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Kants Hand, Chiralität und konvexe Polytope

Karl Wirth und André S. Dreiding

Karl Wirth studierte an der ETH Zürich Mathematik, promovierte bei M. Jeger und
arbeitete mit A.S. Dreiding zusammen. Danach war er als Mathematiklehrer an der

Kantonalen Maturitätsschule für Erwachsene in Zürich tätig. Seit seiner Pensionierung
beschäftigt er sich wieder vermehrt mit Themen der mathematischen Chemie.

André S. Dreiding promovierte ander Universität Michigan und ist Professor emeritus

für Organische Chemie ander Universität Zürich. Mit dem Ziel,geometrische
Modellvorstellungen vonMolekülen zusystematisieren, startete er 1970 ein interdisziplinäres

Forschungsprojekt unter Mitwirkung von Informatikern und Mathematikern.

manche meinen
lechts und rinks
kann man nicht
velwechsern,
werch ein illtum!

Handstudie von Leonardo da Vinci

Ernst Jandl

Worin unterscheidet sich eine rechte von einer linken Hand, trifft doch jede Eigenschaft
der einen Hand auch auf die andere zu? Diese von Kant gestellte Frage und die von
ihm gegebene Antwort waren immer wieder Anlass zu Kontroversen über die Natur
des Raumes. Einen klärenden Beitrag lieferte der Mathematiker Reidemeister, dessen

Aussagen in dieser Arbeit unter Verwendung eines in der Chemie wichtigen Begriffs
interpretiert werden, nämlich der Chiralität. ImWeiteren geht es um die Tragweite des

aus dieser Deutung hervorgehenden Phänomens der Diachiralität und um das Bilden
von Chiralitätsklassen chiraler Objekte durch Orientierung. In einem zweiten Teil werden

die besprochenen Chiralitätsaspekte auf konvexe Polytope angewendet, wobei u.a.
ein Minimierungsverfahren und ein darauf basierender Algorithmus wesentlich sind.
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1 Kants Paradoxon

Immanuel Kant 1724–1804) gilt als der grosse Philosoph, der sich mit den Möglichkeiten

und Grenzen der menschlichen Vernunft befasste. Viel ist im Kant-Jahr 2004, in
dem sich sein Todestag zum zweihundertsten Mal jährte, über sein philosophisches Werk
geschrieben worden. Nach wie vor wenig bekannt sind seine mehr mathematisch-
naturwissenschaftlichen Schriften, die vor allem aus der frühen Schaffensperiode stammen. So

beschäftigte er sich in einer Abhandlung mit dem Titel Von dem ersten Grunde des
Unterschiedes der Gegenden im Raum [6] aus dem Jahre 1768 mit einem Phänomen, das in den
modernen Naturwissenschaften eine herausragende Rolle spielt und heute mit dem Begriff
Chiralität griech. cheir Hand) umschrieben wird. In dieser Abhandlung ist zu lesen:

Die rechte Hand ist der linken ähnlich und gleich, und, wenn man bloß auf
eine derselben allein sieht, auf die Proportion und Lage der Theile unter
einander,

”
und auf die GrößedesGanzen,so muß eine vollständige Beschreibung

der einen, in allen Stücken auch von der anderen gelten.

Weil aber garkein Unterschied in dem Verhältnisseder Theile derselben unter
sich Statt findet, sie mag eine Rechte oder Linke seyn, so würde diese Hand in
Ansehung einer solchen Eigenschaft gänzlich unbestimmt seyn, d.i. sie würde
auf jede Seite des menschlichen Körpers passen, welches unmöglich ist.“

Kant stellt fest, dass zwei als verschieden empfundene Objekte, etwa eine rechte und eine

linke Hand, idealisiert) in ihren metrischen Eigenschaften vollständig übereinstimmen
können: Jeder bei der einen Hand gemessene Abstand kann entsprechend auch bei der
andern gemessen werden. Heute sagt man, die beiden Hände seien isometrisch. Kant
formuliert dann ein Paradoxon: Weil die beiden Hände isometrisch sind, müsste jede zu beiden

handlosen Körperhälften passen, die idealisiert) ebenfalls als isometrische Objekte
anzusehen sind. Dies würde aber der Erfahrung widersprechen, wonach eine Hand nur
zu einer Körperhälfte passt. Wie hat nun Kant versucht, diesen Widerspruch aufzuklären?

Wir zitieren:

Es ist hieraus klar: daß nicht die Bestimmungen des Raumes Folgen von den

Lagen der Theile der Materie gegen einander, sondern diese Folgen von
jenen

”
seyn, und daß also in der Beschaffenheit der Körper Unterschiede

angetroffen werden können, und zwar wahre Unterschiede, die sich lediglich auf
den absoluten und ursprünglichen Raum beziehen; weil nur durch ihn das

Verhältniß körperlicher Dinge möglich ist, und daß, weil der absolute Raum
kein Gegenstand einer äußeren Empfindung,sondernein Grundbegriff ist, der
alle dieselbe zuerst möglich macht, wir dasjenige, was in der Gestalt eines

Körpers lediglich die Beziehung auf den reinen Raum angehet, nur durch die
Gegenhaltung mit anderen Körpern vernehmen können.“

Dieser schwer lesbare Text beinhaltet nach unserem Verständnis, dass es für den
Unterschied isometrischer Objekte von der Art unserer beiden Hände keinen in den Objekten
selbst liegenden Grund geben könne. Dieser müsse deshalb ausserhalb der Objekte zu
finden sein. Kant schreibt diesen Unterschied einer Raumeigenschaft zu, die sich nicht auf
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die gegenseitige Lage der Teile, d.h. auf Abstände, zurückführen lässt. Er bezeichnet den

Raum mit dieser Eigenschaft als absolut‘; in Bezug zu ihm seien eine rechte und eine’linke Hand unterschiedlich. Damit stellt sich Kant auf die Seite Newtons, der ein gutes
halbes Jahrhundert früher, in einem Disput mit Leibniz, ebenfalls einen absoluten Raum
mit ewig fixen Orten postulierte. Nach Leibniz’scher Auffassung hingegen können Orte
erst durch Bezüge festgelegt sein.

Der Standpunkt von Leibniz setzte sich nach und nach durch, und die eher religiös
beeinflussten Vorstellungen vom absoluten Raum wichen bis zum zwanzigsten Jahrhundert
zunehmend einer logisch-mathematischen Argumentation. Verschiedentlich haben sich
Mathematiker mit derKant’schen Problematik beschäftigt. Es war dann aber vor allem K.
Reidemeister, der sich ausführlichmit Kants Paradoxon auseinandersetzte und Argumente
gegen seine Schlussfolgerungen lieferte. Er legte sie in seinem 1957 veröffentlichten Buch
Raum und Zeit [9] dar. Reidemeister lehrte 1925–1933 im Kant’schen‘ Königsberg,wurde’
1934 nach Marburg berufen und war ab 1955 in Göttingen tätig. Seine Forschungen bezogen

sich vor allemauf die Geometrie, wobei er sich insbesondere für derenGrundlagen, die
kombinatorische Topologie und die Knotentheorie interessierte. Bevor wir uns mit
Reidemeisters Überlegungen befassen, soll zunächst das zugrunde liegende Phänomen erläutert
werden, nämlich die Chiralität.

2 Chiralität
Der Chiralitätsbegriff stammt aus den Naturwissenschaften, insbesondere aus der Chemie.
In der Mathematik ist er kaum geläufig und kommt auch im Buch von Reidemeister nicht
vor, obschon sich sein Resultat damit in prägnanter Weise interpretieren lässt. Dass die
Chiralität in der Mathematik bis anhin nur wenig Beachtung gefunden hat, erstaunt umso
mehr, als es sich im Prinzip um einen rein geometrischen Begriff handelt. Mit Chiralität ist
eine Reihe reizvoller Probleme verbunden, die ein grosses Anwendungspotential aufweisen.

Dieser Artikel möchte dazu beitragen, hier eine interdisziplinäre Lücke zu schliessen.
Bei den folgenden Ausführungen lassen wir uns ganz von der Anschauung leiten.

