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On a conjecture about relative lengths
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We need some definitions from [1]. Let C  R? be a convex body. A chord pg of C is
called an affine diameter of C, if there is no longer parallel chord in C. The ratio of |ab| to
%Ia’ b'|, where a’b’ is an affine diameter of C parallel to ab, is called the C-length of ab, ot
the relative length of ab, if there is no doubt about C. We denote it by A¢(ab).

Denote by A, the relative length of a side of the regular n-gon. For every ab C C we have
lab| < |a'b’|, where a’b’ is the affine diameter parallel to ab, hence 0 < A, = % <2.
For every regular triangle (or square), since its side length equals its corresponding affine
diameter, A3 = A4 = 2. Let C = abcde be a regular pentagon with side length 1, join

the points ¢ and e, then we know that ab is parallel to ce and A5 = Ac(ab) = % =

l/cos(%) = /5 — 1 (see Fig. 1). Let C = abcdef be a regular hexagon with side length
1, join the points ¢ and f, then ab is parallel to ¢f and A¢ = lef% =1 (see Fig. 2).
A side ab of a convex n-gon P is called relatively short if Ap(ab) < Ay, and it is called

relatively long if Ap(ab) = Ay.
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In [1] Doliwka and Lassak showed that every convex pentagon (or quadrangle) has a rela-
tively short side and a relatively long side. They conjectured that every convex hexagon
has a side of relative length at most 8 — 4y/3 = 1.071 ... . We prove that this is true.

First, we give a hexagon which does not have any relatively short side. Let H = abcdef
be a hexagon, where Abdf is a regular triangle, |ab| = |bc| = |ed| = |de| = |ef| =
|fal = 1, and |ad| = |be| = |cf| = |bd] (see Fig. 3). It is easy to show that ab_Lbc.
Draw fm1bc. Obviously, |a'b’| = |fm| = %tan(%) = # and we obtain A (ab) =
%ﬁ = 8 — 44/3. In this way, we obtain that Ay (ab) = Ay (bc) = Ay (cd) = Ay (de) =
rinlef) = Ay(fa)y=8— 43 =1.071... > 1 = x¢. So, as a matter of fact, each side
of the hexagon is relatively long.

Theorem 1. Every convex hexagon has a side of relative length at most 8§ — 43 =
1.071 ..., and this upper bound is tight.

Let H be a convex hexagon with vertices a, ¢’, b, a’, ¢, b’. For every non-degenerate
affine transformation v and for arbitrary points p, ¢ € C, we know that Ae(pg) =
Arey(t(p)T(g)). Thus, without loss of generality, we may assume that three non-adjacent
vertices of the convex hexagon H form a regular triangle Aabc.

Let the center of Aabc be 0, and denote by d@o the straight line passing through a, o.
Similarly, we define straight lines bo, To. A convex hexagon H = ac’ba’ch’ is called
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Fig. 3

a special-regular hexagon, if Aabc is a regular triangle and |aa’| = [bD'| = |cc’| with
a’ €do, b’ € bo, ¢’ €To (see Fig. 4).

Fig. 4

Lemma 1. The relative length of each side of a special-regular hexagon H = ac’ba’ch’
is at most 8 — 4/3.

Proof. Without loss of generality, let a = (—=1,0), b = (1,0), ¢ = (0, «/5), and
laa’'| =t > /3. Then,

d=(Zo1l), v (-2,

$) 2 272
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Take a point d € cb’ such that the segments a’c and bd are parallel (see Fig. 4). We then
easily compute

d_(zt—zﬁ —t )
t—2V3 23t/
which leads to

1 1
deff =12 —2V3t+4, |bd)? =12 + .
o il <(t -2V32  2- ﬁz>2>

Hence, we find

2|a’ —/312 —4 4
ay(a'e) = ||;dc|[: /3 +t8t \/3:8—@(14—;)58—4«/5.

Similarly, we can compute the relative length for each side of the hexagon and Lemma 1
is proved. O

Remark 1. When ¢ = 2, that is, |aa’| = |ab|, we get the hexagon in Fig. 3, and the

upper bound 8 — 4+/3 is attained. Generally speaking, when v/3 < ¢ < %, we have

8 — \/g(t + -;4-) > 1, so when ﬁ <t < %g, each side of the hexagon is relatively long.

Lemma 2. If Aabc is a regular triangle, a’ € @0, b’ € bo, ¢’ € To (see Fig. 5), then the
convex hexagon H = ac’ba’ch’ has a side of relative length at most 8 — 4+/3.

Fig. 5

Proof . Consider the segments aa’, bb’, and cc’ . If |aa’| = |bb'| = |cc’|, then H is a special-
regular hexagon, and we reach the conclusion by Lemma 1. Otherwise, we may assume
that |aa’| = min{|ad’|, |bb'|, |cc’|}. Then there exist points b” € bb’ and ¢” € cc’ such that
laa’| = |bb"| = |cc”|, and hence Hy = ac”ba’ch” is a special-regular hexagon contained
in hexagon H = ac’ba’ch’. Therefore, Ay (a’c) < Ay, (a'c) = 8 — 44/3. Lemma 2 is
proved. O
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Lemma 3. If Aabc is a regular triangle, a’ ¢ @0, b’ € bo, ¢’ € To (see Fig. 6), then the
convex hexagon H = ac'ba’ch’ has a side of relative length at most 8 — 4+/3.

