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Summen aufeinander folgender Quadrate,
die ein Quadrat ergeben

Josef Rung und Johann Werner1'

Josef Rung, Jahrgang 1953, studierte Mathematik und Physik. Er bildet am Hans-Lein-

berger-Gymnasium in Landshut angehende Mathematiklehrer aus. Neben Veröffentlichungen

zur Algebra und algebraischen Geometrie hat er auch ein Buch über sphärische

Trigonometrie und eine „Zahlentheorie fur Einsteiger" mitverfasst.

Johann Werner wurde 1923 geboren. Nach dem Studium der Mathematik und Physik
war er lange Zeit als Mathematik- und Physiklehrer tatig, viele Jahre auch in
Griechenland. Danach leitete er bis zu seiner Pensionierung im Jahre 1988 das Clavius-

Gymnasium in Bamberg.

Einleitung
E. Lucas hat im 19. Jahrhundert das folgende Problem gestellt (vgl. [2], [3]): „Für welche
n e N hat die Gleichung

7=0

Lösungen (x, y) über N7'

t Herr Johann Werner ist am 12. November 2004 verstorben.

Summen aufeinander folgender Quadratzahlen haben neuerdings verstärkt Interesse

gefunden. Beispielsweise hat Warlimoni 1998 im Journal ofNumber Theory (Vol. 68.

pp. 87-98) etwa die Frage untersucht, wie viele natürliche Zahlen (unterhalb einer

gegebenen Schranke) Summen aufeinander folgender Quadrate sind. Bremner u.a.
studierten im selben Journal (Vol. 62, pp. 39-70), für welche „Startquadrate'* solche Summen

auf Quadratzahlen führen. Die Autoren stellen sich hier der alten Aufgabe, für
welche Summandenzahlen derartige Quadratsummen wieder Quadrate ergeben können.

Sie geben polynomial Scharen solcher Zahlen an und lösen fur rationale
Summanden die Aufgabe voJJsläncJig. lu allen drei 'Iiiemctikreiseu gibl es noch ungelöste
Probleme.
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Die vorliegende Arbeit verfolgt folgende Ziele:

1. Wir geben Polynome p(k) derart an, dass für n p(k), k e N, Lösungen von (L)
mit x, y e N existieren.

2. Wir beweisen notwendige und hinreichende Bedingungen dafür, dass (L) rationale

Lösungen x, y besitzt.

3. Wir leiten notwendige (aber nicht hinreichende) Bedingungen her für die Existenz

natürlichzahliger Lösungen.

Dazu wird (L) in eine etwas andere Gestalt gebracht: Führt man die Summierungen aus,

multipliziert mit 4 und setzt 2y =: z und 2x + (n — 1) =: u, so erhält man für (L) die

äquivalenten Formulierungen

2 n(n-l)(n + l) 2
nu -\ z (1)

bzw.
3nu2 + n(n- 1)(« + 1) 3z2. (2)

Dies gilt unter den Nebenbedingungen:

(i) z ee 0 (mod 2) und

(ii) m 1 (mod 2) genau wenn « 0 (mod 2).

Da für nichtquadratische n mit jeder ganzzahligen Lösung u eine größere existiert, kann
daraus stets ein positives x bestimmt werden. Es muss z gerade und u genau dann ungerade
sein, wenn n gerade ist.

1 Polynomiale n, die natürlichzahlige Lösungen zulassen

Satz 1 Ganzzahlige positive Lösungen existieren für alle

a) n 3k2 - 1, k e N,

b) n (6k ± l)2,n > 49, k e N.

(L) wenigstens eine ganzzahlige Lösung und ist n keine Quadratzahl, dann hat (L)
unendlich viele ganzzahlige Lösungen.