Das Wort Chiralität wurde erstmals 1893 vom britischen Physiker Lord Kelvin benützt,
fand aber erst etwa ab 1960 geläufige Verwendung. Kelvin definierte wie folgt: Ich nenne”eine geometrische Figur oder auch Punktmenge chiral, oder sage sie habe Chiralitat,¨
wenn sie nicht mit ihrem Spiegelbild zur Deckung gebracht werden kann ).“ Unter der
Formulierung zur Deckung bringen‘ versteht Kelvin stillschweigend’ durch eine eigentliche’Bewegung zur Deckung bringen‘, d.h. durch eine Rotation, Translation oder deren
Verknüpfungen Schraubungen).

Die einfachsten räumlichen) Figuren, bei denen Chiralität möglich ist, bestehen aus vier
nicht in einer Ebene liegenden Punkten; sie legen ein Tetraeder fest Fig. 1). Der Leser
überzeugt sich leicht, dass gemäss der Kelvin’schen Definition das Tetraeder T1 chiral ist,
denn beim Versuch, T1 durch Bewegung mit seinem Spiegelbild zur Deckung zu bringen,
ist bestenfalls eine Übereinstimmung von vier Kanten mit den Längen a) zu erreichen,
die beiden Kanten mit den von a verschiedenen Längen b und c, b c, sind dann aber
falsch zugeordnet. Das Tetraeder T2 hingegen ist nicht chiral; man sagt es sei achiral.

In der Ebene wird Chiralität analog über die Spiegelung an einer Geraden definiert. Und
mit Hilfe der Spiegelung an einer d-1)-dimensionalen Hyperebene lässt sich der Begriff
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Fig. 1 Chirale und achirale Figur und deren Spiegelbilder im Raum

problemlos auf beliebige d-dimensionale euklidische Räume Rd mit d 1 ausdehnen.
Es muss aber betont werden, dass die Chiralit ät einer Figur von der Dimension des

Einbettungsraums abhängt. Eine in der Ebene chirale Figur ist im Raum achiral, denn sie

kann leicht durch eine räumliche Bewegung mit ihrem Spiegelbild zur Deckung gebracht
werden. Oder allgemein formuliert: Eine im Rd chirale Figur verliert im Rd+1 ihre Chiralit

ät. Zwei chirale spiegelbildliche Figuren oder zwei Figuren, die je durch eigentliche
Bewegungen aus solchen hervorgehen, werden als enantiomer manchmal enantiomorph)
bezeichnet.

Asymmetrische Figuren sind stets chiral, aber nicht umgekehrt. Eine Figur ist genau dann
chiral, wenn sie nur eigentliche, also keine uneigentlichen Symmetrieabbildungen
Deckabbildungen) besitzt. Bei chiralen Figuren der Ebene etwa können deshalb als
Symmetrieabbildungen Rotationen und Translationen vorhanden sein Fig. 2), jedoch keine
Schub- oder als Spezialfall) Achsenspiegelungen.

Chirale rotationssymmetrische Figur Chirale translationssymmetrische Figur
beidseitigunbegrenzt fortgesetztes Band)

Fig. 2 Chirale Figuren der Ebene mit Symmetrie

3 Reidemeisters Kritik
Nach dieser kurzen Darlegung des Chiralitätsbegriffs kehren wir zurück zum Kant’schen
Paradoxon. Mit welchen Argumenten tritt nun der Mathematiker Reidemeister dem
Philosophen Kant entgegen? Bei Reidemeister ist zu lesen Zitat): Die Axiome der
Euklidischen ”Geometrie lassen sich als Aussagen über Abstände von Punkten formulieren,
jeder geometrische Satz ist gleichwertig mit einer Aussage über Abstände von Punkten und
Leibniz hatte recht, die geometrischen Eigenschaften der Dinge mit der Lage der Teile der
Dinge gleichzusetzen.“ Insbesondere lässt sich deshalb, und hier übt Reidemeister Kritik
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an Kants Argument für den absoluten Raum, der Unterschied enantiomerer Figuren auf
Abstände zurückführen. Wir wollen nicht die mathematischen Gedankengänge nachvollziehen,

die Reidemeister zu diesem Schluss führen, sondern deuten sein Resultat mit Hilfe
des Chiralitätsbegriffs.

Gegeben seien drei chirale Figuren, zwei davon enantiomer; sie seien mit A, A z.B. bei
Kant die beiden Hände) und B z.B. bei Kant eine Körperhälfte) bezeichnet. Beim
Vergleich der Abstände zwischen A und B mit den Abständen zwischen A und B zeigt sich
nun

321

ein Unterschied. Wir prazisieren¨ dies vorerst anhand eines Beispiels in der Ebene, das

zugleich den anschliessenden Satz 3.1 illustrieren soll: Betrachtet man die dreipunktigen
chiralen Figuren A {a1, a2, a3}, A {a a a }und B {b1, b2,b3}, die je dieEcken
eines ungleichseitigen Dreiecks bilden Fig. 3), so sind für mindestens ein Indexpaar i, j

mit i, j {1, 2, 3} die Abstände aib j und aib j verschieden siehe auch [8]).

b1

a2

a1

a3

b2

b3

a’1a’3

a’2

Drei chirale Figuren, zwei davon enantiomer

Fig. 3 Illustration von Satz 3.1

Bei der allgemeinen Formulierung dieses Sachverhaltes ist zu berücksichtigen, dass die
chiralen Figuren A, A und B nichtasymmetrisch zu sein brauchen. Siek önnen,wie bereits

erwähnt, nebst der Identität noch weitere Symmetrieabbildungen aufweisen, die jedoch
eigentlich sein müssen.

Satz 3.1. Es seien A und A zwei enantiomere Figuren und B eine weitere chirale Figur
des Rd Ferner sei e eine Isometrie, die A auf A abbildet, und s eine Symmetrieabbildung
von B. Dann existieren a A und b B mit ab e(a)s b).

Beweis indirekt). Angenommen, es gilt ab e(a)s b) für alle a A und b B. In
diesem Falle gibt es eine Isometrie f mit f(a) e(a) für alle a A und f(b) s(b)
für alle b B. Weil aber A, A und B als chirale Figuren je mindestens d + 1 Punkte in
allgemeiner Lage besitzen, und eine Isometrie des Rd durch d + 1 Punkte in allgemeiner
Lage und deren Bildpunkte eindeutig festgelegt ist, folgt f e s. Dies steht jedoch im
Widerspruch dazu, dass s eigentlich und e uneigentlich ist.

Die Quintessenz unserer in Satz 3.1 formulierten Interpretation des Resultats von
Reidemeister lautet: Enantiomere Figuren A und A bringen dann einen Abstandsunterschied
hervor, wenn der metrische Bezug zu einer weiteren chiralen Figur B hergestellt wird. Am
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Ende seiner Arbeit fügt Reidemeister hinzu, dass Kants Paradoxon nicht entstanden wäre,
wenn dieser seinen absoluten Raum mit einem Koordinatensystem ausgestattet hätte. Damit

bringtReidemeisterzumAusdruck, dass in derMathematik zur Unterscheidung zweier
enantiomerer Figuren A und A als chirale Bezugsfigur B gewöhnlich ein Koordinatensystem

verwendet wird. Soviel zur Analyse des Kant’schen Paradoxons. Welche praktische
Bedeutung dem Resultat dieser Analyse zukommt, soll nachfolgend erläutert werden.

4 Diachiralität

Wir nehmen an, unsere enantiomeren Figuren A und A sowie die chirale Figur B seien

dreidimensionale) Objekte im Alltag oder bei Naturvorgängen. Der Einfachheit halber
beschränken wir uns auf starre Objekte. Gewisse interne Beweglichkeiten, etwa bei H¨
anden oder Molekülen, sollen vernachlässigt bzw. durch ihren dynamischen Durchschnitt
ersetzt werden. Externe Bewegungen, also Bewegungen der Objekte als Ganzes, sind
zugelassen. Unter diesen Voraussetzungen bezeichnen wir den Sachverhalt, wonach bei jeder
gegenseitigen Lage der Objekte A, A und B der Satz 3.1 zutrifft, als Diachiralität.

