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Kants Hand, Chiralitat und konvexe Polytope

Karl Wirth und André S. Dreiding

Karl Wirth studierte an der ETH Zirich Mathematik, promovierte bei M. Jeger und
arbeitete mit A.S. Dreiding zusammen. Danach war er als Mathematiklehrer an der
Kantonalen Maturitatsschule fiir Erwachsene in Ziirich titig. Seit seiner Pensionierung
beschiftigt er sich wieder vermehrt mit Themen der mathematischen Chemie.

André 8. Dreiding promovierte an der Universitat Michigan und ist Professor emeritus
fiir Organische Chemie an der Universitit Ziirich. Mit dem Ziel, geometrische Modell-
vorstellungen von Molekiilen zu systematisieren, startete er 1970 ein interdisziplinares
Forschungsprojekt unter Mitwirkung von Informatikern und Mathematikern.

manche meinen
lechts und rinks
kann man nicht
velwechsern,
werch ein illtum!

Ernst Jand!

Handstudie von Leonardo da Vinci

Worin unterscheidet sich eine rechte von einer linken Hand, trifft doch jede Figenschaft
der einen Hand auch auf die andere zu? Diese von Kant gestellte Frage und die von
ihm gegebene Antwort waren immer wieder Anlass zu Kontroversen iiber die Natur
des Raumes. Einen kldrenden Beitrag lieferte der Mathematiker Reidemeister, dessen
Aussagen in dieser Arbeit unter Verwendung eines in der Chemie wichtigen Begriffs
interpretiert werden, ndmlich der Chiralitét. Im Weiteren geht es um die Tragweite des
aus dieser Deutung hervorgehenden Phiinomens der Diachiralitdt und um das Bilden
von Chiralititsklassen chiraler Objekte durch Orientierung. In einem zweiten Teil wer-
den die besprochenen Chiralitdtsaspekte auf konvexe Polytope angewendet, wobei u.a.
ein Minimierungsverfahren und ein darauf basierender Algorithmus wesentlich sind.
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1 Kants Paradoxon

Immanuel Kant (1724-1804) gilt als der grosse Philosoph, der sich mit den Moglich-
keiten und Grenzen der menschlichen Vernunft befasste. Viel ist im Kant-Jahr 2004, in
dem sich sein Todestag zum zweihundertsten Mal jahrte, tiber sein philosophisches Werk
geschrieben worden. Nach wie vor wenig bekannt sind seine mehr mathematisch-natur-
wissenschaftlichen Schriften, die vor allem aus der frithen Schaffensperiode stammen. So
beschiftigte er sich in einer Abhandlung mit dem Titel Von dem ersten Grunde des Unier-
schiedes der Gegenden im Raum [6] aus dem Jahre 1768 mit ¢inem Phidnomen, das in den
modernen Naturwissenschaften eine herausragende Rolle spielt und heute mit dem Begriff
Chiralitét (griech. cheir = Hand) umschrieben wird. In dieser Abhandlung ist zu lesen:

»Die rechte Hand ist der linken dhnlich und gleich, und, wenn man blof auf
eine derselben allein sieht, auf die Proportion und Lage der Theile unter ei-
nander, und auf die Grifie des Ganzen, so muf3 eine vollstindige Beschreibung
der einen, in allen Stiicken auch von der anderen gelten. (... )

Weil aber gar kein Unterschied in dem Verhdlinisse der Theile derselben unter
sich Statt findet, sie mag eine Rechte oder Linke seyn, so wiirde diese Hand in
Ansehung einer solchen Eigenschaft ginzlich unbestimmt seyn, d.i. sie wiirde
auf jede Seite des menschlichen Korpers passen, welches unmdglich ist.”

Kant stellt fest, dass zwei als verschieden empfundene Objekte, etwa eine rechte und eine
linke Hand, (idealisiert) in ihren metrischen Figenschaften vollstidndig iibereinstimmen
konnen: Jeder bei der einen Hand gemessene Abstand kann entsprechend auch bei der
andern gemessen werden. Heute sagt man, die beiden Hénde seien isometrisch. Kant for-
muliert dann ein Paradoxon: Weil die beiden Hénde isometrisch sind, miisste jede zu bei-
den handlosen Korperhilften passen, die (idealisiert) ebenfalls als isometrische Objekte
anzusehen sind. Dies wiirde aber der Erfahrung widersprechen, wonach eine Hand nur
zu einer Korperhilfte passt. Wie hat nun Kant versucht, diesen Widerspruch aufzukliren?
Wir zitieren:

LES ist hieraus klar: daf nicht die Bestimmungen des Raumes Folgen von den
Lagen der Theile der Materie gegen einander, sondern diese Folgen von je-
nen seva, und daf also in der Beschaffenheit der Korper Unierschiede ange-
troffen werden kiinnen, und zwar wahre Unterschiede, die sich lediglich auf
den absoluten und urspriinglichen Raum beziehen; weil nur durch ihn das
Verhdlinifs korperlicher Dinge moglich ist, und dap, weil der absolute Raum
kein Gegensiand einer dufseren Empfindung, sondern ein Grundbegriffist, der
alle dieselbe zuerst moglich macht, wir dasjenige, was in der Gestalt eines
Korpers lediglich die Beziehung auf den reinen Raum angehet, nur durch die
Gegenhaltung mit anderen Korpern vernehmen konnen.”

Dieser schwer lesbare Text beinhaltet nach unserem Verstindnis, dass es flir den Unter-
schied isometrischer Objekte von der Art unserer beiden Hidnde keinen in den Objekten
selbst liegenden Grund geben kinne. Dieser miisse deshalb ausserhalb der Objekte zu fin-
den sein. Kant schreibt diesen Unterschied einer Raumeigenschaft zu, die sich nicht auf
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die gegenseitige Lage der Teile, d.h. auf Abstinde, zuriickfiihren ldsst. Er bezeichnet den
Raum mit dieser Figenschaft als ,absolut®; in Bezug zu ihm seien eine rechte und eine
linke Hand unterschiedlich. Damit stellt sich Kant auf die Seite Newtons, der ein gutes
halbes Jahrhundert friiher, in einem Disput mit Leibniz, ebenfalls einen absoluten Raum
mit ewig fixen Orten postulierte. Nach Leibniz’scher Auffassung hingegen konnen Orte
erst durch Beziige festgelegt sein.

Der Standpunkt von Leibniz setzte sich nach und nach durch, und die eher religios beein-
flussten Vorstellungen vom absoluten Raum wichen bis zum zwanzigsten Jahrhundert zu-
nehmend einer logisch-mathematischen Argumentation. Verschiedentlich haben sich Ma-
thematiker mit der Kant’schen Problematik beschaftigt. Es war dann aber vor allem K. Rei-
demeister, der sich ausfiihrlich mit Kants Paradoxon auseinandersetzte und Argumente ge-
gen seine Schlussfolgerungen lieferte. Er legte sie in seinem 1957 veréffentlichten Buch
Raum und Zeit [9] dar. Reidemeister lehrte 1925-1933im ,Kant’schen® Konigsberg, wurde
1934 nach Marburg berufen und war ab 1955 in Gottingen tédtig. Seine Forschungen bezo-
gen sich vor allem auf die Geometrie, wobei er sich insbesondere fiir deren Grundlagen, die
kombinatorische Topologie und die Knotentheorie interessierte. Bevor wir uns mit Reide-
meisters Uberlegungen befassen, soll zunichst das zugrunde liegende Phinomen erliutert
werden, ndmlich die Chiralitit.

2 Chiralitat

Der Chiralitdtsbegriff stammt aus den Naturwissenschaften, insbesondere aus der Chemie.
In der Mathematik ist er kaum geldufig und kommt auch im Buch von Reidemeister nicht
vor, obschon sich sein Resultat damit in prignanter Weise interpretieren 1dsst. Dass die
Chiralitit in der Mathematik bis anhin nur wenig Beachtung gefunden hat, erstaunt umso
mehr, als es sich im Prinzip um einen rein geometrischen Begriff handelt. Mit Chiralitat ist
eine Reihe reizvoller Probleme verbunden, die ein grosses Anwendungspotential aufwei-
sen. Dieser Artikel mochte dazu beitragen, hier eine interdisziplindre Liicke zu schliessen.
Bei den folgenden Ausfithrungen lassen wir uns ganz von der Anschauung leiten.