Beweis, a) Für n 3k2 - 1, u k e N und z k ¦ (3k2 - 1) ist (1) erfüllt, z gerade und
u genau dann ungerade, wenn n gerade ist. Das beweist a). Die Existenz unendlich vieler

ganzzahliger Lösungen folgt etwa aus [5, Theorem 104].

b) Für n (6k ± l)2, n > 49, u ^^- und z (6k ± 1)(m + 4) > 0 ist (1) erfüllt.

z und m (9£2 ± 3k + 2)(6k2 ±2k- l) sind gerade. Falls n > 26, ist u > « - 1, also

x > 0. Das beweist b). D

Für « 25 findet man J^2l0(0 + j')2 702, und man überlegt sich leicht, dass dies die
einzige Summe von 25 aufeinander folgenden Quadratzahlen ist, die wieder ein Quadrat

ergibt.
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2 Rationale Lösungen für Lucas' Gleichungen
Für eine natürliche Zahl n und eine Primzahl p bezeichne vp (n) den Exponenten von p in

der Primfaktorzerlegung von n. (j ist das Legendre-Symbol.

Satz 2 (L) ist über Q genau dann lösbar, wenn für alle Primzahlen p > 3 die folgenden
Bedingungen erfüllt sind:

/, \vp(n)
1)( — =1 und\pj

\n + 1 falls n + 1 ^ 0 (mod 3),—t =l wobein' .„_,_,^ / [*±± fallsn + l =0(mod3).
3 ein 7eßer von n ist, kommt noch die folgende Bedingung hinzu:

3) -^j- (-1)V3W (mod 3).

Beweis. Die Gleichungen (L) und (1) sind über Q äquivalent, denn sie sind unter den

Nebenbedingungen (i), (ii) schon über N äquivalent. Notwendig und hinreichend für die
Existenz rationaler Lösungen von (1) ist offensichtlich die Existenz rationaler Lösungen
(U, V, Z) von

1Vtia-J)y2 0_ (3)

Um Letzteres zu begründen muss nur gezeigt werden, dass auch im Falle einer rationalen

Lösung (U, V, Z) von (3) mit V 0 eine rationale Lösung von (1) existiert. Falls nun
V 0 ist, dann ist n k2 eine Quadratzahl. Mit N := \n{n — l)(n + 1) lösen die

rationalen u := ^r und z := ^r^ ^ie Gleichung (1).

Es genügt also zu zeigen, dass die in Satz 2 genannten Bedingungen notwendig und
hinreichend für die Lösbarkeit von (3) sind. Dazu verwenden wir das Hasse-Prinzip und
benutzen die Standardresultate und Bezeichnungen über p-adische Zahlen, wie sie (etwa) in
[6, S. 19ff.] zu finden sind, insbesondere das Hilbertsymbol (a, b) (a, b)p im Körper
<Q>p. Von Bedeutung sind vor allem Theorem 1, S. 20, Theorem 3, S. 23 (Huberts Produktformel)

und Theorem 8, S. 41 (Hasse-Minkowski).

Wegen der Vorzeichen der Koeffizienten besitzt Gleichung (3) sicher reelle Lösungen
(U, V, Z) ^ (0, 0, 0). Notwendig für die rationale Lösbarkeit von (3) ist, dass für alle

ungeraden Primzahlen p gilt:

Hp := (-n(n-l)(n+l),njp 1.

Ist andererseits Hp 1 für alle ungeraden p, dann ist nach der Hilbertschen Produktformel

auch H2 1. Daher ist „Hp 1 für alle ungeraden p" nach Hasse-Minkowski
auch hinreichend für die Lösbarkeit von Gleichung (3) (d.h. von (1)) über den rationalen
Zahlen.

Wir schreiben künftig, wie oben

N :=-n(n -l)(n+l)
und kürzen eine (ungerade) Primzahl stets mit p ab.
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Wir zeigen jetzt, dass die Bedingung (3) äquivalent ist zu den in Satz 2 genannten
Bedingungen; dazu sind mehrere Fälle zu unterscheiden:

I.Fall: n 3k+l,k e N.

a) Ist p ein Teiler von n, also vp (n) > 0 (und damit p > 3), dann gilt vp (N) vp (n) =: a,
N k(3k + l)(3k + 2) =: pau, n =: pav, mit p-adischen Einheiten u, v e Z. Daraus

folgt u vk(3k + 2). Damit ist dann

^1 (mod p)

b) 1st p Teiler von n — 1 dann rechnet man analog nach: Hp ^ 1.