Der aufgrund von Diachiralität stets vorhandene Abstandsunterschied hat zur Folge, dass

gewisse Wechselwirkungen zwischen A und B verschieden sein müssen von den
entsprechenden Wechselwirkungen zwischen A und B. Es muss also immer eine Beobachtung
geben, bei der ein Unterschied sichtbar wird. Ein in der Chemiegeschichte wichtiges
Beispiel hiefür ist die sogenannte optische Aktivität: Zwei enantiomere, phasengleich zirkular
polarisierte, monochromatische Lichtstrahlen A und A gehen verschiedene Wechselwirkungen

mit einem chiralen Molekül B ein, was eine Drehung der Schwingungsebene des

resultierenden planpolarisierten Lichtes bewirkt; man spricht von der optischen Drehung
des Moleküls. Dabei entstehen bei gleicher Wellenlänge für enantiomere Moleküle
entgegengesetzte Drehwinkel. Auf dieser Basis entdeckte der Chemiker L. Pasteur 1848 als
erster das Phänomen der Chiralität bei Molekülen; er bezeichnete seine Beobachtung als

Dissymmetrie.

Wichtig ist Diachiralität u.a. in der pharmazeutischen Chemie: Enantiomere Moleküle A
und A die in einem Medikament enthalten sein können, verhalten sich zu einem chiralen
Rezeptor B wie zwei enantiomere Schlüssel zu einem chiralen Schloss. Passt eines der
beiden Enantiomere A oder A zu B, geht es also eine physiologische Wechselwirkung
ein, so tut es das andere Enantiomer aufgrund von Diachiralität beim gleichen Rezeptor
nicht. In seltenen Fällen kann es passieren, dass die beiden Enantiomere zwei verschiedene

Rezeptoren ansprechen, was dann zu unterschiedlichen physiologischen Reaktionen

f ührt. Contergan Thalidomid), das zwischen 1957 und 1961 als Gemisch von
Enantiomeren Fig. 4) auf dem Markt war, ist ein klassisches Beispiel. Während eines der
Enantiomere R-Thalidomid) zwar wie erwünscht den Schlaf fördert, bewirkt das
andere S-Thalidomid) schwere Missbildungen bei Neugeborenen R und S bezeichnen den

OrientierungssinngemassAbschnitt¨ 6). Ausgelost¨ durch denContergan-Skandalhat in den

letzten Jahrzehnten die chirale Synthesechemie‘ zunehmend an Bedeutung gewonnen.’
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Fig. 4 Enantiomere Moleküle mit unterschiedlicher physiologischer Wirkung

5 Chiralitätsklassen

Eine Menge chiraler Figuren in zwei Chiralitätsklassen einteilen heisst, aus allen Figuren

zwei Teilmengen so zu bilden, dass nie enantiomere Figuren derselben Teilmenge
angehoren.¨ Sind diese Figuren Objekte des taglichen¨ Lebens, werden die Klassen meist
mit rechts‘ und’ links‘ bezeichnet; welche Namen man wählt, ist aber letztlich belanglos.’Chiralitätsklassen sind sowohl im Alltags- als auch imWissenschaftsbereich bei der
Kommunikation unerlässlich: Ich habe meinen linken Handschuh verloren“ oder” In diesem”Fläschchen befindet sich R-Thalidomid“. Solche Aussagen beziehen sich auf eine
Einteilung chiraler Objekte in Chiralitätsklassen. Das Bilden von Chiralitätsklassen basiert
immer auf Diachiralität. Beispielsweise betrachten wir von zwei enantiomeren Schuhen A
und A eines Paars den einen Schuh als zum Fuss B gehörig, weil wir unbewusst bei jeder
gegenseitigen Lage Abstände zwischen A und B wahrnehmen, die sich von den
entsprechenden Abständen zwischen A und B unterscheiden.

In chiralen Objekten der Natur findet man häufig eine gemeinsame chirale Grobstruktur,
etwa eine Spirale, die dann zur Bildung von Chiralitätsklassen benützt wird. So gehören

ein Schneckenhaus, eine Bohnenpflanze oder auch eine Doppelhelix in die gleiche Chiralit

ätsklasse, wenn die festgestellten Spiralen den gleichen Spiralsinn haben beachte, dass

eine Spirale von beiden axialen Seiten betrachtet werden kann, der Spiralsinn ändert sich
nicht). Nebenbei bemerkt sindWeinbergschnecken Fig. 5) gewöhnlich rechtsdrehend; nur
eine unter Tausenden macht da eine Ausnahme, und es soll französische Feinschmecker-
Lokale geben, die einem die Zeche erlassen, wenn man eine davon auf dem Teller entdeckt.

rechtsdrehend linksdrehend

Fig. 5 Enantiomere Weinbergschnecken linksdrehende selten)
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6 Orientierung

Bei vielen Mengen chiraler Objekte ist jedoch schwerlich eine gemeinsame chirale
Grobstruktur erkennbar, die zur Bildung von Chiralitätsklassen benützt werden kann. Wie sind
kartoffelförmige‘ chirale Figuren oder’ unförmige‘ chirale Moleküle zum Beispiel mit

einer
’Spirale oder einer Hand in Verbindung zu bringen? Im Prinzip braucht es ein Enantio-merie-

erhaltendes Verfahren, das komplizierte chirale Objekte auf eine gemeinsame
chirale Struktur zurückführt. Damit das Verfahren für alle Objekte der betrachteten Menge
in gleicher Weise Anwendung findet, muss es durch eindeutige Regeln, d.h. durch einen
Algorithmus, festgelegt sein. Ein solches Verfahren nennen wir eine Orientierung der
betrachteten Menge chiraler Objekte; bei den für die beiden Chiralitätsklassen vereinbarten
Namen oder Symbolen) sprechen wir von Orientierungssinn.

Ein wichtiges Beispiel einer Orientierung in der Chemie ist ein von Cahn, Ingold und Prelog

in den 1950er Jahren ausgearbeitetes Verfahren, welches heute in Anlehnung an ihre
Namen als CIP-Methode‘ bezeichnet wird; für den Orientierungssinn werden die Symbole’R rectus) und S sinister) verwendet. Die CIP-Methode,die wir hier nicht besprechen

können, hat sich in der Praxis bewährt, u.a. deshalb, weil sie sich auf gängige Strukturkonzepte

bezieht. V. Prelog von der ETH Zürich erhielt 1975 den Chemie-Nobelpreis, auch

für seine Verdienste in diesem Zusammenhang [8].

An der Universität Zürich entwickelten die Autoren und andere ab 1970 ein Verfahren,
das aus einer intern beweglichen chemischen Struktur, basierend auf einem streng
mathematischen Modell, einen eindeutigen Namen sowie die Symmetriegruppe generiert. Der
zugrunde liegende Algorithmus stellt ausserdem fest, ob die Struktur chiral oder achiral
ist, und nimmt im chiralen Fall eine Orientierung vor [4]. Die Vorgehensweise stützt sich
auf keine der bisherigen Strukturkonzepte und eignet sich für eine Computerimplementation.

1

Im zweiten Teil dieser Arbeit wollen wir das Prinzip dieses Verfahrens am Beispiel von
konvexen Polytopen erläutern und damit gleichzeitig bisher Gesagtes verdeutlichen und
konkretisieren. Konvexe Polytope sind dafür besonders geeignet, weil sie wie chemische
Strukturen auf endlichen Punktmengen basieren.

7 Konvexe Polytope

Der Begriff Polytop ist die d-dimensionale Verallgemeinerung der Begriffe Polygon für
d 2 und Polyeder für d 3 Fig. 6). Wir beschränken uns hier auf konvexe Polytope, da

sich in diesem Spezialfall vieles einfacher darstellen lässt; das Verfahren liesse sich jedoch
auch auf nicht konvexe Polytope ausdehnen. Konvexe Polytope können auf verschiedene
Arten definiert werden [5, 14]; wir wählen eine Definition, die im Hinblick auf unsere
Zielsetzung möglichst zweckmässig ist:

Definition 7.1. Die konvexe Hülle P einer endlichen Punktmenge des euklidischen Raumes

Rd d 1) mit mindestens d + 1 Punkten in allgemeiner Lage heisst konvexes

d-dimensionales Polytop. Der Einfachheit halber sagen wir gewohnlich¨ kurz Polytop. Ein

1Dieses Projekt wurde ab 1975 unterstutzt¨ vom Schweizerischen Nationalfonds zur Forderung¨ der
Wissenschaftlichen ’Forschung‘
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Polygon Polyeder

Fig. 6 Zweidimensionales und dreidimensionales Polytop

Punkt eines Polytops P, der bezüglich jedes Liniensegmentes von P Verbindungsstrecke
zweier Punkte von P) höchstens Randpunkt ist, heisst Ecke von P; die Ecken bilden die
Eckenmenge X von P.

