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1 Introduction

Fermat’s little theorem states that if p is a prime number, then
al = a (mod p) (D

holds true for any integer g. One may ask what happens when p is not a prime. The
answer to this question seems little known to mathematicians, even to number theorists.

OThis research was supported in part by a grant from IPM.
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The reason for this seems to be its absence from most of the standard reference books.
The missing result which is essentially due to Gauss is a beautiful one (see [2]): If n is any
positive integer, then

> un/d)a® = 0 (mod n) 2)

dln

holds true for any integer a, where p is the Mobius function defined by (1) = 1; u(m) =
0, if m is not square-free; and w(m) = (=1)", if m = py... pr, where p;’s are distinct
primes.

Congruence (2) is a generalization of congruence (1); the left hand side of congruence (2)
comes down to @” — a if n is a prime number.

The history of congruence (2) is chronicled in Dickson [1, pp. 84-86]. — In his early
draft of the planned eighth chapter of the Disquisitiones Arithmeticee, probably written in
1797 and never published in his lifetime — see the second volume of Gauss’s Collected
Works (Gottingen 1863), pp. 212-240 —, C.F. Gauss treated congruences of polynomials
with integer coefficients, modulo a prime number and an irreducible polynomial. In other
words, he developed a theory of what we would treat today as general finite fields, or,
equivalently, of residue fields of rings of cyclotomic integers. Warming up for this task,
he counted the number of polynomials of a given degree modulo p by grouping them
according to the degrees of their irreducible (modulo p) factors. As a consequence, he
saw (loc.cit., p. 222, §347) that the left hand side of (2), for a prime number p instead
of a, equals n times the number of irreducible (modulo p) polynomials of degree 7. In
particular, this left hand side is divisible by #n. Gauss deduced a few variants of Fermat’s
little theorem from this fact, admiring in passing the many diverse ways in which these
theorems could be obtained.

According to Dickson, it was not until 1880-83 that four independent proofs of (2) for all
a were published by Kantor, Weyr, Lucas, and Pellet (for precise references see [1]; see
also [5]). In 1872, Petersen [3] proved Fermat’s little theorem (1) by using a combinatorial
method, and Thué [6] in 1910 published a proof of congruence (2) by generalizing this
idea. His proof is neatly summarized in [1, p. 82]. Thué uses congruence (2) to prove
Euler’s generalization of congruence (1), which states

a*™ =1 (mod n), (3)

for relatively prime a, n, where p(n) = n[] pin (1 —1/p) is Euler’s totient function. Szele
[5] gives three proofs of congruence (2); his proofs are similar to those of Dickson, Thué,
and Grandi, in 1895, 1910, and 1882, respectively. Finally, in 1986, Smyth [4] gives a
coloring proof of a generalization of congruence (2).

2 The Main Theorem

As mentioned above, congruence (2) is a generalization of Fermat’s little theorem (1) and
Euler’s theorem (3). In this paper, we prove the following generalization of congruence (2)
to finite groups:
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Main Theorem Let G be a finite group of order n and let C* be the multiplicative group
of non-zero complex numbers. If [ : G —> C* is a group homomorphism, then

Z F(g)a™°® =0 (mod n) €]
geG
holds true for any integer a, where 0(g) denotes the order of g.

With every choice of the finite group G and the homomorphism f : G — C* in the
above general result, we get a polynomial expression in g that is guaranteed to be divisible
by |G| for every integer a. Let us check that the Main Theorem really is a generalization
of congruence (2):

Corollary 2.1 Let n be a positive integer and let a be an integer. Then
> wn/d)a® = 0 (mod n)
dln

holds true, where . is the Mobius function.

Proof. Let G = {x) be a cyclic group of order n and let f : G — C* be the homomor-
phism sending x to exp (2” i /n). We find, writing (I, n) for the greatest common divisor of
land n:

n n
fo(g) _ Y njoedy _ AW
Zf(g)a” o8 —Zexp <2mn>a” ol —;exp (2mn>a 4

g€G =1
n I njd d
_ i d_ L4 d
= Z( Z exp (Zmn))a Z( Z exp (2711 = ))a
dln =1 dln =1
(l,n)=d ,nfd)=1
= nn/dya’.
dln

Here the last identity follows from the general fact that p(N) equals the sum over all
primitive N-th roots of unity. (A very classical proof of this fact is obtained by repeating
C.F. Gauss’s reasoning in § 81 of the Disquisitiones Arithmetice, where the same relation
is established for N = p — 1, and for the primitive roots of unity which are the generators
of the multiplicative group of the integers modulo p. — To be sure, the “Mobius function”
was only called like this, with a reference to a 1832 paper of Mobius, by Mertens in 1875,
i.e., 74 years after the appearance of Gauss’s seminal book.)

