem 3. foralln > 1, t(n — 1) and h(n) are equal.

As it is difficult to visualize regular simplices in dimension four or more, it is useful o
give a formal definition of a regular n-dimensional simplex. This definition is quite com-
plicated, but, as we shall see, very practical for proving things. To begin we introduce the
following notion. A set L in R¥ is called an affine subspace if it is a translation of a linear
subspace V in RY . It is said to be n-dimensional if V has dimension n. For instance, any
straight line in the plane is a 1-dimensional affine subspace. Now, consider n + 1 points
a® al,....a"in RN, where N > n. It a°,al, ..., a" are not contained in an (n — 1)-
dimensional affine subspace in RY | then the convex hull of a°, a', ..., a” given by

{Zkiai:)»i >0 forall /, and Zki = 1},
i i

is called an n-dimensional simplex. 1t is said to be regular if the standard Euclidean dis-
tance between every pair of points in {a”, a', ..., @"} is the same.

A simple way to construct a regular n-dimensional simplex is to take the convex hull of
the # + 1 standard basis vectors in R"T! given by

A, = {x e R™!: x, >0 forall k, and Zxk: 1}.
k

Fig. 3 illustrates the construction of Ap. The simplex A, is called the standard regular
n-dimensional simplex in R"*t!, Equipped with the formal definition of a regular simplex
we can now prove Theorem 3.

Proof. To see that t(n — 1) > h(n) we let S be an £;-equilateral set in R" such that
D sk =rforall s € S.If D is the distance between the elements of S, then for every
distinct s = £ in § we have that

D =) lse—tel =) Qmax{se, i} — sk — i) = —2r +2 ) max{sy, &},
k k k

and hence ) , max{sy, &x} = (2r + D)/2 for all s # t. Now, define for each s € S the set
ay by

oy = {x eR": xx > s forall k, and Zxk = (2r +D)/2}.
k
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X3

X2

X1

Fig. 3 Standard regular 2-dimensional simplex

Note that o, is a regular (n — 1)-dimensional simplex in the affine subspace {x € R” :
Zk Xy = 2r+D)/2} (Fig. 4 (A)). Moreover, the simplices oy and oy are translates of each
other, and they touch each other at the point 5 Vv ¢ with coordinates (s v ) = max{sg, fx}
for 1 <k < n, whenever s £ f. Thus, {«y : 5 € S} is a collection of pairwise touching
translates of a regular (n — 1)-dimensional simplex, and hence f(n — 1) > h(n) for all
n>=1.

X2 X2

\ xt v xd

i

SVt
s X
2r+D)/2 1
- X1

(A) a (B) x

Fig. 4 Constructions

To show the opposite inequality we let {«; : i € I} be a collection of pairwise touching
translations of a regular (n — 1)-dimensional simplex. We may assume that each «; is a
translate of the standard regular simplex A,_; and that each «; is contained in the affine
subspace {x € R" : ), xx = 1}. Note that for each i € I, there exists a vector x' e R,
with > x,i = 0, such that

= {xeR” :xg > x} forall k, and Zxk: 1}
k

(Fig. 4 (B)). The intersection of «; and «; satisfies

a; Naj = {x eR” i xx > max{x,i,x,{} for all k, and Zxk = 1}. 2)
k
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As the simplices «; and «; are touching, it follows from (2) that they touch at the point
x' Vv x/ with coordinates (x’ v x/) = max{x},x]} for | < k < n. This implies that
¥ max{x,ﬁ, x,ﬁ} = 1. Therefore, we can use the equality

dixt,x)) = le,i —xi| = Z(Zmax{x};,xé} — % — )
x %

to deduce that d(x’, x/) = 2 forall i % j. Thus, {x' : i € I} is an ¢;-equilateral set in
R” such that > ", x;, =Oforalli € I and hence f(n — 1) < h(n) for every n > 1, which
completes the proof. O

Note that i(4) = 5, so that by Theorem 3 we can place five translated copies of a regular
tetrahedron in R? such that any two distinct ones touch. At first glance this might seem
impossible, but it can be done. Fig. 5 shows the way to do it. A simple way to think about
this configuration is to see it as a part of the regular lattice packing pictured in Fig. 6.

Fig. 5 Touching tetrahedrons

Fig. 6 Lattice packing of tetrahedrons
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We conclude by noting that despite the variations we have presented, the problem has not
given away its secrets; but, it certainly has become more intriguing.
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