Bemerkungen

1) Ein d-dimensionales Polytop wird hier stets im Rd und nicht in einem höher dimen¬
sionalen Einbettungsraum betrachtet, was im Zusammenhang mit Chiralität wichtig
ist.

2) Ein Polytop besteht als konvexe Hülle nicht nur aus dem Rand, sondern ebenso aus

dem Innern. So ist etwa ein Polygon eine Fläche oder ein Polyeder ein Körper, auch
wenn dies in den Figuren nicht zum Ausdruck kommt. Im Rahmen dieser Arbeit ist
es allerdings unwichtig, ob das Innere zum Polytop gezählt wird oder nicht.

3) Ohne Beweis sei betont, dass ein Polytop bereits durch die konvexeHülle der Ecken¬

menge X festgelegt ist. Bezüglich der ursprünglich vorgegebenen endlichen
Punktmenge bildet X eine Teilmenge mit mindestens d + 1 Ecken in allgemeiner Lage.
Beispielsweise ist das einfache Polygon, nämlich das gleichschenklige Dreieck Dr
Fig. 7), welches als konvexe Hülle einer 7-elementigen Punktmenge definiert ist,

schon bestimmt durch die Eckenmenge X {a, b,c}. Mit Verfahren der algorithmischen

Geometrie lässt sich X aus der ursprünglichen Punktmenge generieren [1, 7].
In dieser Arbeit gehen wir stets von einer bereits vorliegenden Eckenmenge aus.

4) Im Folgenden sprechen wir bei Bedarf von einem koordinaten-abhängigen Poly¬

top, wenn die kartesischen Koordinaten seiner Ecken gegeben sind, und von
einem koordinaten-freien Polytop bei alleiniger Vorgabe aller Abstände zwischen den

Ecken. Letzteres ist nur bis auf Isometrie bestimmt.

Ein koordinaten-freies Polytop liegt insbesondere dann vor, wenn es in Form einer
relationalen Darstellung oder kurz Darstellung gegeben ist. Was wir unter diesem Begriff
verstehen, soll zunächst am Beispiel unseres Dreiecks Dr erläutert werden. Es geht
darum, die durch die Eckenmenge X {a,b, c} festgelegte Metrik in bestimmter Weise zu

beschreiben. Dabei geben wir jede Eckenverbindung durch die zwei zugehörigen zueinander

symmetrischen Eckenpaare an, und fassen anschliessend die Eckenpaare von isometrischen

Eckenverbindungen in sogenannten Metrikrelationen zusammen. Es resultiert so ein
3-Tupel: Zuerst steht die Eckenmenge X, dann folgen zwei nach den Abstandsquadraten
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4 und 9 geordnete Metrikrelationen R4 und R9. Dieses 3-Tupel nennen wir Darstellung
von Dr und schreiben dafür Dar(Dr) aus Gründen der Lesbarkeit sind bei Eckenpaaren
Klammern und Kommas weggelassen):

Dar(Dr) X, R4, R9) {a, b, c},{ac,ca,bc,cb}4,{ab, ba}9

2

c

2

a b
3

gleichschenkliges Dreieck Dr

Fig. 7 Polygon mit der Eckenmenge {a,b, c}

In gleicher Weise wie in diesem Beispiel kann man bei einem beliebigen Polytop vorgehen.

Ob man die Abstandsquadrate oder die Abstände selbst zur Festlegung der Ordnung
der Metrikrelationen verwendet, spielt aufgrund der Monotonie der auf R+ definierten)
Quadratfunktion keine Rolle.

Definition 7.2. Es sei P ein Polytop mit der Eckenmenge X, und es seien t1, t2, tk

die auftretenden Abstandsquadrate zwischen je zwei verschiedenen Ecken, wobei ti < t j
für i < j. Das k+1)-Tupel Dar(P) X, Rt1 Rt2, Rtk mit den Metrikrelationen
Rti {pq X2 | pq2 ti} für 1 i k heisst Darstellung von P.

Als nächstes betrachten wir die Automorphismen der Darstellung eines Polytops, die in
der Folge eine zentrale Rolle spielen; wir sprechen kurz von den Automorphismen des

Polytops.

Definition 7.3. Ein Automorphismus a eines Polytops P mit der Darstellung Dar(P)
X, Rt1 Rt2, Rtk ist eine bijektive Abbildung der Eckenmenge X auf sich selbst,

welche die Eckenpaare jeder Metrikrelation Rti mit 1 i k in die Eckenpaare derselben
Metrikrelation Rti überführt. Die Automorphismen mit dem Hintereinanderausführen als

Verknüpfung bestimmen eine Gruppe, die Automorphismengruppe von P.

8 Minimierungskonzept

Bevor wir die Automorphismengruppe eines Polytops auf Chiralitäts- und Orientierungsprobleme

anwenden, soll ein Verfahren besprochen werden, welches die Automorphismen

generiert. Das Verfahren basiert auf einem Minimierungskonzept, das in [12] für
Gebilde beschrieben ist Gebilde,engl. relational systems, stellen eine Verallgemeinerungder
hier vorliegenden Darstellungen von Polytopen dar). Beim Minimierungskonzeptwird mit
Nummerierungen gearbeitet:

Definition 8.1. Ist n die Anzahl Ecken der Eckenmenge X eines Polytops P, so heisst
eine bijektive Abbildung : X {1, 2, n} eine Nummerierung von P.
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DasMinimierungskonzeptumfasst dreiStufen, bei denen alle n! Nummerierungeneines
neckigen Polytops P berücksichtigtwerden. Die drei Stufen sind allgemein formuliert, aber

für das Beispiel unseres Dreiecks Dr in einer Nummerierungstabelle Tab. 1) illustriert.

.i a) .i b) .i c) Nummern-Darstellungen

vi Dar(Dr))
Kanonisierungen minimale fett)

vi Dar(Dr))
.1 1 2 3 ({1, 2, 3}, {13, 31,23, 32}4,

{12, 21}9)
1,2,3), 13,23, 31, 32)4,
12, 21)9)

.2 1 3 2 ({1, 3, 2}, {12, 21,32, 23}4,
{13, 31}9)

1,2,3), 12,21, 23, 32)4,
13, 31)9)

.3 2 1 3 ({2, 1, 3}, {23, 32,13, 31}4,
{21, 12}9)

1,2,3), 13,23, 31, 32)4,
12, 21)9)

.4 2 3 1 ({2,3, 1},{21, 12, 31,13}4,
{23, 32}9)

1, 2,3), 12, 13, 21, 31)4,
23,32)9) Min(Dr)

.5 3 1 2 ({3, 1, 2}, {32, 23,12, 21}4,
{31, 13}9)

1,2,3), 12,21, 23, 32)4,
13, 31)9)

.6 3 2 1 ({3,2, 1},{31, 13, 21,12}4,
{32, 23}9)

1, 2,3), 12, 13, 21, 31)4,
23,32)9) Min(Dr)

Tab. 1: Nummerierungstabelle für Dr

Erste Stufe: Für jede Nummerierung von P werden in der Darstellung Dar(P) die
Buchstaben durch die zugehörigen Nummern ersetzt. Es entstehen die Nummern-Darstellungen

Dar(P)).

Zweite Stufe: In jeder Nummern-Darstellung Dar(P)) werden die Elemente innerhalb
der Eckenmengeund innerhalb jeder Metrikrelation lexikographisch,d.h. der Grösse nach,
zu Tupeln geordnet. Es ergeben sich die Kanonisierungen Dar(P))

Dritte Stufe: Aus allen Kanonisierungen wird eine lexikographisch kleinste gewählt. Es
resultiert die minimale Kanonisierung Min(P).

Die minimale Kanonisierung Min(P) kann als eindeutiger Name des durch Dar(P)
bestimmten, koordinaten-freien Polytops aufgefasst werden. Namen dieser Art, welche die
gesamte Information der Struktur in sich tragen, sind in der Chemie n ützlich. Wir nennen
Nummerierungen, die zum Namen Min(P) führen, Minimums-Nummerierungen, oder

formal ausgedrückt:

Definition 8.2. Eine Nummerierung eines Polytops P heisst Minimums-Nummerierung
von P, wenn Dar(P)) Min(P).