Now, by the Main Theorem, gec (g)a™(®) is divisible by n, so the above equalities

imply that ) djn n/d ya“ is divisible by #, and thus the corollary follows. O

We can also obtain some generalizations of Fermat’s little theorem (1) by reducing con-
gruence (4) to special cases. For example, if, in congruence (4), we consider f(g) = 1,
for all g € G, then we find that

Z a"°®) = 0 (mod n) (35)
geG
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holds true for any integer a, and any group G of order n. In the special case where G is
cyclic of prime order p, G contains one element of order 1 and p — 1 elements of order p,
thus congruence (5) yields 0 = a? + (p — 1)a = a? — a (mod p), for all integers a.
Applying congruence (5) to the case where G is cyclic of order 7, we obtain the following
corollary which generalizes Fermat’s little theorem (1).

Corollary 2.2 Let n be a positive integer and let a be an integer. Then

> pn/d)a’ =0 (mod n)

dln
holds true, where @ is the Euler’s totient function.

Proof. Let G = (x) be a cyclic group of order n. We have

n n

> aree) =3 gl — 3l

geG =1 =1
n

:Z< 3 1>ad:Z<p(n/d) a’.

dln =1 dln
(I,n)y=d

On the other hand, by congruence (5), Y g¢G a™/°®) is divisible by n, so the above equal-

ities imply that de @(n/d)a? is divisible by n as well, and thus the corollary follows.
|

Let us now explain how (a generalization of) the Main Theorem may be deduced from the
representation theory of finite groups. — Let G be an arbitrary finite group acting (on the
right) faithfully on an arbitrary finite set S. For each group element ¢ € G, write ¢(g) for
the number of orbits of (g) on S. Note that c(g) is the total number of cycles, including
trivial “1-cycles”, when the permutation of § induced by g is written in cycle notation.
Thus, for example, if G is the symmetric group on 5 letters in the natural action on 5
digits, and g is the element (1 2)(3 4) of order 2, then c(g) = 3. An important example
occurs when § = G, with the finite group G acting on itself by right multiplication. In this
case, one has c(g) = n/o(g), where n = |G| — this is the regular action.

Now look at the set M of all maps from S into a finite set A, where |A| = a. (It can be
useful to think of the members of A as “colors” and the members of M as colorings of the
points in S.) The group G then acts on the set M as follows: Let ¢ € G and m € M. Then
m - g is the new member of M defined by the formula (m - g)(x) = m(x - g~!) for all
x € S. (It is routine to check that (m - g)-h = m - (gh) for g, h € G, and so this really
does define an action.)

Given g € G, write w(g) for the number of members of M that are fixed by g, so that
is the permutation character of the action of G on M. How can we compute 7 (g)? It is
easy to see that a coloring m is fixed by g if and only if all of the points in each orbit of
(g) in its action on S are assigned the same color. It follows from this that (g) = a®).
In particular, in the regular action of a group G of order n, we have 7 (g) = a’/°(8),
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Now the permutation character 7 is actually a character of G. It is possible, therefore, to
write 7T as a non-negative integer linear combination of the irreducible characters of G. If
x is one of these irreducible characters, then it follows from the orthogonality relations
for irreducible characters that the coefficient of x in the permutation character = is exactly

(1/n) deG x(g)m(g), where n = |G|. In particular, deG x () (g)is apositive integer
multiple of #n for each choice of irreducible character x . We see now that

Y x(@a“® =" x(g)w(g) =0 (mod n).

geG geG

Now a group homomorphism f from G into the multiplicative group C* is also an ir-
reducible character. In particular, we see that our Main Theorem is exactly the case of
the general fact described here when the action is regular and the irreducible character is
one-dimensional.

Therefore, most of the ideas of this paper are known, even in a more general form. But
perhaps they are not as well known as they might be. In the next section we present a
proof of the Main Theorem in a simpler language, using (multi-) linear algebra. We refer
the reader to [2] for yet another approach.

3 Proof of the Main Theorem via linear algebra

We continue the paper by proving the Main Theorem. Without loss of generality, we may
suppose G = {1, ..., n}. In the sequel, we will be using G as an index set freely, writing
simply “ij” for the composition of the group elements i and j. Firstly, we suppose a is a

n
positive integer. Let V be an a-dimensional vector space over the complex field C and @V
be the n-th tensor power of V. Write v1 @ ... ® v, for the decomposable tensor product

of the indicated vectors. For each i € G, define A; : f(V — éV by
Ai(v1, ..., 00) = Vi1 Q... Q Vin.