Ias Wort Chiralitit wurde erstmals 1893 vom britischen Physiker Lord Kelvin bentitzt,
fand aber erst etwa ab 1960 geldufige Verwendung. Kelvin definierte wie folgt: ,Ich nenne
eine geometrische Figur oder auch Punktmenge chiral, oder sage sie habe Chiralitdit,
wenn sie nicht mit ihrem Spiegelbild zur Deckung gebracht werden kann (... ).“ Unter der
Formulierung ,zur Deckung bringen® versteht Kelvin stillschweigend ,durch eine eigent-
liche Bewegung zur Deckung bringen®, d.h. durch eine Rotation, Translation oder deren
Verkniipfungen (Schraubungen).

Die einfachsten (rdumlichen) Figuren, bei denen Chiralitdt moéglich ist, bestehen aus vier
nicht in einer Ebene liegenden Punkien; sie legen ein Tetraeder fest (FFig. 1). Der Leser
tiberzeugt sich leicht, dass gemiss der Kelvin’schen Definition das Tetraeder 17 chiral ist,
denn beim Versuch, 77 durch Bewegung mit seinem Spiegelbild zur Deckung zu bringen,
ist bestenfalls eine Ubereinstimmung von vier Kanten (mit den Ldngen @) zu erreichen,
die beiden Kanten mit den von a verschiedenen Ldngen b und ¢, b # ¢, sind dann aber
falsch zugeordnet. Das Tetraeder 7, hingegen ist nicht chiral; man sagt es sei achiral.

In der Ebene wird Chiralitit analog tUber die Spiegelung an einer Geraden definiert. Und
mit Hilfe der Spiegelung an einer (d —1)-dimensionalen Hyperebene 14sst sich der Begriff
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Tetraeder T, \ Spiegelbild Tetraeder T, \ Spiegelbild

Fig. 1 Chirale und achirale Figur und deren Spiegelbilder im Raum

problemlos auf beliebige d-dimensionale euklidische Riume R? mit d > 1 ausdehnen,
Es muss aber betont werden, dass die Chiralitit einer Figur von der Dimension des Fin-
bettungsraums abhingt. Eine in der Ebene chirale Figur ist im Raum achiral, denn sie
kann leicht durch eine rdumliche Bewegung mit ihrem Spiegelbild zur Deckung gebracht
werden. Oder allgemein formuliert: Eine im R? chirale Figur verliert im R4+ ihre Chi-
ralitdt. Zwei chirale spiegelbildliche Figuren oder zwei Figuren, die je durch eigentliche
Bewegungen aus solchen hervorgehen, werden als enantiomer (manchmal enantiomorph)
bezeichnet.

Asymmetrische Figuren sind stets chiral, aber nicht umgekehrt. Eine Figur ist genau dann
chiral, wenn sie nur eigentliche, also keine uneigentlichen Symmetrieabbildungen (Deck-
abbildungen) besitzt. Bei chiralen Figuren der Ebene etwa konnen deshalb als Symme-
trieabbildungen Rotationen und Translationen vorhanden sein (Fig. 2), jedoch keine
Schub- oder (als Spezialfall) Achsenspiegelungen.

Chirale rotationssymmetrische Figur Chirale translationssymmetrische Figur
(beidseitig unbegrenzt fortgesetztes Band)

Fig. 2 Chirale Figuren der Ebene mit Symmetrie

3 Reidemeisters Kritik

Nach dieser kurzen Darlegung des Chiralititsbegriffs kehren wir zuriick zum Kant’schen
Paradoxon. Mit welchen Argumenten tritt nun der Mathematiker Reidemeister dem Phi-
losophen Kant entgegen? Bei Reidemeister ist zu lesen (Zitat): ,Die Axiome der Eukli-
dischen Geometrie lassen sich als Aussagen iiber Abstinde von Punkten formulieren, je-
der geometrische Satz ist gleichwertig mit einer Aussage iiber Abstlinde von Punkten und
Leibniz hatte recht, die geometrischen Ligenschaften der Dinge mit der Lage der Teile der
Dinge gleichzuseizen.” Insbesondere ldsst sich deshalb, und hier iibt Reidemeister Kritik



12 K. Wirth und A.S. Dreiding

an Kants Argument fiir den absoluten Raum, der Unterschied enantiomerer Figuren auf
Abstinde zurtickfithren. Wir wollen nicht die mathematischen Gedankengénge nachvoll-
zichen, die Reidemeister zu diesem Schluss fiihren, sondern deuten sein Resultat mit Hilfe
des Chiralitdtsbegriffs.

Gegeben seien drei chirale Figuren, zwei davon enantiomer; sie seien mit A, A’ (z.B. bei
Kant die beiden Hiande) und B (z.B. bei Kant eine Korperhilfte) bezeichnet. Beim Ver-
gleich der Abstinde zwischen A und B mit den Abstidnden zwischen A’ und B zeigt sich
nun ein Unterschied. Wir prézisieren dies vorerst anhand eines Beispiels in der Ebene, das
zugleich den anschliessenden Satz 3.1 illustrieren soll: Betrachtet man die dreipunktigen
chiralen Figuren A = {a1, as, a3}, A’ = {a}, a5, al} und B = {b1, b, b3}, die je die Ecken
eines ungleichseitigen Dreiecks bilden (Fig. 3), so sind fiir mindestens ein Indexpaar (i, j)
mit , j € {1, 2,3} die Abstinde a;b; und a}b; verschieden (siehe auch [8]).

Drei chirale Figuren, zwei davon enantiomer

Fig. 3 Tllustration von Satz 3.1

Bei der allgemeinen Formulierung dieses Sachverhaltes ist zu berlicksichtigen, dass die
chiralen Figuren A, A" und B nicht asymmetrisch zu sein brauchen. Sie kdnnen, wie bereits
erwihnt, nebst der Identitdt noch weitere Symmetricabbildungen aufweisen, die jedoch
eigentlich sein miissen.

Satz 3.1. Es seien A und A’ zwei enantiomere Figuren und B eine weitere chirale Figur
des RY. Ferner sei ¢ eine Isometrie, die A auf A_’ abbildet, und o eine Svmmetrieabbildung
von B. Dann existieren a € Aund b € B mit ab # e(a)a (b).

Beweis (indirekt). Angenommen, es gilt ab = e(@)o(b) firallea € Aund b € B. In
diesem Falle gibt es eine Isometrie ¢ mit ¢p(a) = e(a) fiirallea € Aund ¢ (b) = o (b)
fiir alle » € B. Weil aber A, A" und B als chirale Figuren je mindestens d + 1 Punkte in
allgemeiner Lage besitzen, und eine Isometrie des R? durch d + 1 Punkte in allgemeiner
Lage und deren Bildpunkte eindeutig festgelegt ist, folgt ¢ = ¢ = . Dies steht jedoch im
Widerspruch dazu, dass o eigentlich und ¢ uneigentlich ist. O

Die Quintessenz unserer in Satz 3.1 formulierten Interpretation des Resultats von Reide-
meister lautet: Enantiomere Figuren A und A’ bringen dann einen Abstandsunterschied
hervor, wenn der metrische Bezug zu einer weiteren chiralen Figur B hergestellt wird. Am
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Ende seiner Arbeit fiigt Reidemeister hinzu, dass Kants Paradoxon nicht entstanden wire,
wenn dieser seinen absoluten Raum mit einem Koordinatensystem ausgestattet hitte. Da-
mit bringt Reidemeister zum Ausdruck, dass in der Mathematik zur Unterscheidung zweier
enantiomerer Figuren A und A’ als chirale Bezugsfigur B gewohnlich ein Koordinatensys-
tem verwendet wird. Soviel zur Analyse des Kant’schen Paradoxons. Welche praktische
Bedeutung dem Resultat dieser Analyse zukommt, soll nachfolgend erldutert werden.

4 Diachiralitat

Wir nehmen an, unsere enantiomeren Figuren A und A’ sowie die chirale Figur B seien
(dreidimensionale) Objekte im Alltag oder bei Naturvorgingen. Der Einfachheit halber
beschriinken wir uns auf starre Objekte. Gewisse interne Beweglichkeiten, etwa bei Hén-
den oder Molekiilen, sollen vernachlissigt bzw. durch ihren dynamischen Durchschnitt
ersetzt werden. Externe Bewegungen, also Bewegungen der Objekte als Ganzes, sind zu-
gelassen. Unter diesen Voraussetzungen bezeichnen wir den Sachverhalt, wonach bei jeder
gegenseitigen Lage der Objekte A, A" und B der Satz 3.1 zutrifft, als Diachiralitit.