In der Nummerierungstabelle für das Dreieck Dr kommt die minimale Kanonisierung
Min(Dr) zweimal vor, und es gibt deshalb zweiMinimums-Nummerierungen, nämlich .4
und .6. Aber nicht nur die minimale, sondern auch die andern Kanonisierungen treten in
der Nummerierungstabellezweimal auf, was mit den Automorphismen von Dr zu tun hat.
Wie man sich leicht klar macht, gilt ganz allgemein für zwei Nummerierungen und µ
eines Polytops P folgende Äquivalenz:

Dar(P)) µ(Dar(P))

a µ-1 ist Automorphismus von P.
8.1)
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DieMenge aller n! Nummerierungen eines n-eckigen Polytops P zerfällt damit in Klassen
mit je gleich vielen Nummerierungen wie Automorphismen. Jede dieser Nummerierungsklassen

kann unter Verwendung von 8.1) zur Bestimmung der Automorphismen benützt
werden; wir arbeiten hier mit der Klasse der Minimums-Nummerierungen. Beim Dreieck
Dr ergeben sich so aus den Minimums-Nummerierungen .4 und .6 die Automorphismen
a1 .-1

4 .4 und a2 .-1
4 .6, oder in Zyklenschreibweise notiert:

a1 a)(b)(c), a2 c)(ab). 8.2)

9 Minimierungsalgorithmus

Beim eben besprochenen Minimierungskonzept werden alle n! Nummerierungen eines
neckigen Polytops in Betracht gezogen. Ein direkt darauf basierender Algorithmus wäre

also exponentiell und für grössere n unbrauchbar. Wir präsentieren nun einen Algorithmus,

der die minimale Kanonisierung und damit verbunden die Minimums-Nummerierungen

generiert, ohne dabei alle n! Nummerierungen abzuarbeiten. Die Erläuterung dieses

Minimierungsalgorithmus geschieht anhand eines fünfeckigen Polyeders, der trigonalen
Bipyramide Bp, deren Ecken auf der Oberfläche eines Würfels der Kantenlänge 2 liegen
Fig. 8). Die Darstellung von Bp sieht wie folgt aus:

Dar(Bp) {a, b,c, d,e}, {cd, dc}1, {ae, ea, de,ed}4, {bc, cb, ce, ec}5,

{ab,ba, ad,da,bd,db}8, {ac,ca}9,{be, eb}12

trigonale Bipyramide Bp

e

b

a

d

c

8

8

8
5

5
1

2

2 3 12

Fig. 8 Fünfeckiges Polyeder im Würfel mit Kantenlänge 2

Der Minimierungsalgorithmus ist rekursiv und funktioniert gemäss einer Algorithmustabelle

Tab. 2) salopp formuliert wie folgt: Beim Schritt 1 werden die zwei Eckenpaare
der ersten Metrikrelation von Dar(Bp) minimiert. Nach r - 1 Schritten 1 < r 5)
liegen Darstellungs-Sequenzen‘ mit lexikographisch kleinsten zugehorigen¨’ ’Minimums-
Sequenzen‘ vor. Beim Schritt r werden diese Darstellungs-Sequenzen durch Hinzufügen
eines Eckenpaars erweitert, und zwar geschieht dies pro Darstellungs-Sequenz mit jedem
noch verbleibenden Eckenpaar derselbenMetrikrelation oder, falls diese schon abgearbeitet

ist, mit jedem Eckenpaar der nächst folgenden Metrikrelation von Dar(Bp). Von den

so resultierenden Darstellungs-Sequenzen werden erneut jene weiter verwendet, die zu

lexikographisch kleinsten Minimums-Sequenzen führen. Bereits nach dem Schritt 5 kann
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hier der Algorithmus abgebrochen werden, da nur noch eine lexikographisch kleinste Mi-nimums-

Sequenz übrig bleibt und allein die Nummer 5 fehlt. Es resultieren eine einzige
Minimums-Nummerierung – der zugehörige Automorphismus a .-1. ist das

Neutralelement – sowie die minimale Kanonisierung:

: a 4,b 5, c 2, d 1,e 3, 9.1)

Min(Bp) 1,2,3,4,5), 12, 21)1, 13,31,34,43)4, 23, 25, 32, 52)5,

14, 15, 41, 45, 51, 54)8, 24, 42)9, 35,53)12

Schritt r Darstellungs-Sequenzen Minimums-Sequenzen
lexikographisch kleinste fett)

1 cd, 12,

dc, 12,

2 cd,dc)1, 12, 21)1,
dc,cd)1, 12, 21)1,

3 cd, dc)1, ae 12, 21)1, 34

cd, dc)1, ea 12, 21)1, 34

cd, dc)1, de 12, 21)1, 23

cd, dc)1, ed 12, 21)1, 32

dc, cd)1, ae 12, 21)1, 34

dc, cd)1, ea 12, 21)1, 34

dc,cd)1, de, 12, 21)1, 13,

dc, cd)1, ed 12, 21)1, 31

4 dc, cd)1, de, ae 12, 21)1, 13, 43

dc, cd)1, de, ea 12, 21)1, 13, 34

dc,cd)1, de, ed, 12, 21)1, 13, 31,

5 dc, cd)1, de, ed,ae 12, 21)1, 13, 31,43

dc,cd)1, de, ed, ea, 12, 21)1, 13, 31, 34,

: d 1,c 2, e 3, a 4
und somit b 5

Tab. 2: Algorithmustabelle für Bp

Auch wenn der Minimierungsalgorithmus hier nicht allgemein formuliert wird, so sollte
das Beispiel seine prinzipielle Funktionsweise genügend verdeutlichen. Der Algorithmus
steht in dieser Arbeit ohnehin nicht im Vordergrund und eine ausführlichereDarlegung für
beliebige Gebilde findet sich in [13]2. Zu klären wäre die Komplexität des Minimierungsalgorithmus

bei der vorliegenden Anwendung auf die Darstellung von Polytopen. Im
Beispiel unserer Bipyramide Bp ist es möglich, ihn vorzeitig abzubrechen. Allgemein sind im
Maximum so viele Schritte erforderlich, wie die Gesamtzahl der Eckenpaare beträgt, also

n(n-1) bei n Ecken, wobei die Anzahl der Darstellungs-Sequenzen pro Schritt schwankt.

2In [13] wird Kanonisierung‘ im Sinne von’ minimaler Kanonisierung‘ verwendet.
’
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10 Symmetrieaspekte

Eine Symmetrieabbildung eines d-dimensionalen Polytops P ist bekanntlich eine Isometrie

des ganzen euklidischen Raumes Rd, die P auf sich selbst abbildet. Im Unterschied
dazu operiert ein Automorphismusvon P nur auf der Eckenmenge X. Welches ist nun der
Zusammenhang zwischen den Symmetrieabbildungen und den Automorphismen?

Satz 10.1. Zu jeder Symmetrieabbildung s eines Polytops P gibt es genau einen
Automorphismus a von P mit a sX und umgekehrt, wobei sX die Einschränkung von s auf
die Eckenmenge X bezeichnet.

Beweis. Eine gegebene Symmetrieabbildung s von P bildet die Eckenmenge X auf sich
selbst ab. Andernfalls müsste nämlich eine Ecke, die höchstens Randpunkt eines
Liniensegmentes von P sein kann, in das Innere eines Liniensegmentes von P übergehen, was
zu Widersprüchen führt. Da nun s jede Eckenverbindung in eine isometrische Eckenverbindung

abbildet, und damit jedes Eckenpaar in eines derselben Metrikrelation übergeht,
liegt mit a sX genau ein Automorphismus von P vor. Umgekehrt gibt es bei gegebenem

Automorphismus a von P mindestens eine Isometrie s mit sX a. Weil aber ein
Polytop d + 1 Ecken in allgemeiner Lage besitzt, ist s eindeutig bestimmt wie bereits
erwähnt, wird eine Isometrie des Rd durch d + 1 Punkte in allgemeiner Lage und deren

Bildpunkte eindeutig festgelegt). Die Isometrie s ist zudem eine Symmetrieabbildung des

ganzen Polytops P, da dieses konvexe Hülle der Eckenmenge X ist. Es sei hinzugefügt,
dass mit der eineindeutigen Zuordnung zwischen den Automorphismen und den
Symmetrieabbildungen ein Gruppenisomorphismus vorliegt.