Proof . Denote by a” the intersecting point of the segments ba’ and @o. Consider the convex
hexagon H; = ac’ba’ch’. Obviously, the hexagon Hy € H = ac’ba’ch’. If |bb’| or
lcc’| equals min{|aa”|, |bb'|, |cc’|}, then, according to Lemma 2, Ay (ab’) or Ay(ac’) is
at most 8 — 4+/3. If |aa”| equals min{|aa”|, |bb'|, |cc’|}, then, by Lemma 2, |ca”| is at
most 8 — 4+/3. Without loss of generality, we may assume that |aa’| = |bb’| = |aa”|, see
Fig. 6. Then there exist points ¢ and f such that be || a”c, bf || a’c, and ef || a’a”. Then,

Aca’a” ~ Abfe, hence, Ziggfl = Qillf}cll < 8 — 44/3. Since |bf| is smaller than the affine

diameter parallel to a’c, therefore, Ay (a’c) < 8 — 4\/5. The proof is complete. O

Remark 2. For the case a’ € @0, b’ ¢ bo, ¢’ € ¢0, or the case a’ € @0, b’ € bo, ¢’ ¢ To
the conclusion of Lemma 3 can be reached similarly.

Lemma 4. If Aabc is a reqular triangle, a’ ¢ @0, b’ ¢ bo, ¢’ € To (see Fig. 7), then the
convex hexagon H = ac'ba’ch’ has a side of relative length at most 8 — 4+/3.

Proof. Denote by a” the intersecting point of ba’ and @o, and b” the intersecting point
of ¢b’ and bo. If the hexagon H; = ac’ba’ch” is a special-regular hexagon, then the
points @ and ¢ are distant in relative length by at most 8 — 4+/3. Otherwise, we have
three cases to consider. When |cc¢’| = min{|aa”|, |bD"|, |cc’|}, by Lemma 2 we obtain
Ay (ac’) < 8 — 44/3; when |aa”| = min{|aa”|, |bb"|, |cc|}, then by Lemma 2 we have
Mg, (ca”) < 8 —44/3, and s0 Apy(ca’) < 8 —4+/3; when [bb"| = min{laa”|, |bD"], |cc'|},
then by Lemma 2 we have A4, (ab”) < 8 — 44/3, and 50 Ay (ab’) < 8 — 4+/3. The proof
is complete. O

Remark 3. For the case a’ ¢ @0, b’ € bo, ¢’ ¢ ©0, or the case a’ € a0, b’ ¢ bo, ¢’ ¢ To
the conclusion of Lemma 4 can be reached similarly.
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Fig. 7

Lemma 5. If Aabc is a regular triangle, a' ¢ 0, b’ ¢ bo, ¢’ ¢ T0 (see Fig. 8), then the
convex hexagon H = ac’ba’ch’ has a side of relative length at most 8 — 4+/3.

Fig. 8

Proof. Denote by a” the intersecting point of ba’ and @o, b” the intersecting point of
cb’ and bo, and ¢” the intersecting point of ac’ and ¢o. Consider the hexagon H; =
ac”ba”cb”. Without loss of generality we may assume that |aa”| = minf{|aa”|, |bb"|,
lcc”[}, then by Lemma 2 we have Ay, (ca”) < 8 — 4+/3 and hence Ay (ca’) < 8 — 4+4/3.

The proof is complete. O
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Proof of Theorem 1. Combining Lemmas 1-5 we obtain Theorem 1, that is, the conjecture
of Doliwka and Lassak is true. By Remark 1 the upper bound is tight. |

From Remark 1 we know that many convex hexagons have relative long sides, but not
every convex polygon has a relative long side. For example we have the following result:

Theorem 2. There exists a convex 12-gon which does not have any relatively long side.

Fig. 9

Proof. We consider the convex 12-gon Q = abcdef ghijkl, as shown in Fig. 9, where
loa| = |oc| = |oe| = |og| = |oi| = |ok| =t with]l <7 < 23ﬁ lob| = lod| = |of| =
loh| = |oj| = |ol| = 1, the angle formed by any two consecutive segments with common
pointo equals %. By the symmetry of the construction of the convex 12-gon all sides of the

12-gon have the same relative length. We need only to compute one of them, say, Ag(gh).

Obviously, e = (4, —=¥2), g = (1,00, h = (3, L), j = (0, 1), k = (=%, %), and
there exists a point m € jk such that the segments g/ and em are parallel (see Fig. 9). The

computation shows
33 — /3t —363 + 432 — 5t
Ighl=\/t2—\/§t+1, m=< V3~ V3 ’ +4v3 )
23312 — 8f +24/3 24312 — 8t + 243

hence,

21— \Br+1

lem| = —————.
|v/312 — 4t + /3]
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Therefore, we obtain

ro(gh) =

2|gh] =312 + 4t — /3 1

|g|: V312 + f=4—\/§(t+—)§2(2—ﬁ).

|em| t t

However, we can easily obtain that L;p = 2(2 — \/§) by setting £ = 1 in the above
equation since @ is a regular 12-gon when ¢ = 1. Therefore, Ao (gh) < A12 and the proof
is complete. U
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