Der aufgrund von Diachiralitét stets vorhandene Abstandsunterschied hat zur Folge, dass
gewisse Wechselwirkungen zwischen A und B verschieden sein miissen von den entspre-
chenden Wechselwirkungen zwischen A" und B. Es muss also immer eine Beobachtung
geben, bei der ein Unterschied sichtbar wird. Ein in der Chemiegeschichte wichtiges Bei-
spiel hiefiir ist die sogenannte optische Aktivitdt: Zwei enantiomere, phasengleich zirkular
polarisierte, monochromatische Lichtstrahlen A und A’ gehen verschiedene Wechselwir-
kungen mit einem chiralen Molekiil B ein, was eine Drehung der Schwingungsebene des
resultierenden planpolarisierten Lichtes bewirkt; man spricht von der optischen Drehung
des Molekiils. Dabei entstehen bei gleicher Wellenldnge fiir enantiomere Molekdile ent-
gegengesetzte Drehwinkel. Auf dieser Basis entdeckte der Chemiker 1.. Pasteur 1848 als
erster das Phinomen der Chiralitit bei Molekiilen; er bezeichnete seine Beobachtung als
Dissymmetrie.

Wichtig ist Diachiralitidt uv.a. in der pharmazeutischen Chemie: Enantiomere Molekiile A
und A’, die in einem Medikament enthalten sein konnen, verhalten sich zu einem chiralen
Rezeptor B wie zwei enantiomere Schliissel zu einem chiralen Schloss. Passt eines der
beiden Enantiomere A oder A’ zu B, geht es also eine physiologische Wechselwirkung
ein, so tut es das andere Enantiomer aufgrund von Diachiralitit beim gleichen Rezeptor
nicht. In seltenen IFallen kann es passieren, dass die beiden Enantiomere zwei verschie-
dene Rezeptoren ansprechen, was dann zu unterschiedlichen physiologischen Reaktio-
nen fithrt. Contergan (Thalidomid), das zwischen 1957 und 1961 als Gemisch von Enan-
tiomeren (Fig. 4) auf dem Markt war, ist ein klassisches Beispiel. Wihrend eines der
Enantiomere (R-Thalidomid) zwar wie erwiinscht den Schlaf fordert, bewirkt das an-
dere (S-Thalidomid) schwere Missbildungen bei Neugeborenen (R und S bezeichnen den
Orientierungssinn gemiss Abschnitt 6). Ausgeldst durch den Contergan-Skandal hat in den
letzten Jahrzehnten die ,chirale Synthesechemie® zunehmend an Bedeutung gewonnen.
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Fig. 4 Enantiomere Molekiile mit unterschiedlicher physiologischer Wirkung

5 Chiralitatsklassen

Eine Menge chiraler Figuren in zwei Chiralitdtsklassen einteilen heisst, aus allen Figu-
ren zwei Teilmengen so zu bilden, dass nie enantiomere Figuren derselben Teilmenge
angehoren. Sind diese Figuren Objekte des tdglichen Lebens, werden die Klassen meist
mit ,rechts® und ,links® bezeichnet; welche Namen man wihlt, ist aber letztlich belanglos.
Chiralitdtsklassen sind sowohl im Alltags- als auch im Wissenschafttsbereich bei der Kom-
munikation unerlisslich: ,Ich habe meinen linken Handschuh verloren™ oder ,.In diesem
Flidschchen befindet sich R-Thalidomid™. Solche Aussagen beziehen sich auf eine Ein-
teilung chiraler Objekte in Chiralitdtsklassen. Das Bilden von Chiralititsklassen basiert
immer auf Diachiralitit. Beispielsweise betrachten wir von zwei enantiomeren Schuhen A
und A’ eines Paars den einen Schuh als zum Fuss B gehorig, weil wir unbewusst bei jeder
gegenseitigen Lage Abstinde zwischen A und B wahrnehmen, die sich von den entspre-
chenden Abstinden zwischen A’ und B unterscheiden.

In chiralen Objekten der Natur findet man hiufig eine gemeinsame chirale Grobstruktur,
etwa eine Spirale, die dann zur Bildung von Chiralitiatsklassen beniitzt wird. So gehtren
ein Schneckenhaus, eine Bohnenpflanze oder auch eine Doppelhelix in die gleiche Chira-
litdtsklasse, wenn die festgestellten Spiralen den gleichen Spiralsinn haben (beachte, dass
eine Spirale von beiden axialen Seiten betrachtet werden kann, der Spiralsinn dndert sich
nicht). Nebenbei bemerkt sind Weinbergschnecken (Fig. 5) gewohnlich rechtsdrehend; nur
eine unter Tausenden macht da eine Ausnahme, und es soll franzdsische Feinschmecker-
Lokale geben, die einem die Zeche erlassen, wenn man eine davon auf dem Teller entdeckt.

rechtsdrehend linksdrehend

Fig. 5 Enantiomere Weinbergschnecken (linksdrehende selten)
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6 Orientierung

Bei vielen Mengen chiraler Objekte ist jedoch schwerlich eine gemeinsame chirale Grob-
struktur erkennbar, die zur Bildung von Chiralititsklassen beniitzt werden kann. Wie sind
Jkartoffelformige® chirale Figuren oder ,unformige* chirale Molekiile zum Beispiel mit ei-
ner Spirale oder einer Hand in Verbindung zu bringen? Im Prinzip braucht es ein Enantio-
merie-erhaltendes Verfahren, das komplizierte chirale Objekte auf eine gemeinsame chi-
rale Struktur zurlickfiihrt. Damit das Verfahren fiir alle Objekte der betrachteten Menge
in gleicher Weise Anwendung findet, muss es durch eindeutige Regeln, d.h. durch einen
Algorithmus, festgelegt sein. Ein solches Verfahren nennen wir eine Orientierung der be-
trachteten Menge chiraler Objekte; bei den fiir die beiden Chiralitidtsklassen vereinbarten
Namen (oder Symbolen) sprechen wir von Orientierungssinn.

Ein wichtiges Beispiel einer Orientierung in der Chemie ist ein von Cahn, Ingold und Pre-
log in den 1950¢r Jahren ausgearbeitetes Verfahren, welches heute in Anlehnung an ihre
Namen als ,CIP-Methode* bezeichnet wird; fiir den Orientierungssinn werden die Sym-
bole R (rectus) und S (sinister) verwendet. Die CIP-Methode, die wir hier nicht besprechen
konnen, hat sich in der Praxis bewihrt, u.a. deshalb, weil sie sich auf gingige Strukturkon-
zepte bezieht. V. Prelog von der ETH Ziirich erhielt 1975 den Chemie-Nobelpreis, auch
fiir seine Verdienste in diesem Zusammenhang [8].

An der Universitdt Ziirich entwickelten die Autoren und andere ab 1970 ein Verfahren,
das aus einer intern beweglichen chemischen Struktur, basierend auf einem streng mathe-
matischen Modell, einen eindeutigen Namen sowie die Symmeltriegruppe generiert. Der
zugrunde liegende Algorithmus stellt ausserdem fest, ob die Struktur chiral oder achiral
ist, und nimmt im chiralen Fall eine Orientierung vor [4]. Die Vorgehensweise stiitzt sich
auf keine der bisherigen Strukturkonzepte und eignet sich fiir eine Computerimplementa-
tion.!

Im zweiten Teil dieser Arbeit wollen wir das Prinzip dieses Verfahrens am Beispiel von
konvexen Polytopen erldutern und damit gleichzeitig bisher Gesagtes verdeutlichen und
konkretisieren. Konvexe Polytope sind dafiir besonders geeignet, weil sie wie chemische
Strukturen auf endlichen Punktmengen basieren.

7 Konvexe Polytope

Der Begriff Polytop ist die d-dimensionale Verallgemeinerung der Begriffe Polygon fiir
d = 2 und Polyeder fiir d = 3 (Fig. 6). Wir beschriinken uns hier auf konvexe Polytope, da
sich in diesem Spezialfall vieles einfacher darstellen ldsst; das Verfahren liesse sich jedoch
auch auf nicht konvexe Polytope ausdehnen. Konvexe Polytope konnen auf verschiedene
Arten definiert werden [5, 14]; wir wihlen eine Definition, die im Hinblick auf unsere
Zielsetzung moglichst zweckméssig ist:

Definition 7.1. Die konvexe Hiille P einer endlichen Punktmenge des euklidischen Rau-
mes RY (d > 1) mit mindestens d + 1 Punkten in allgemeiner Lage heisst konvexes
d-dimensionales Polytop. Der Einfachheit halber sagen wir gewohnlich kurz Polytop. Ein

I Dieses Projekt wurde ab 1975 unterstiitzt vom ,Schweizerischen Nationalfonds zur Forderung der Wissen-
schaftlichen Forschung®
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Fig. 6 Zweidimensionales und dreidimensionales Polytop

Punkt eines Polytops P, der beziiglich jedes Liniensegmentes von P (Verbindungsstrecke
zweier Punkte von P) hochstens Randpunkt ist, heisst Ecke von P; die Ecken bilden die
Eckenmenge X von P,

Bemerkungen

(1) Ein d-dimensionales Polytop wird hier stets im R? und nicht in einem hoher dimen-
sionalen Einbettungsraum betrachtet, was im Zusammenhang mit Chiralitdt wichtig
ist.