Im Beispiel unseres gleichschenkligen Dreiecks Dr ist die eineindeutige Zuordnung
zwischen den Automorphismen 8.2) und den Symmetrieabbildungen evident: Zu a1 gehört
die Identität und zu a2 da c Fixelement ist) eine Achsenspiegelung. Bei der Bipyramide
Bp entspricht dem Neutralelement als einzigem Automorphismus die Identität und Bp
ist deshalb asymmetrisch. Im Allgemeinen gibt jedoch ein vorliegender Automorphismus
keinen Aufschluss über die Art der zugehörigen Symmetrieabbildung. Das folgende
Beispiel zweier Polygone mag dies illustrieren. Wir betrachten einerseits das gleichschenklige
Trapez Tr und andererseits das Parallelogramm Pa Fig. 9). In beiden Fällen lassen sich
die Minimums-Nummerierungen und die Automorphismen von Hand ermitteln:

Tr : .1 : a 4, b 3, c 1, d 2, .2 : a 3, b 4,c 2,d 1,

a1 a)(b)(c)(d), a2 ab)(cd); 10.1)

Pa : .1 : a 4,b 1, c 2, d 3, .2 : a 2, b 3,c 4, d 1, 10.2)

a1 a)(b)(c)(d), a2 ac)(bd). 10.3)

Obschon die durch 10.1) und 10.3) bestimmten Automorphismengruppen von Tr und
Pa isomorphe Permutationsgruppen sind, zeigt sich bei den Symmetrieabbildungen ein
Unterschied: Bei Tr gehört zu a2 eine Achsen-, bei Pa jedoch eine Punktspiegelung.
Insbesondere geht demnach aus der Struktur der beiden Automorphismengruppen nicht
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d 7 c

32

5
116

a b
7

5

d 4 c

5 5
65 65

a b10

gleichschenkliges Trapez Tr Parallelogramm Pa

Fig. 9 Achirales und chirales Polygon mit isomorpher Automorphismengruppe

hervor, dass Tr achiral und Pa chiral ist. Im Unterschied dazu kann bei der Bipyramide
Bp aus dem Vorhandensein nur eines Automorphismus, dem Neutralelement, auf die Chiralit

ät geschlossen werden.

Als Chiralitäts-Test bezeichnen wir ein Verfahren, das prüft, ob ein Polytop chiral ist. Ein
Chiralitäts-Test besteht zunächst aus einem Automorphismen-Test und, falls dieser nicht
ausreicht, zusätzlich aus einem Simplex-Test, wie er im übernächsten Abschnitt 12
besprochen wird. Beim Automorphismen-Test versucht man allein aufgrund der Struktur der
Automorphismengruppe zu entscheiden, ob Chiralität vorliegt. Wie wir soeben anhandder
einfachen Polygone Tr und Pa gesehen haben, gibt es Fälle, wo dies nicht möglich ist.
Interessant ist die Frage, welche notwendigen und hinreichenden Bedingungen erfüllt sein
müssen, damit ein Automorphismen-Test zum Ziel führt. Wir kennen die vollständige
Antwort nicht, nennen aber einen Satz, der eine einfache hinreichende Bedingung beinhaltet:

Satz 10.2. Ein Polytop ist chiral, wenn die Ordnung seiner Automorphismengruppe ungerade

ist.

Beweis. Wir zeigen, dass die Ordnung der Automorphismengruppe eines achiralen
Polytops gerade ist: Die Automorphismengruppe und die Symmetriegruppe eines Polytops
haben dieselbe Ordnung Satz 10.1). Letztere ist aber bei einem achiralen Polytop gerade,

weil die eigentlichen Symmetrieabbildungeneine Untergruppe vom Index 2 bilden und es

deshalb gleich viele eigentliche wie uneigentliche Symmetrieabbildungen gibt.

11 Orientierte Simplexe

In diesem Abschnitt befassen wir uns mit orientierten Simplexen, um damit den erwähnten

Simplex-Test vorzubereiten.

Definition 11.1. Ein d-dimensionales Polytop mit d + 1 Ecken heisst ein d-dimensionales
Simplex. Ist zusätzlich eine Reihenfolge der Ecken festgelegt, so spricht man von einem
orientierten d-dimensionalen Simplex. Wir nennen es kurz o-Simplex, bezeichnen es mit
S und schreiben die Ecken zur Festlegung der Reihenfolge in ein d + 1)-Tupel, etwa
S x0,x1, xd

Weshalb wird von orientierten bzw. o-Simplexen gesprochen? Aufgrund der Eckenreihenfolge

lassen sich alle koordinaten-abhängigen o-Simplexe gleicher Dimension in
bekannter Weise mit Hilfe von Determinantenvorzeichen orientieren, und zwar auch dann,
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wenn sie im metrischen Sinne achiral sind. Dazu betrachtet man zu einem o-Simplex
S x0, x1, xd die d×d-Matrix MS deren i -te Zeile der Komponentenvektor-x-0.xi
1 i d) ist. Bezeichnet D die Determinantenfunktion, so sei det(S) := D(MS). Es

gilt det(S) 0, da ein o-Simplex per definitionem nicht entartet ist. Man definiert nun:
Zwei d-dimensionale o-Simplexe S und T sind gleich orientiert, falls det(S) und det(T
das gleiche Vorzeichen haben, sonst verschieden orientiert.

Ob zwei o-Simplexe S x0, x1, xd und T y0, y1, yd gleich oder
verschieden orientiert sind, ist auch im Determinantenvorzeichen einer einzigen d×d-Matrix
MS,T verborgen, welche die Abstände zwischen S und T berücksichtigt:

MS,T

m11 m12 · ·· m1d

m21 m22 · ·· m2d

md1 md2 · ·· mdd

11.1)

mit mij 1/2 · x0y j
2
+ xi y02 - xi yj

2 - x0y0 2 für i, j {1,2, d}.

Setzt man det(S, T := D(MS,T so gilt:

Satz 11.1. Zwei d-dimensionale o-Simplexe S und T sind genau dann gleich orientiert,
wenn det(S,T positiv ist.3

Beweis. Wir zeigen, dass die Beziehung

det(S, T det(S)det(T 11.2)

erfüllt ist, der Satz ist dann bewiesen. Dazu bilden wir zunächst dasMatrixproduktMSM*T
wobei M*T die transponierte Matrix von MT bezeichnet. Für das i j)-teElement pi j dieses

Produkts resultiert ein Skalarprodukt, das sich u.a. mit Hilfe der Vektoridentität -.ab ·-ac

1/2 · ab
2

+ ac2 - bc
2

Kosinussatz) umformen lässt:

pi j -x-0.xi ·-y-0.y j -x-0.xi · -x-0.y j --x-0.y0 -x-0.xi ·-x-0.yj --x-0.xi · -x-0.y0

1/2 · x0xi 2
+ x0y 2- xi y 2j j - 1/2 · x0xi2 + x0y0 2- xi y0 2

1/2 · x0y j
2
+ xi y0 2- xi y j

2 - x0y02

Der letzte Term zeigt, dass pi j mi j gemäss 11.1) und somit MS,T MSM*T. Damit
ergibt sich schliesslich:

det(S, T D(MS,T D(MSM*T D(MS)D(MT det(S)det(T

3Die Idee für diesen Satz stammt aus einer unveröffentlichten Arbeit vonDimitrios Pazis National Technical
University of Athens), die er im Rahmen des unter Fussnote 1 erwähnten Nationalfondsprojekts geschrieben hat.
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Es resultiert auch eine Beziehung über den Betrag von det(S, T ):

Korollar 11.1. Bezeichnen AS und AT die Inhalte zweier d-dimensionaler o-Simplexe S

und T so gilt:
| det(S, T )| d!)2AS AT 11.3)

Beweis. 11.3) folgt unmittelbar, wenn man in 11.2) beidseitig den Betrag bildet und
dabei benützt, dass bekanntlich | det(S)| d!AS bzw. | det(T)| d!AT ist.

Wir illustrieren die Resultate mit zwei koordinaten-freien o-Dreiecken Fig. 10), nämlich
S x0, x1, x2) und T y0, y1, y2). Zur Bestimmung der Matrix MS,T gemäss 11.1)
werden die folgenden Abstandsquadrate benötigt:

x0y02 194, x0y12 169, x0y2 2 625,

x1y02 74, x1y12 49, x1y2 2 361,

x2y02 101, x2y12 116, x2y2 2 500.