c) Ist p Teiler von « + 1, so ergibt sich: Hp

2. Fall: n 3k - l,k e N.

a) Ist p ein Teiler von n, also wieder vp (N) vp{n) =: a, ferner N k(3k-l)(3k-2)
pau und« pav mit p-adischen Einheiten u, v, dannistM vk{3k- 2) und man rechnet

' 3\vp(n)
wie im Fall la) aus: Hp lj
b) Wenn p Teiler von « — 1 ist, dann ergibt sich wieder wie oben: Hp 1.

c) Ist p schließlich Teiler von k ^-, dann ergibt sich mit vp{n) 0 :

3. Fall: n 3k, k e N.

Wenn p > 3, so unterscheidet man wieder die Fälle

a) p teilt fc,

b) p teilt 3k - 1 bzw.

c) p teilt 3^+ 1,

die (wie im 1. Fall) auf

- J b) //p 1 bzw. c) Hp —

führen, also auf das im Satz 2 unter 1) und 2) Genannte.

Es bleibt (für n 3k) der Fall p 3. Dann ist N=k(3k - l)(3k +1), v3 (N) v3 (n) - 1.

Mit, := ^ergibt sich H3 ^N) ^-i^+DyW (_1)lsW.(^W-iiff3
ist genau dann 1, wenn u (—1)V3(") (mod 3). Das ergibt schließlich die Bedingung 3)

unseres Satzes.

Insgesamt ist nunmehr Satz 2 bewiesen. D
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3 Natürlichzahlige Lösungen von (L)

Wir formulieren notwendige Bedingungen für die Lösbarkeit von (L) über N (siehe auch

[l];[4,insbes. 3.2]).

Korollar Eine Lösung der Lucas'sehen Gleichung in natürlichen Zahlen ist unmöglich für
Summandenzahlen n mit einer der folgenden Eigenschaften:

1) n enthalt einen Primfaktor p 5 oder 7 (mod 12) in ungerader als höchster Potenz.

2) n + 1 enthalt 3 in gerader Potenz oder einen Primfaktor p > 3 mit p 3 (mod 4)
in ungerader als höchster Potenz.

3) a) n enthalt 3 in gerader als höchster Potenz.

b) n enthalt 3 in ungerader als höchster Potenz, aber der Restfaktor ist 1 (mod 3).

4) n enthalt 2 in gerader als höchster Potenz.

Beweis. 1), 2), und 3.b) sind Umformulierungen von Satz 2.

Zu 4): Für n 22s ¦ r, (r, 2) 1, ergibt sich aus der in der Einleitung hergeleiteten
Gleichung (2):

3ru2 + r(n2 - 1) 3z2.

Diese Gleichung ist modulo 4 unerfüllbar: Beachtet man, dass (alles mod 4)

u2 1, r 1 oder 3, und«2 -1 3,

dann hat die linke Seite den Viererrest 2, während der der rechten Seite 0 oder 3 ist.

Zu 3.a): Aus (2) folgert man für n 32s ¦ r, (r, 3) 1, die modulo 3 unerfüllbare
Gleichung

3rM2 + r(n2 - 1) 3z2.

Insgesamt ist nun das Korollar bewiesen. D

Die im Korollar formulierten Bedingungen an n für die Lösbarkeit von (1) sind i.Allg.
nicht hinreichend, wie die Beispiele n 842 (siehe auch [1]) oder 2306 oder 88187

zeigen. Mit Satz 2 ergibt sich leicht, dass in diesen Fällen (L) eine rationale Lösung hat.

Mit [5, Theorem 108, S. 205]) kann man durch Rechnung aber definitiv ausschließen,
dass positive ganzzahlige Lösungen existieren. (Hinreichende Bedingungen erhält man

allerdings, wenn für die zu der binären quadratischen Form 1 gehörenden Diskriminanten
die Geschlechter einklassig sind; dies soll aber hier nicht weiter verfolgt werden.)
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