(2) Ein Polytop besteht als konvexe Hiille nicht nur aus dem Rand, sondern ebenso aus
dem Innern. So ist etwa ein Polygon eine Fliche oder ein Polyeder ein Korper, auch
wenn dies in den Figuren nicht zum Ausdruck kommt. Im Rahmen dieser Arbeit ist
es allerdings unwichtig, ob das Innere zum Polytop gezahlt wird oder nicht.

(3) Ohne Beweis sei betont, dass ein Polytop bereits durch die konvexe Hiille der Ecken-
menge X festgelegt ist. Beziiglich der urspriinglich vorgegebenen endlichen Punkt-
menge bildet X eine Teilmenge mit mindestens d + 1 Ecken in allgemeiner Lage.
Beispielsweise ist das einfache Polygon, namlich das gleichschenklige Dreieck Dr
(Fig. 7), welches als konvexe Hiille einer 7-elementigen Punktmenge definiert ist,
schon bestimmt durch die Eckenmenge X = {a, b, ¢}. Mit Verfahren der algorithmi-
schen Geometrie ldsst sich X aus der urspriinglichen Punktmenge generieren [1, 7].
In dieser Arbeit gehen wir stets von einer bereits vorliegenden Eckenmenge aus.

(4) Im Folgenden sprechen wir bei Bedarf von einem koordinaten-abhingigen Poly-
top, wenn die kartesischen Koordinaten seiner Ecken gegeben sind, und von ei-
nem koordinaten-freien Polytop bei alleiniger Vorgabe aller Abstinde zwischen den
Ecken. Letzteres ist nur bis auf Isometrie bestimmt.

Ein koordinaten-freies Polytop liegt insbesondere dann vor, wenn es in Form einer re-
lationalen Darstellung oder kurz Darstellung gegeben ist. Was wir unter diesem Begriff
verstehen, soll zunidchst am Beispiel unseres Dreiecks Dr erldutert werden. Es geht da-
rum, die durch die Eckenmenge X = {a, b, ¢} festgelegte Metrik in bestimmter Weise zu
beschreiben. Dabei geben wir jede Eckenverbindung durch die zwei zugehorigen zueinan-
der symmetrischen Eckenpaare an, und fassen anschliessend die Eckenpaare von isometri-
schen Eckenverbindungen in sogenannten Metrikrelationen zusammen. Es resultiert so ein
3-Tupel: Zuerst steht die Eckenmenge X, dann folgen zwei nach den Abstandsquadraten
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4 und 9 geordnete Metrikrelationen R4 und Ro. Dieses 3-Tupel nennen wir Darstellung
von Dr und schreiben dafiir Dar(Dr) (aus Griinden der Lesbarkeit sind bei Eckenpaaren
Klammern und Kommas weggelassen):

Dar(Dr) = (X, R4, R9) = ({a, b, ¢}, {ac, ca, be, chla, {ab, balg).

gleichschenkliges Dreieck Dr

Fig. 7 Polygon mit der Eckenmenge {a, b, ¢}

In gleicher Weise wie in diesem Beispiel kann man bei einem beliebigen Polytop vorge-
hen. Ob man die Abstandsquadrate oder die Abstdnde selbst zur Festlegung der Ordnung
der Metrikrelationen verwendet, spielt aufgrund der Monotonie der (auf R™ definierten)
Quadratfunktion keine Rolle.

Definition 7.2. Es sei P ein Polytop mit der Eckenmenge X, und es seien f1, 4, ...,
die auftretenden Abstandsquadrate zwischen je zwei verschiedenen Ecken, wobei #; < f;
fir i < j. Das (k+1)-Tupel Dar(P) = (X, Ry, Ry,, ..., Ry) mit den Metrikrelationen
R, ={pg € X? | pg*> = t;} fiir | < i < k heisst Darstellung von P.

Als nichstes betrachten wir die Automorphismen der Darstellung eines Polytops, die in
der Folge eine zentrale Rolle spielen; wir sprechen kurz von den Automorphismen des
Polytops.

Definition 7.3. Ein Auiomorphismus o eines Polytops P mit der Darstellung Dar(P) =
(X, Ry, Ry,, ..., Ry) ist eine bijektive Abbildung der Eckenmenge X auf sich selbst,
welche die Eckenpaare jeder Metrikrelation Ry, mit 1 < i < k in die Eckenpaare derselben
Metrikrelation Ry, iiberfiihrt. Die Automorphismen mit dem Hintereinanderausfiihren als
Verkniipfung bestimmen eine Gruppe, die Automorphismengruppe von P.

8 Minimierungskonzept

Bevor wir die Automorphismengruppe eines Polytops auf Chiralitits- und Orientierungs-
probleme anwenden, soll ein Verfahren besprochen werden, welches die Automorphis-
men generiert. Das Verfahren basiert auf einem Minimierungskonzept, das in [12] fiir Ge-
bilde beschrieben ist (Gebilde, engl. relational systems, stellen eine Verallgemeinerung der
hier vorliegenden Darstellungen von Polytopen dar). Beim Minimierungskonzept wird mit
Nummerierungen gearbeitet:

Definition 8.1. Ist n die Anzahl Ecken der Eckenmenge X eines Polytops P, so heisst
eine bijektive Abbildung v : X — {1,2, ..., n} eine Nummerierung von P,
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Das Minimierungskonzeptumfasst drei Stufen, bei denen alle #! Nummerierungen eines #n-
eckigen Polytops P beriicksichtigt werden. Die drei Stufen sind allgemein formuliert, aber
fiir das Beispiel unseres Dreiecks Dr in einer Nummerierungstabelle (Tab. 1) illustriert.

vi{a) | vi(b) | vi(c) Nummern-Darstellungen Kanonisierungen (minimale fett)
v; (Dar(Dr)) {vi(Dar(Dr)))

w1 |2 |3 231033123, 32), ((1,2,3), (13, 23,31, 32);,
{12, 21}0) (12, 21)g)

wm| 1| 3 | 2 | d132),012,21,32,23), ((1,2,3), (12, 21,23, 32),,
13, 31}0) (13, 31)g)

w2 | 1|3 | d21,3),123,32,13,31), ((1,2,3), (13, 23,31, 324,
{21, 12}9) (12,21)g)

V4 2 3 1 (2, 3,1}, {21, 12, 31, 13}4, ((1,2,3), (12,13, 21, 31)4,
(23, 32}¢) (23, 32)¢) = Min(Dr)

vs | 3| 1| 2 | d31,2, 032,23, 12,210, ((1,2,3), (12, 21,23, 32),,
31, 13}) (13, 31)9)

ve | 3 2 1 | ({13,2,1}, {31, 13, 21, 12}y, (,2,3), (12,13, 21, 31)4,
{32, 23}9) (23, 32)9) = Min(Dr)

Tab. 1: Nummerierungstabelle fiir Dr

Erste Stufe: Fir jede Nummerierung v von P werden in der Darstellung Dar(P) die
Buchstaben durch die zugehorigen Nummern ersetzt. Es entstehen die Numimern-Darstel-
lungen v(Dar(P)).

Zweite Stufe: In jeder Nummern-Darstellung v(Dar(P)) werden die Elemente innerhalb
der Eckenmenge und innerhalb jeder Metrikrelation lexikographisch, d.h. der Grosse nach,
zu Tupeln geordnet. Es ergeben sich die Kanonisierungen {v(Dar(P))).

Dritte Stufe: Aus allen Kanonisierungen wird eine lexikographisch kleinste gewihlt. Es
resultiert die minimale Kanonisierung Min(P).

Die minimale Kanonisierung Min(P) kann als eindeutiger Name des durch Dar(P) be-
stimmten, koordinaten-freien Polytops aufgefasst werden, Namen dieser Art, welche die
gesamte Information der Struktur in sich tragen, sind in der Chemie niitzlich. Wir nennen
Nummerierungen, die z7um Namen Min(P) fithren, Minimums-Nummerierungen, oder
formal ausgedriickt:

Definition 8.2. Eine Nummerierung v eines Polytops P heisst Minimums-Nummerierung
von P, wenn {v(Dar(P))) = Min(P).