Damit ergibt sich MS,T
0 72

-20 16
und daraus det(S, T 1440.

y0

S T

o-Dreiecke S und T

x2

6

13
5

7

5 5

x0 12x1 y1 y2

Fig. 10 Gleichorientierte zweidimensionale o-Simplexe

Da die Determinante det(S,T positiv ist, sind wegen Satz 11.1 die beiden o-Dreiecke S

und T gleich orientiert. Ihr Betrag lässt sich auch unter Verwendung von Korollar 11.1
berechnen: Aus d 2, AS 12 und AT 30 erhält man | det(S, T )| 1440. Die
Determinante det(S, T selbst hat den Wert 1440 bei gleicher und -1440 bei verschiedener

Orientierung der o-Dreiecke S und T unabhängig von ihrer gegenseitigen Lage.
Es sei beigefügt, dass die beiden Vorzeichen von det(S,T eine Folge von Satz 3.1 sind,
und zwar in einem erweiterten Sinne: Das metrisch achirale Dreieck S erhält nämlich
seine Chiralität erst durch die unterschiedlichen Individualisierungen der Ecken. Auf diesen

im Zusammenhang mit chemischen Modellvorstellungen wichtigen Sachverhalt wird
hier nicht weiter eingegangen.

12 Chiralität von Polytopen

Wie sieht nun der Simplex-Test aus, wie lässt sich also feststellen, ob ein Polytop chiral
ist, wenn der Automorphismen-Test nicht ausreicht? Wir arbeiten mit einem o-Simplex
S x0, x1, xd eines d-dimensionalen Polytops P, d.h. die Ecken von S sind jetzt
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speziellEcken von P. Nebst S betrachten wir für einenAutomorphismusa von P auch das

isometrische o-Simplex a(S) a(x0), a(x1), a(xd von P. Die beiden o-Simplexe
S und a(S) sind genau dann gleich orientiert, wenn die zu a geh örige Symmetrieabbildung

eigentlich ist, und zwar unabhängig vom betrachteten o-Simplex S von P. Beim
Simplex-Test dürfen wir wegen Satz 10.2 von einem P ausgehen, dessen Ordnung p der
Automorphismengruppe gerade ist. Und weil bei chiralem P alle p Symmetrieabbildungen

und bei achiralem P deren p/2 eigentlich sind, ergibt sich schliesslich mit Benützung
von Satz 11.1:

Simplex-Test. Es sei P ein Polytop mit gerader Ordnung p der Automorphismengruppe.
Für den Chiralitätsnachweis wählt man von P ein o-Simplex S sowie p/2 vom Neutralelement

verschiedene Automorphismen a und zeigt, dass die Determinante det(S, a(S)) stets

positiv ist.

Bemerkungen

1) Bei koordinaten-abhängigem P ist es zweckmässig, det(S, a(S)) nicht über die Matrix

MS,a(S) gemäss 11.1), sondern mit det(S) und det(a(S)) zu berechnen.
Aufgrund von 11.2) gilt ja det(S,a(S)) det(S) det(a(S)).

2) Häufig ist es nicht notwendig, p/2 vom Neutralelement verschiedene Automorphis¬
men zu betrachten. Liegt beispielsweise eine zyklische Automorphismengruppe vor,
so kann man sich auf ein erzeugendes Element beschränken. Auf die Frage, wie
Beschränkungen dieser Art im allgemeinen Fall aussehen, wird hier nicht eingegangen.

Der Simplex-Test soll jetzt bei den koordinaten-freien Polygonen Tr und Pa durchgef ührt
werden. In beiden Fällen wählen wir das o-Dreieck S a,b,c) siehe Fig. 9). Mit dem
einzigen zu betrachtenden Automorphismus a2 von 10.1) bzw. 10.3) ergibt sich durch
Rechnung:

Tr : det(S,a2(S)) -1600, also Tr achiral,

Pa : det(S,a2(S)) 784, also Pa chiral.

Da 1-dimensionale Polytope – es handelt sich um Strecken – immer achiral sind, ist der
Chiralitätsbegriff erst bei Polygonen, Polyedern und Polytopen höherer Dimension von
Interesse. Wir wollen an dieser Stelle kurz ein 4-dimensionales Polytop hinsichtlich Chiralit

ät untersuchen. Das koordinaten-abhängige Polytop, es sei mit Pt bezeichnet, ist
definiert als konvexe Hülle der folgenden 7 Punkte:

a 3, 2, 5, 3), b 3, 2,1,1), c 3, 6,1,3), d 4, 4, 5, 4),
e 7, 3, 3, 4), f 5, 6,2,4), g 7, 2,1,3).

Man verifiziert: S a,b, c,d, e) ist wegen det(S) 0 nicht entartet, d.h. die 5 Punkte a,
b, c, d und e befinden sich in allgemeiner Lage; mit Pt liegt demnach ein 4-dimensionales
Polytop vor. Zudem gehören alle 7 Punkte zur Oberfläche einer 4-dimensionalen Kugel

mit Mittelpunkt 3, 2, 1, 6) und Radius 5; sie bilden deshalb die Ecken von Pt. Aus
der Darstellung von Pt ergeben sich mit dem Minimierungsalgorithmus4 die Minimums-

4Das hier verwendete Programm stammt von Ralf Gugisch Universität Bayreuth).



26 K. Wirth und A.S. Dreiding

Nummerierungen. Und weil drei Minimums-Nummerierungen und somit auch drei
Automorphismen vorhanden sind, ist Pt schon aufgrund des Automorphismen-Tests chiral
Satz 10.2); es braucht den Simplex-Test nicht. Die Minimums-Nummerierungen sehen

wie folgt aus:

.1 : a 2,b 7, c 4, d 1,e 5, f 3, g 6,

.2 : a 4,b 7, c 6, d 3,e 1, f 5, g 2, 12.1)

.3 : a 6, b 7, c 2, d 5, e 3, f 1,g 4.

13 Orientierung chiraler Polytope

Auf der Grundlage des Minimierungskonzepts soll nun eine Orientierung der chiralen
Polytope gleicher Dimension definiert werden. Dazu gehen wir von einer Minimums-
Nummerierung eines chiralen d-dimensionalen Polytops P aus. Für jedes o-Simplex
S x0, x1, xd von P denke man sich das zugehörige nummerierte o-Simplex

S) x0), x1), xd Jenes o-Simplex S, das zum lexikographisch kleinsten

nummerierten o-Simplex S) führt, nennen wir ein Referenzsimplex von P und
bezeichnen es mit RefP. Für jede Minimums-Nummerierung von P lässt sich so ein
Referenzsimplex RefP angeben. Da aber alle Referenzsimplexe RefP durch Automorphismen
auseinander hervorgehen, sind sie isometrisch und aufgrund der Chiralität von P gleich
orientiert, was folgende Definition ermöglicht:

Definition 13.1. Zwei chirale d-dimensionale Polytope P und Q sind gleich orientiert,
wenn zwei Referenzsimplexe RefP und RefQ gleich orientiert sind, sonst verschieden
orientiert.

Bemerkungen

1) Eine Orientierung beinhaltet immer eine Willkür. Bei unserem Verfahren werden,
ausgehend von der Darstellung eines Polytops mit einer gewählten Reihenfolge der
Metrikrelationen, zwei Minimierungen vorgenommen: Eine erste bei der Wahl der
Nummerierungsklasse und eine zweite bei der Wahl der Referenztupel bezüglich
dieser Klasse.

2) Nach E. Ruch [10] gibt es spezielle Molekülklassen mit derMöglichkeit einer Orien¬

tierung von physikalischer Relevanz‘, insofern als bei stetiger Veränderung
physikalischer

’Parameter auf dem Weg von einer Chiralitätsklasse zur andern immer ein
achiraler Zustand durchlaufen werden muss. In entsprechender Weise lässt sich mit
Hilfe von Stetigkeit bei speziellen Polytopklassen eine Orientierung von geometrischer’Relevanz‘ definieren.