It can be easily seen that A; is an n-linear function, so by the universal property of the

n n
tensor product, there exists a unique linear transformation 7; : @V — @V which is
completely determined by the rule

Ti(v®...0v,) =vj1 Q... vj.
The following lemma can be obtained by a straightforward computation.

Lemma 3.1 For each i, j € G, ;T; = Tj;.

n n
We now construct a linear transformation 7 : @V — ®V by averaging:

T= %Zf(i)Ti.

ieG
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Lemma 3.2 T isan idempotent. In particular, the trace tr T of T is a non-negative integer.
, 1 e ] , 1 L
proof. 1% = (=3 r01) (5 Y 1G0L) = = (X 1@ (HET)
n ieG jeG ieG jeG
1 20 1 ;
= ﬁZ(Zf(U)Ti]) = ﬁZ(Zf(J)TJ)
ieG jeG ieG jeG

1
~2 fWT;=T.

jeG

The trace of an idempotent is the dimension of its image, and therefore in particular a
non-negative integer. O

We now compute the trace of 7. The following lemma will be useful for this purpose. We
n
put I'? = x{1, ..., a}.

Lemma 3.3 For eachi € G, the number of (Y1, ..., yn) € I for which (y1, ..., vn) =
(Vils -+ - Vin) is equal to a”/°®.

Proof. Suppose (i) j1, ..., (i) js are the distinct right cosets of (i) in G, where s = [G :
(i)] =n/o(i). 1tis easy to see that (y1, ..., ¥u) = Vi1, - .., Vin) if and only if

)/ijt = — yio(i)jx’
for all 1 <t < s. Therefore, the number of (y1, ..., yu) € I'? for which (y1, ..., vu) =
(¥i1, - - -, vin) is equal to the number of (y1, ..., ¥») € I'} such that

Viji = oo = Vo

forall 1 < < s. But we have a choices for defining

Vijr = - = Yo
for each 1 < ¢ < s, so the requested number is equal to a* = a”/°(), O
We now let B = {ey, ..., ¢;} be a basis of V, therefore,

B2 = @ . . ®8y, | Tty 0 W) € T

n
is a basis of @ V. Foreachi € G,
E(€y1® P ®e}’n) = e)’i]® e ®€Vin’

which shows that the elements of the matrix of T; with respect to B are equal to 0 or 1.
Therefore, tr 7; is equal to the number of (y1, ..., ¥u) € .rg for which ¢), ® ...®e,, =
ey, ®...®ey,. Lemma 3.3 now implies that tr 7; = a”/°"). So,

e = tr(% Zf(i)Ti) = %Zf(i) trT; = %Zf(i)a”/"(i).

ieG ieG ieG
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Hence, by Lemma 3.2,

Z F@Ha"°® =0 (mod n).

ieG
Thus the Main Theorem follows, but only for positive a. The following lemma will com-
plete the proof of the Main Theorem.

Lemma 3.4 Let F'(X) be a polynomial in C[X] that takes on values in Z for non-negative
integer values of X. Then F(X) takes on values in Z for all values of X in Z.

Proof. For integers k > 0 define the polynomials (f) of degree k, as follows. For k = 0,
this is just the constant polynomial 1 and for k > 0,

Xy XX-1..X-k+1)

k) k! '

Now these “binomial coefficients” form a basis for the full space C[X], and thus we can

write "
X
F(X)= a .
(X) ,; k< k)

where the coefficients ai are comglex numbers and m is the degree of F. Since the
binomial-coefficient polynomials ( k) take on integer values for all integer values of X,
it suffices to show that all of the coefficients a; lie in Z for 0 < j < m. We prove this by
induction on j, starting with j = 0. We have (ﬁ) =land (]) = 0fork > j, and thus

j-1 .
: J
a; =F(j)— a ;
J=FG) =) a (k)
k=0
We see, therefore, that each coefficient a; is an integer combination of the integer F(j)
and the integers ax for O < k < j. The result then follows. [

We now apply this lemma to the polynomial

F(X)= L > rx° e Crxl.
n ieG

By the remarks just before Lemma 3.4, F(X) takes on values in Z for non-negative integer
values of X. Therefore, by Lemma 3.4, F(X) takes on values in Z for all values of X in
Z. In other words,

Z f(iHa"°" =0 (mod n)

ieG
holds true for any integer a, thus the Main Theorem follows. O
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