In der Nummerierungstabelle fiir das Dreieck Dr kommt die minimale Kanonisierung
Min(Dr) zweimal vor, und es gibt deshalb zwei Minimums-Nummerierungen, ndmlich vy
und ve. Aber nicht nur die minimale, sondern auch die andern Kanonisierungen treten in
der Nummerierungstabelle zweimal auf, was mit den Automorphismen von Dr zu tun hat.
Wie man sich leicht klar macht, gilt ganz allgemein fiir zwei Nummerierungen v und
eines Polytops P folgende Aquivalenz:

(vDar(P))) = (u(Dar(P)))

(8.1)
<= o = p'vist Automorphismus von P.
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Die Menge aller n! Nummerierungen eines n-eckigen Polytops P zerfillt damit in Klassen
mit je gleich vielen Nummerierungen wie Automorphismen. Jede dieser Nummerierungs-
klassen kann unter Verwendung von (8.1) zur Bestimmung der Automorphismen beniitzt
werden; wir arbeiten hier mit der Klasse der Minimums-Nummerierungen. Beim Dreieck
Dr ergeben sich so aus den Minimums-Nummerierungen v4 und ve die Automorphismen
a1 = vy 1v4 und ap = v, 11;6, oder in Zyklenschreibweise notiert:

ap = (@) (b)(c), a2 = (c)(ab). (8.2)

9 Minimierungsalgorithmus

Beim eben besprochenen Minimierungskonzept werden alle n! Nummerierungen eines #-
eckigen Polytops in Betracht gezogen. Ein direkt darauf basierender Algorithmus wire
also exponentiell und fiir grossere n unbrauchbar. Wir prisentieren nun einen Algorith-
mus, der die minimale Kanonisierung und damit verbunden die Minimums-Nummerierun-
gen generiert, ohne dabei alle n! Nummerierungen abzuarbeiten. Die Erlduterung dieses
Minimierungsalgorithmus geschieht anhand eines fiinfeckigen Polyeders, der trigonalen
Bipyramide Bp, deren Ecken auf der Oberfliche eines Wiirfels der Kantenldnge 2 liegen
(Fig. 8). Die Darstellung von Bp sieht wie folgt aus:

Dar(Bp) = ({a, b,c,d, e}, {cd,dc}y, {ae, ea, de, ed}4, {bc, cb, ce, ec}s,
{ab, ba, ad, da, bd, db}s, {ac, cale, {be, €b}12).

i)

trigonale Bipyramide Bp

Fig. 8 Finfeckiges Polyeder im Wiirfel mit Kantenlange 2

Der Minimierungsalgorithmus ist rekursiv und funktioniert geméss einer Algorithmusta-
belle (Tab. 2) salopp formuliert wie folgt: Beim Schritt 1 werden die zwei Eckenpaare
der ersten Metrikrelation von Dar(Bp) minimiert. Nach r — 1 Schritten (1 < r < 5)
liegen Darstellungs-Sequenzen’ mit lexikographisch kleinsten zugehorigen , Minimums-
Sequenzen* vor. Beim Schritt r werden diese Darstellungs-Sequenzen durch Hinzufiigen
eines Eckenpaars erweitert, und zwar geschieht dies pro Darstellungs-Sequenz mit jedem
noch verbleibenden Eckenpaar derselben Metrikrelation oder, falls diese schon abgearbei-
tet ist, mit jedem Eckenpaar der ndchst folgenden Metrikrelation von Dar(Bp). Von den
so resultierenden Darstellungs-Sequenzen werden erneut jene weiter verwendet, die zu
lexikographisch kleinsten Minimums-Sequenzen fiihren. Bereits nach dem Schritt 5 kann
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hier der Algorithmus abgebrochen werden, da nur noch eine lexikographisch kleinste Mi-
nimums-Sequenz Uibrig bleibt und allein die Nummer 5 fehlt. Es resultieren eine einzige
Minimums-Nummerierung v — der zugehorige Automorphismus ¢ = v~ v ist das Neu-
tralelement — sowie die minimale Kanonisierung:

via—4,b—-5c—-2,d—>1,e =3, (9.1)

Min(Bp) = ((1, 2,3,4,5),(12,21)1, (13, 31, 34, 43)4, (23, 25, 32, 52)s,
(14, 15,41,45, 51, 54)s, (24, 42)9, (35, 53)12).

Schritt r Darstellungs-Sequenzen Minimums-Sequenzen
(lexikographisch kleinste fett)
1 ((cd, ... (az,...
{{(dicyws. (12, o
2 ((cd,de)y, (.. (az,21), (...
((de,cd)y, (. (2,214, (...
3 ((ed, do)y, (ae ((12,21)1, (34
((ed, de)y, (ea ((12,21)1, (34
((ed, de)y, (de ((12,21)1, (23
((cd, dc)y, (ed (12,200,482
((de, cd)y, (ae ((12,21)1, (34
((dc, cd), (ea ((123 21)1, (34
((de,cd)r, e, ... (a2, 21), (13,...
((de, ed)y, (ed ((12,21)4, (31
4 ((de, cd)y, (de, ae ((12,21)1, (13,43
((de, cd)y, (de, ea (12,207,418, B4
(de,cd)y, e, ed, ... ((12,21)4, (13,31, ...
5 ((de, cd)y, (de, ed, ae ((12,21)1, (13, 31,43
(dec,cd)y, (de, ed, ea,. .. (2,21);, (13,31, 34, ...
vid—=1l,c—2,¢e—=>3a— 4
und somit b — 5

Tab. 2: Algorithmustabelle fiir Bp

Auch wenn der Minimierungsalgorithmus hier nicht allgemein formuliert wird, so sollte
das Beispiel seine prinzipielle Funktionsweise gentigend verdeutlichen. Der Algorithmus
steht in dieser Arbeit ohnehin nicht im Vordergrund und eine ausfiihrlichere Darlegung fiir
beliebige Gebilde findet sich in [13]2. Zu kldren wire die Komplexitit des Minimierungs-
algorithmus bei der vorliegenden Anwendung auf die Darstellung von Polytopen. Im Bei-
spiel unserer Bipyramide Bp ist es moglich, ihn vorzeitig abzubrechen. Allgemein sind im
Maximum so viele Schritte erforderlich, wie die Gesamtzahl der Eckenpaare betrigt, also
n(n — 1) bei n Ecken, wobei die Anzahl der Darstellungs-Sequenzen pro Schritt schwankt.

21n [13] wird ,Kanonisierung* im Sinne von ,minimaler Kanonisierung‘ verwendet.
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10 Symmetrieaspekte

Eine Symmetrieabbildung eines d-dimensionalen Polytops P ist bekanntlich eine Isome-
trie des ganzen euklidischen Raumes Rd, die P auf sich selbst abbildet. Im Unterschied
dazu operiert ein Automorphismus von P nur auf der Eckenmenge X. Welches ist nun der
Zusammenhang zwischen den Symmetrieabbildungen und den Automorphismen?

Satz 10.1. Zu jeder Svmmetrieabbildung o eines Polvtops P gibt es genau einen Auto-
morphismus o von P mit o = oy und umgekehrt, wobei oy die Einschrinkung von o auf
die Eckenmenge X bezeichnet.

Beweis. Fine gegebene Symmetrieabbildung o von P bildet die Eckenmenge X auf sich
selbst ab. Andernfalls miisste ndmlich eine Ecke, die hchstens Randpunkt eines Linien-
segmentes von P sein kann, in das Innere eines Liniensegmentes von P iibergehen, was
zu Widerspriichen fithrt. Da nun o jede Eckenverbindung in eine isometrische Eckenver-
bindung abbildet, und damit jedes Eckenpaar in eines derselben Metrikrelation tibergeht,
liegt mit &« = oy genau ein Automorphismus von P vor. Umgekehrt gibt es bei gegebe-
nem Automorphismus ¢ von P mindestens eine Isometrie o mit oy = «. Weil aber ein
Polytop d + 1 Ecken in allgemeiner L.age besitzt, ist o eindeutig bestimmt (wie bereits
erwihnt, wird eine Isometrie des RY durch d + 1 Punkte in allgemeiner Lage und deren
Bildpunkte eindeutig festgelegt). Die Isometrie o ist zudem eine Symmetrieabbildung des
ganzen Polytops P, da dieses konvexe Hiille der Eckenmenge X ist. Es sei hinzugefiigt,
dass mit der eineindeutigen Zuordnung zwischen den Automorphismen und den Symme-
trieabbildungen ein Gruppenisomorphismus vorliegt. U