Bei koordinaten-abhängigen chiralen d-dimensionalen Polytopen ist die analytische
Umsetzung der Definition 13.1 mittels eines Orientierungssinns naheliegend: Ist RefP ein
Referenzsimplex eines solchen Polytops P, so heisst P positiv orientiert falls det(RefP) > 0
und negativ orientiert falls det(RefP) < 0. Bei den Wahrnehmungsräumen der Dimensionen

d 2 und d 3 lässt sich für die Referenzdreiecke bzw. -tetraeder in bekannter
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Weise ein anschaulicher Orientierungssinn verwenden, nämlich rechts orientiert
Gegenuhrzeigersinn‘

’bzw. Rechte-Hand-Regel‘) und links orientiert. Setzt man bei der
Determinantendefinition ’wie ublich¨ ein rechts orientiertes Koordinatensystem voraus, so liefern
positiv und rechts orientiert und somit negativ und links orientiert dieselben Chiralit¨
atsklassen von Polygonen bzw. Polyedern. Erwähnt sei noch, dass auch ohne Verwendung
eines Orientierungssinns entschieden werden kann, ob zwei chirale d-dimensionale Polytope

P und Q gleich oder verschieden orientiert sind, vorausgesetzt man kennt die gegenseitige

Lage zweier Referenzsimplexe RefP und RefQ. Dies geschieht dann anhand des

Vorzeichens von det(RefP RefQ) gemäss Satz 11.1.

Von den bisher betrachteten Polytopen sind drei chiral, nämlich das Parallelogramm Pa
d 2), die Bipyramide Bp d 3) und das Polytop Pt d 4). In diesen drei Beispielen

ergibt sich als Orientierungssinn:

Pa : Zwei Minimums-Nummerierungen .1 und .2 10.2), wir wählen .1:
RefPa b, c,d), also Pa rechts vgl. Fig. 9) bzw. positiv orientiert;

Bp : Nur eine Minimums-Nummerierung 9.1):

RefBp d,c, e,a), also Bp links vgl. Fig. 8) bzw. negativ orientiert;
Pt : Drei Minimums-Nummerierungen .1, .2 und .3, wir wählen .2 12.1):

e,g, d,a, f und e, g,d, a,c) keine Referenzsimplexe da entartet),

RefPt e, g,d,a, b) mit det(RefPt 8, also Pt positiv orientiert.

14 Polygone und Polyeder

Die speziellen Polytope wir meinen nach wie vor konvexe), die Polygone und Polyeder,
lassen eine Reduktion der Eckenpaare bei den Darstellungen zu, ohne dass sich die mit
Hilfe des Minimierungsalgorithmus generierte Automorphismengruppe ändert. Bei einem
n-eckigen Polygon oder Polyeder kann nämlich die quadratische Anzahl von Eckenpaaren

n(n-1) theoretisch auf eine lineare Anzahl gesenktwerden. Bei den folgendenAusführungen

bleibt vieles nur angedeutet.

Zunachst¨ betrachten wir die n-eckigen Polygone.Ein solches Polygon ist bis auf Isometrie
bereits eindeutig festgelegt durch die Kantenmetrik‘ Abstande¨ zwischen je zwei auf dem’Rand aufeinanderfolgenden Ecken) und die Erstdiagonalmetrik‘ Abstände zwischen je’einer Ecke und der auf dem Rand übernächsten). Der Beweis dieser Aussage erfolgt
induktiv und sieht im Wesentlichen so aus: Beginnend mit einem Randdreieck bis auf
Isometrie bestimmtes Dreieck bestehend aus zwei aufeinanderfolgenden Kanten und einer
Erstdiagonalen) ist jeweils pro Induktionsschritt, unter Berücksichtigung der Konvexität,

das nächste Randdreieck anzufügen. Bei der Darstellung müssen so für n 5 nur 4n
Eckenpaare pro Abstand wie üblich beide Paare) angegeben werden. Es ist naheliegend,
die Kanten- und Erstdiagonalmetrikmit gesonderten Metrikrelationen zu erfassen. Im
Spezialfall eines regulären Polygons genügt die Angabe der Kantenmetrik, und die Darstellung

hat dann eine einzige Metrikrelation mit 2n Eckenpaaren.

Bei Polygonen kann man sich beim Chiralitäts-Test auf den Automorphismen-Test
beschränken, denn als Symmetrie- und damit Automorphismengruppen kommen nur die
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zyklische Gruppe Cm m 1) bei chiralen und die Diedergruppe Dm m 1) bei
achiralen Polygonen in Frage. Einzige Ausnahme bildet die Gruppenordnung 2, wo C2 und
D1 isomorph sind und deshalb ein Simplex-Test notwendig sein kann, wie anhand der
Polygone Tr und Pa dargelegt wurde siehe Abschnitt 10).

Was die n-eckigen Polyeder betrifft, so beruht die Reduktion der Eckenpaare auf dem
sogenannten Starrheitssatz von Cauchy‘ [3] aus dem Jahre 1813. Anschaulich formuliert’besagt dieser Satz Folgendes: Denkt man sich bei einem immer noch konvexen) Polyeder
die Randpolygone aus Metallplatten gefertigt und die Kanten mit Scharnieren versehen,
so ist das Polyeder starr. Oder praziser¨ formuliert: Ein Polyeder ist durch die Randmetrik‘

’– das, was man von aussen sieht – bis auf Isometrie eindeutig festgelegt bei der
Bipyramide Bp in Fig. 8 wäre somit die Angabe der Länge der im Innern verlaufenden
Eckenverbindung ac überflüssig). Bei der Randmetrik genügt es, nebst der Kantenmetrik
die Erstdiagonalmetrik aller Randpolygone zu erfassen, auch hier mit gesonderten
Metrikrelationen. Mit Hilfe des Eulerschen Polyedersatzes lässt sich beweisen, dass so bei der
Darstellung stets weniger als 10n Eckenpaare anzugeben sind. In Spezialfällen, etwa bei
einem regulären oder halbregulären Polyeder, ist sogar eine Beschränkung auf die Kantenmetrik

möglich.

Im Unterschied zu Polygonen kann bei Polyedern fur¨ den Chiralitats-¨ Test ein Simplex-
Test erforderlich sein. Arbeitet man koordinaten-frei‘, so verlangt der Simplex-Test im’Allgemeinen die Kenntnis von Abständen zwischen Ecken, deren Verbindungsstrecken
durch das Innere des Polyeders laufen; die Randmetrik ist nicht ausreichend.

Wie aber bestimmt man die Eckenpaare,die bei der reduziertenDarstellung von Polygonen
und Polyedernzu verwendensind?Im Normalfall erfordert das Aussortieren dieser Eckenpaare

einen zusätzlichen Algorithmus, was den Nutzen der Reduktion in Frage stellt. Es
sei noch hinzugefügt, dass durch die Definition 13.1 eine andere Orientierung von chiralen
Polygonen bzw. Polyedern festgelegt wird, wenn man anstelle der vollen eine reduzierte
Darstellung benützt.

15 Schlussbemerkungen

Es gibt eine Vielzahl weiterer interessanter Themen im Zusammenhang mit Chiralität. So

hat beispielsweise die Grenze zwischen lebender und nicht-lebender Natur etwas mit Chiralit

ät zu tun. Bei den Molekülen des Lebens, etwa bei den Aminosäuren als Bausteine von
Proteinen, kommt gewöhnlich nur eines der beiden Enantiomeren vor. Für dieses Phänomen

der sogenannten Homochiralität gibt es verschiedene Erklärungsversuche, die unter

anderem auch auf statistische Probleme führen [11]. Mathematisch reizvoll ist auch
die Frage nach einem Chiralitätsmass, einem Mass für Abweichung von Achiralität. Ein
interessanter Beitrag dazu stammt von der Arbeitsgruppe um den Chemiker K. Mislow
Dr. h.c. 2004 der Universität Zürich), die mit dem geometrischen Konzept der Hausdorff-

Metrik arbeitet. In [2] werden in einer Übersicht Beiträge zu diesem Thema diskutiert.

Kant hat unseresWissens als erster das Phänomen der Chiralität mit Hilfe von enantiomeren

Händen sorgfältig beschrieben. Ganz abgesehen von der grossen praktischen Bedeutung,

etwa in der modernen Chemie, ist Chiralität ein reizvolles Thema im Grenzbereich
von Philosophie, Mathematik und Naturwissenschaft.



Kants Hand, Chiralität und konvexe Polytope 29

Literatur

[1] Boissonnat, J.-D.; Yvinec, M.: Algorithmic Geometry. Cambridge Univ. Press, Cambridge 1998.

[2] Buda, A.B.; Auf der Heyde, T.; Mislow, K.: Quantifizierung der Chiralität. Angew. Chem. 104 1992),
1012–1031.
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