Im Beispiel unseres gleichschenkligen Dreiecks Dr ist die eineindeutige Zuordnung zwi-
schen den Automorphismen (8.2) und den Symmetrieabbildungen evident: Zu oy gehort
die Identitéit und zu «p (da ¢ Fixelement ist) eine Achsenspiegelung. Bei der Bipyramide
Bp entspricht dem Neutralelement als einzigem Automorphismus die Identitdt und Bp
ist deshalb asymmetrisch. Im Allgemeinen gibt jedoch ein vorliegender Automorphismus
keinen Aufschluss iiber die Art der zugehdrigen Symmetrieabbildung. Das folgende Bei-
spiel zweier Polygone mag dies illustrieren. Wir betrachten einerseits das gleichschenklige
Trapez Tr und andererseits das Parallelogramm Pa (Fig. 9). In beiden Fillen lassen sich
die Minimums-Nummerierungen und die Automorphismen von Hand ermitteln:

Tr: vi:a—4.b—-3,c—>1,d—=2, vvw:a—>3,b—>4,¢c—2,d— 1,
a1 = (@)D (e)d), az = (ab)(cd); (10.1)
Pa: n:a—-4b—->1,c—-2,d—>3, wm:a—2,b—>3,c—4,d— 1, (10.2)
ar = (a)(b)(e)d), ap = (acybd). (10.3)

Obschon die durch (10.1) und (10.3) bestimmten Automorphismengruppen von 7'r und
Pa isomorphe Permutationsgruppen sind, zeigt sich bei den Symmetrieabbildungen ein
Unterschied: Bei T'r gehort zu «p eine Achsen-, bei Pa jedoch eine Punktspiegelung.
Insbesondere geht demnach aus der Struktur der beiden Automorphismengruppen nicht
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de 4 J° d 7 e
5
a 5 b a - b

gleichschenkliges Trapez Tr Parallelogramm Pa

Fig. 9 Achirales und chirales Polygon mit isomorpher Automorphismengruppe

hervor, dass Tr achiral und Pa chiral ist. Im Unterschied dazu kann bei der Bipyramide
Bp aus dem Vorhandensein nur eines Automorphismus, dem Neutralelement, auf die Chi-
ralitat geschlossen werden.

Als Chiralitiits-Test bezeichnen wir ein Verfahren, das priift, ob ein Polytop chiral ist. Ein
Chiralitidts-Test besteht zunédchst aus einem Aufomeorphismen-Test und, falls dieser nicht
ausreicht, zusitzlich aus einem Simplex-Test, wie er im {iberndchsten Abschnitt 12 be-
sprochen wird. Beim Automorphismen-Test versucht man allein aufgrund der Struktur der
Automorphismengruppe zu entscheiden, ob Chiralitit vorliegt. Wie wir soeben anhand der
einfachen Polygone Tr und Pa gesehen haben, gibt es Fille, wo dies nicht moglich ist.
Interessant ist die Frage, welche notwendigen und hinreichenden Bedingungen erfiillt sein
miussen, damit ein Automorphismen-Test zum Ziel fiihrt. Wir kennen die vollstindige Ant-
wort nicht, nennen aber einen Satz, der eine einfache hinreichende Bedingung beinhaltet:

Satz 10.2. Ein Polytop ist chiral, wenn die Ordnung seiner Automorphismengruppe unge-
rade ist.

Beweis. Wir zeigen, dass die Ordnung der Automorphismengruppe eines achiralen Po-
Iytops gerade ist: Die Automorphismengruppe und die Symmetriegruppe eines Polytops
haben dieselbe Ordnung (Satz 10.1). Letztere ist aber bei einem achiralen Polytop gerade,
weil die eigentlichen Symmetrieabbildungen eine Untergruppe vom Index 2 bilden und es
deshalb gleich viele eigentliche wie uneigentliche Symmetrieabbildungen gibt. O

11 Orientierte Simplexe

In diesem Abschnitt befassen wir uns mit orientierten Simplexen, um damit den erwihnten
Simplex-Test vorzubereiten.

Definition 11.1. Ein d-dimensionales Polytop mit d 4+ 1 Ecken heisst ein d-dimensionales
Simplex. Ist zusitzlich eine Reihenfolge der Ecken festgelegt, so spricht man von einem
orientierten d-dimensionalen Simplex. Wir nennen es kurz o-Simplex, bezeichnen es mit
S und schreiben die Ecken zur Festlegung der Reihenfolge in ein (d + 1)-Tupel, etwa
S = (X0, X1,....Xq).

Weshalb wird von orientierten bzw. o-Simplexen gesprochen? Aufgrund der Eckenrei-
henfolge lassen sich alle koordinaten-abhiingigen o-Simplexe gleicher Dimension in be-
kannter Weise mit Hilfe von Determinantenvorzeichen orientieren, und zwar auch dann,
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wenn sie im metrischen Sinne achiral sind. Dazu betrachtet man zu einem o-Simplex
S = (xo0, X1, ..., xq) die d xd-Matrix My, deren i-te Zeile der Komponentenvektorm
(1 <1 < d) ist. Bezeichnet D die Determinantenfunktion, so sei det(S) := D(Ms). Es
gilt det(S) # 0, da ein o-Simplex per definitionem nicht entartet ist. Man definiert nun;
7Zwei d-dimensionale o-Simplexe S und T sind gleich orientiert, falls det(S) und det(7)
das gleiche Vorzeichen haben, sonst verschieden orientiert.

Ob zwei o-Simplexe § = (xp, X1, ..., xg)y und T° = (vo, V1, ..., ¥g) gleich oder ver-
schieden orientiert sind, ist auch im Determinantenvorzeichen einer einzigen d x d-Matrix
My ¢ verborgen, welche die Abstinde zwischen S und 7 berticksichtigt:

my My - Hlig
mp1 My - Hlyg

Ms 1 = ) ) . ) (11.1)
mg1 Mgy -+ Mgy

mit my; = 1/2 - (xoyj2+xiy02 — Xy, —xoyoz) firi, j € {1,2,...,d)}.

Setzt man det(S, T7) := D(My r), so gilt:

Satz 11.1. Zwei d-dimensionale o-Simplexe S und T sind genau dann gleich orientiert,
wenn det(S, T') positiv ist.>

Beweis. Wir zeigen, dass die Beziehung
det(S, T') = det(S)det(T) (11.2)

erfiillt ist, der Satz ist dann bewiesen. Dazu bilden wir zunédchst das Matrixprodukt Mg M. ;5
wobei M7 die transponierte Matrix von My bezeichnet. Fiir das (i j)-te Element p;; dieses

—>
Produkts resultiert ein Skalarprodukt, das sich u.a. mit Hilfe der Vektoridentitiit ab - ac =
1/2- (@2 +ac? — Ez) (Kosinussatz) umformen l4sst:

Pij = XoXi - Yo¥; = XoX; - (X0¥} — Xo¥o) = XoX; - Xo¥; — XoX; - Xo¥0

= 1y (xOxi2 + oy, — Xi)’jz) —1/2. (xOxiz +Toyo. — Xiyoz)

=1/2- (Xoyj2 X0 — Xy — Xoyoz) .

Der letzte Term zeigt, dass p;; = mj; gemdss (11.1) und somit Mg 7 = MSM}. Damit
ergibt sich schliesslich:

det(S, T) =DMy 7) = D(MsM7) = D(Ms)D(M7) = det(S) det(T). a

3Die Idee fiir diesen Satz stammt aus einer unveréffentlichten Arbeit von Dimitrios Pazis (National Technical
University of Athens), die er im Rahmen des unter Fussnote 1 erwahnten Nationalfondsprojekts geschrieben hat.
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Es resultiert auch eine Beziehung iiber den Betrag von det(S, T'):

Korollar 11.1. Bezeichnen As und Ar die Inhalte zweier d-dimensionaler o-Simplexe S
und T, so gilt:
|det(S, T)| = (dD?AsAr. (11.3)

Beweis. (11.3) folgt unmittelbar, wenn man in (11.2) beidseitig den Betrag bhildet und
dabei beniitzt, dass bekanntlich |det(S5)| = d!Ag bzw. | det(T)| = d!Ar ist. [

Wir illustrieren die Resultate mit zwei koordinaten-freien o-Dreiecken (Fig. 10), ndmlich
S = (xp, X1, x2) und T' = (¥p, ¥1, ¥2). Zur Bestimmung der Matrix Mg r gemiss (11.1)
werden die folgenden Abstandsquadrate benotigt:

xOy02 = 194, X0y12 = 169, )Coy22 = 625,
X1v0> = 74, T = 49, X127 = 361,
Xovo- = 101, oyl = 116, T2v22 = 500.
. . 0O 72
Damit ergibt sich Ms r = _20 16 und daraus det(S, 7)) = 1440.
X Yo ¢
13
5 5 5
S T
‘ 3 ) .
Xo 6 X1 > 12 Y2

0-Dreiecke Sund T

Fig. 10 Gleichorientierte zweidimensionale o-Simplexe

Da die Determinante det(S, T') positiv ist, sind wegen Satz 11.1 die beiden o-Dreiecke S
und T gleich orientiert. Thr Betrag ldsst sich auch unter Verwendung von Korollar 11.1
berechnen: Aus d = 2, Ay = 12 und Ar = 30 erhilt man |det(S, T)| = 1440. Die
Determinante det(S, 77) selbst hat den Wert 1440 bei gleicher und —1440 bei verschie-
dener Orientierung der o-Dreiecke S und T, unabhingig von ihrer gegenseitigen Lage.
Es sei beigefiigt, dass die beiden Vorzeichen von det(S, T) eine Folge von Satz 3.1 sind,
und zwar in einem erweiterten Sinne: Das metrisch achirale Dreieck S erhilt ndmlich
seine Chiralitdt erst durch die unterschiedlichen Individualisierungen der Ecken. Auf die-
sen im Zusammenhang mit chemischen Modellvorstellungen wichtigen Sachverhalt wird
hier nicht weiter eingegangen.

12 Chiralitat von Polytopen

Wie sieht nun der Simplex-Test aus, wie ldsst sich also feststellen, ob ein Polytop chiral
ist, wenn der Automorphismen-Test nicht ausreicht? Wir arbeiten mit einem o-Simplex
S = (xo0, X1, - - -, Xg) eines d-dimensionalen Polytops P, d.h. die Ecken von S sind jetzt
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speziell Ecken von P. Nebst S betrachten wir fiir einen Automorphismus « von P auch das
isometrische o-Simplex «(S) = (¢(xo), o(x1), ..., o(xyz)) von P. Die beiden o-Simplexe
S und «(S) sind genau dann gleich orientiert, wenn die zu « gehorige Symimetrieabbil-
dung eigentlich ist, und zwar unabhingig vom betrachteten o-Simplex § von P. Beim
Simplex-Test diirfen wir wegen Satz 10.2 von einem P ausgehen, dessen Ordnung p der
Automorphismengruppe gerade ist. Und weil bei chiralem P alle p Symmetrieabbildun-
gen und bei achiralem P deren p/2 eigentlich sind, ergibt sich schliesslich mit Bentitzung
von Satz 11.1:

Simplex-Test. Is sei P ein Polytop mit gerader Ordnung p der Automorphismengruppe.
Fiir den Chiralitdisnachweis wihlt man von P ein o-Simplex S sowie p /2 vom Neutralele-
meni verschiedene Automorphismen o und zeigt, dass die Determinante det(S, «(S)) stets
positiv ist.

Bemerkungen

(1) Bei koordinaten-abhingigem P ist es zweckmissig, det(S, o (S)) nicht iiber die Ma-
trix Mg o(s) gemiss (11.1), sondern mit det(S) und det(x(S)) zu berechnen. Auf-
grund von (11.2) gilt ja det(S, «(5)) = det(S) det(x(S)).

(2) Hiufig ist es nicht notwendig, p/2 vom Neutralelement verschiedene Automorphis-
men zu betrachten. Liegt beispielsweise eine zyklische Automorphismengruppe vor,
so kann man sich auf ein erzeugendes Element beschriinken. Auf die Frage, wie Be-
schriankungen dieser Art im allgemeinen Fall aussehen, wird hier nicht eingegangen.

Der Simplex-Test soll jetzt bei den koordinaten-freien Polygonen Tr und Pa durchgefiihrt
werden. In beiden Fillen wihlen wir das o-Dreieck S = (a, b, ¢) (siche Fig. 9). Mit dem
einzigen zu betrachtenden Automorphismus «p von (10.1) bzw. (10.3) ergibt sich durch
Rechnung:

Tr :det(S, an(S)) = —1600, also Tr achiral,
Pa det(S, as(S)) = 784, also Pqa chiral.

Da 1-dimensionale Polytope — es handelt sich um Strecken — immer achiral sind, ist der
Chiralitdtsbegriff erst bei Polygonen, Polyedern und Polytopen hoherer Dimension von
Interesse. Wir wollen an dieser Stelle kurz ein 4-dimensionales Polytop hinsichtlich Chi-
ralitdt untersuchen. Das koordinaten-abhdngige Polytop, es sei mit Pt bezeichnet, ist de-
finiert als konvexe Hiille der folgenden 7 Punkte:

a=(3,25,3), b=(321,1, c=(3,6,1,3), d=(445,4),
e=(7,3,3,4), F=06624, ¢g=(00213).

Man verifiziert: S = (a, b, ¢, d, ¢) ist wegen det(S) £ 0 nicht entartet, d.h. die 5 Punkte a,
b, ¢, d und ¢ befinden sich in allgemeiner Lage; mit Pf liegt demnach ein 4-dimensionales
Polytop vor. Zudem gehoren alle 7 Punkte zur Oberfliche einer 4-dimensionalen Ku-
gel mit Mittelpunkt (3, 2, 1, 6) und Radius 5; sie bilden deshalb die Ecken von Pf. Aus
der Darstellung von Pf ergeben sich mit dem Minimierungsalgorithmus* die Minimums-

4Das hier verwendete Programm stammt von Ralf Gugisch (Universitat Bayreuth).
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Nummerierungen. Und weil drei Minimums-Nummerierungen und somit auch drei Au-
tomorphismen vorhanden sind, ist P¢ schon aufgrund des Automorphismen-Tests chiral
(Satz 10.2); es braucht den Simplex-Test nicht. Die Minimums-Nummerierungen sehen
wie folgt aus:

vi:d—>2,b—>T7c—4,d—>1,e—>5ff—>32—>06,
v:d—->4b—->T7c—-06d—>3,¢e—>1,f—>5¢2-—>2, (12.1)

w:d—6b—->7c¢c—->2,d—>5e¢e—->3f—>1¢— 4

13 Orientierung chiraler Polytope

Auf der Grundlage des Minimierungskonzepts soll nun eine Orientierung der chiralen
Polytope gleicher Dimension definiert werden. Dazu gehen wir von einer Minimums-
Nummerierung v eines chiralen d-dimensionalen Polytops P aus. Fiir jedes o-Simplex
S = (X0, X1,...,Xg) von P denke man sich das zugehorige nummerierte o-Simplex
v(S) = (v(xo), v{x1),...,v(xg)). Jenes o-Simplex S, das zum lexikographisch klein-
sten nummerierten o-Simplex v(S) fiihrt, nennen wir ein Referenzsimplex von P und be-
zeichnen es mit Refp. Flir jede Minimums-Nummerierung von P lidsst sich so ein Refe-
renzsimplex Refp angeben. Da aber alle Referenzsimplexe Refp durch Automorphismen
auseinander hervorgehen, sind sie isometrisch und aufgrund der Chiralitdt von P gleich
orientiert, was folgende Definition ermoglicht:

Definition 13.1. Zwei chirale d-dimensionale Polytope P und Q sind gleich orientiert,
wenn zwei Referenzsimplexe Refp und Refp gleich orientiert sind, sonst verschieden
orientiert.

Bemerkungen

(1) Eine Orientierung beinhaltet immer eine Willkiir. Bei unserem Verfahren werden,
ausgehend von der Darstellung eines Polytops mit einer gewihlten Reihenfolge der
Metrikrelationen, zwei Minimierungen vorgenommen: Eine erste bei der Wahl der
Nummerierungsklasse und eine zweite bei der Wahl der Referenztupel beziiglich
dieser Klasse.

(2) Nach E. Ruch [10] gibt es spezielle Molekiilklassen mit der Moglichkeit einer Orien-
tierung von ,physikalischer Relevanz’, insofern als bei stetiger Verdnderung physi-
kalischer Parameter auf dem Weg von einer Chiralitdtsklasse zur andern immer ein
achiraler Zustand durchlaufen werden muss. In entsprechender Weise 14sst sich mit
Hilfe von Stetigkeit bei speziellen Polytopklassen eine Orientierung von ,geometri-
scher Relevanz® definieren.

Bei koordinaten-abhidngigen chiralen d-dimensionalen Polytopen ist die analytische Um-
setzung der Definition 13.1 mittels eines Orientierungssinns naheliegend: Ist Refp ein Re-
ferenzsimplex eines solchen Polytops P, so heisst P positiv orientiert falls det(Refp) > 0
und negativ orientiert falls det(Refp) < 0. Bei den Wahrnehmungsriumen der Dimen-
sionen d = 2 und d = 3 ldsst sich fiir die Referenzdreiecke bzw. -tetragder in bekannter
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Weise ein anschaulicher Orientierungssinn verwenden, ndmlich rechts orientiert (,Gegen-
uhrzeigersinn® bzw. ,Rechte-Hand-Regel®) und links orientiert. Setzt man bei der Deter-
minantendefinition wie liblich ein rechts orientiertes Koordinatensystem voraus, so licfern
positiv und rechts orientiert und somit negativ und links orientiert dieselben Chiralitéts-
klassen von Polygonen bzw. Polyedern. Erwidhnt sei noch, dass auch ohne Verwendung
eines Orientierungssinns entschieden werden kann, ob zwei chirale d-dimensionale Poly-
tope P und Q gleich oder verschieden orientiert sind, vorausgesetzt man kennt die gegen-
seitige Lage zweier Referenzsimplexe Refp und Refp. Dies geschieht dann anhand des
Vorzeichens von det(Refp, Refp) gemiss Satz 11.1.

Von den bisher betrachteten Polytopen sind drei chiral, ndmlich das Parallelogramm Pa
(d = 2), die Bipyramide Bp (d = 3) und das Polytop Pt (d = 4). In diesen drei Beispie-
len ergibt sich als Orientierungssinn:

Pa . 7Zwei Minimums-Nummerierungen vy und vo (10.2), wir wihlen vy:
Refpy = (b, ¢, d), also Pa rechts (vgl. Fig. 9) bzw. positiv orientiert;
Bp : Nureine Minimums-Nummerierung v (9.1):
Refpp = (d, c, e, a), also Bp links (vgl. Fig. 8) bzw. negativ orientiert;
Pt : Drei Minimums-Nummerierungen vy, vp und v3, wir wihlen vp (12.1):
(e,g.d,a, fyund (e, g, d, a, ¢) keine Referenzsimplexe (da entartet),
Refpr = (e, g,d,a,b) mitdet(Refp;) = 8§, also Pt positiv orientiert.

14 Polygone und Polyeder

Die speziellen Polytope (wir meinen nach wie vor konvexe), die Polygone und Polyeder,
lassen eine Reduktion der Eckenpaare bei den Darstellungen zu, ohne dass sich die mit
Hilfe des Minimierungsalgorithmus generierte Automorphismengruppe dndert. Bei einem
n-eckigen Polygon oder Polyeder kann ndmlich die quadratische Anzahl von Eckenpaaren
n(n—1) theoretisch auf eine lineare Anzahl gesenkt werden. Bei den folgenden Ausfiihrun-
gen bleibt vieles nur angedeutet.

Zunichst betrachten wir die n-eckigen Polygone. Ein solches Polygon ist bis auf Isometrie
bereits eindeutig festgelegt durch die ,Kantenmetrik® (Abstinde zwischen je zwei auf dem
Rand aufeinanderfolgenden Ecken) und die ,Erstdiagonalmetrik® (Abstéinde zwischen je
einer Ecke und der auf dem Rand iibernéichsten). Der Beweis dieser Aussage erfolgt in-
duktiv und sieht im Wesentlichen so aus: Beginnend mit einem Randdreieck (bis auf Iso-
metrie bestimmtes Dreieck bestehend aus zwei aufeinanderfolgenden Kanten und einer
Erstdiagonalen) ist jeweils pro Induktionsschritt, unter Beriicksichtigung der Konvexitit,
das nédchste Randdreieck anzufiigen. Bei der Darstellung miissen so fiir # = 5 nur 4n
Eckenpaare (pro Abstand wie {iblich beide Paare) angegeben werden. Es ist naheliegend,
die Kanten- und Erstdiagonalmetrik mit gesonderten Metrikrelationen zu erfassen. Im Spe-
zialfall eines reguliren Polygons geniigt die Angabe der Kantenmetrik, und die Darstel-
lung hat dann eine einzige Metrikrelation mit 2n Eckenpaaren.

Bei Polygonen kann man sich beim Chiralitdts-Test auf den Automorphismen-Test be-
schrinken, denn als Symmetrie- und damit Automorphismengruppen kommen nur die
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zyklische Gruppe Cy, (m > 1) bei chiralen und die Diedergruppe Dy, (m > 1) bei achi-
ralen Polygonen in Frage. Finzige Ausnahme bildet die Gruppenordnung 2, wo Cp und
Dy isomorph sind und deshalb ein Simplex-Test notwendig sein kann, wie anhand der
Polygone Tr und Pa dargelegt wurde (siche Abschnitt 10).

Was die n-eckigen Polyeder betrifft, so beruht die Reduktion der Eckenpaare auf dem so-
genannten ,Starrheitssatz von Cauchy* [3] aus dem Jahre 1813. Anschaulich formuliert
besagt dieser Satz Folgendes: Denkt man sich bei einem (immer noch konvexen) Polyeder
die Randpolygone aus Metallplatten gefertigt und die Kanten mit Scharnieren versehen,
so ist das Polyeder starr. Oder préziser formuliert: Ein Polyeder ist durch die ,Randme-
trik® — das, was man von aussen sieht — bis auf Isometrie eindeutig festgelegt (bei der
Bipyramide Bp in Fig. 8§ wire somit die Angabe der Léange der im Innern verlaufenden
Eckenverbindung ac lberfliissig). Bei der Randmetrik geniigt es, nebst der Kantenmetrik
die Erstdiagonalmetrik aller Randpolygone zu erfassen, auch hier mit gesonderten Metrik-
relationen. Mit Hilfe des Fulerschen Polyedersatzes 14sst sich beweisen, dass so bei der
Darstellung stets weniger als 10n Eckenpaare anzugeben sind. In Spezialfillen, etwa bei
einem reguldren oder halbreguldren Polyeder, ist sogar ¢ine Beschrinkung auf die Kanten-
metrik moglich.

Im Unterschied zu Polygonen kann bei Polyedern fiir den Chiralitédts-Test ein Simplex-
Test erforderlich sein. Arbeitet man ,koordinaten-frei‘, so verlangt der Simplex-Test im
Allgemeinen die Kenntnis von Abstdnden zwischen Ecken, deren Verbindungsstrecken
durch das Innere des Polyeders laufen; die Randmetrik ist nicht ausreichend.

Wie aber bestimmt man die Eckenpaare, die bei der reduzierten Darstellung von Polygonen
und Polyedern zu verwenden sind? Im Normalfall erfordert das Aussortieren dieser Ecken-
paare einen zusdtzlichen Algorithmus, was den Nutzen der Reduktion in Frage stellt. Es
sei noch hinzugefligt, dass durch die Definition 13.1 eine andere Orientierung von chiralen
Polygonen bzw. Polyedern festgelegt wird, wenn man anstelle der vollen eine reduzierte
Darstellung beniitzt.

15 Schlussbemerkungen

Es gibt eine Vielzahl weiterer interessanter Themen im Zusammenhang mit Chiralitdt. So
hat beispielsweise die Grenze zwischen lebender und nicht-lebender Natur etwas mit Chi-
ralitit zu tun. Bei den Molekiilen des Lebens, etwa bei den Aminosduren als Bausteine von
Proteinen, kommt gewdhnlich nur eines der beiden Enantiomeren vor. Fiir dieses Phino-
men der sogenannten Homochiralitat gibt es verschiedene Erkldrungsversuche, die un-
ter anderem auch auf statistische Probleme fiihren [11]. Mathematisch reizvoll ist auch
die Frage nach einem Chiralitdtsmass, einem Mass fiir Abweichung von Achiralitiéit. Ein
interessanter Beitrag dazu stammt von der Arbeitsgruppe um den Chemiker K. Mislow
(Dr. h.c. 2004 der Universitdt Ziirich), die mit dem geometrischen Konzept der Hausdorff-
Metrik arbeitet. In [2] werden in einer Ubersicht Beitrdge zu diesem Thema diskutiert.

Kant hat unseres Wissens als erster das Phianomen der Chiralitdt mit Hilfe von enantiome-
ren Héanden sorgfiltig beschrieben. Ganz abgesehen von der grossen praktischen Bedeu-
tung, etwa in der modernen Chemie, ist Chiralitdt ein reizvolles Thema im Grenzbereich
von Philosophie, Mathematik und Naturwissenschatft.
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