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Summen aufeinander folgender Quadrate,
die ein Quadrat ergeben

Josef Rung und Johann Werner"

Josef Rung, Jahrgang 1953, studierte Mathematik und Physik. Er bildet am Hans-Lein-
berger-Gymnasium in Landshut angehende Mathematiklehrer aus. Neben Veroffentli-
chungen zur Algebra und algebraischen Geometrie hat er auch ein Buch iiber sphiri-
sche Trigonometrie und eine ,,Zahlentheorie fiir Einsteiger mitverfasst.

Johann Werner wurde 1923 geboren. Nach dem Studium der Mathematik und Physik
war er lange Zeit als Mathematik- und Physiklehrer titig, viele Jahre auch in Grie-
chenland. Danach leitete er bis zu seiner Pensionierung im Jahre 1988 das Clavius-
Gymnasium in Bamberg.

Einleitung

E. Lucas hat im 19. Jahrhundert das folgende Problem gestellt (vgl. [2], [3]): ,,Flr welche
n € Nhat die Gleichung

n—1

(L) D+ )=y

j=0

Losungen (x, v) tiber N7

1 Herr Johann Werner ist am 12. November 2004 verstorben.
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Die vorliegende Arbeit verfolgt folgende Ziele:

1. Wir geben Polynome p(k) derart an, dass fiir n = p(k), k € N, Losungen von (1)
mit x, v € N existieren.

2. Wir beweisen notwendige und hinreichende Bedingungen dafiir, dass (L) rationale
Losungen x, y besitzt.

3. Wir leiten notwendige (aber nicht hinreichende) Bedingungen her fiir die Existenz
natiirlichzahliger L.osungen.

Dazu wird (L) in eine etwas andere Gestalt gebracht: Fiihrt man die Summierungen aus,
multipliziert mit 4 und setzt 2y =: z und 2x + (n — 1) =: u, so erhilt man fiir (L) die
dquivalenten Formulierungen

n(n—lg(n+1) _ P )

3nu? +nn — H(n + 1) = 322 )

nu® +
bzw.
Dies gilt unter den Nebenbedingungen:
(i) z=0(mod 2) und
(i) u = 1 (mod 2) genau wenn n = 0 (mod 2).

Da fiir nichtquadratische n mit jeder ganzzahligen Losung u eine grofere existiert, kann
daraus stets ein positives x bestimmt werden. Es muss z gerade und # genau dann ungerade
sein, wenn n gerade ist.

1 Polynomiale n, die naturlichzahlige Losungen zulassen
Satz 1 Ganzzahlige positive Losungen existieren fiir alle
Ayn=3k*-1keN,
b)n=(6k+ 1)’ n>49 keN
Har (1) wenigstens eine ganzzahlige Losung und ist n keine Quadratzahl, dann hat (L)

unendlich viele ganzzahlige Lisungen.

Beweis. a) Fiirn = 3k?> — 1, u =k e Nund z = k - (3k? — 1) ist (1) erfiillt, z gerade und
u genau dann ungerade, wenn 7 gerade ist. Das beweist a). Die Existenz unendlich vieler
ganzzahliger Losungen folgt etwa aus [5, Theorem 104].

b)Firn = (6k £ )%, n > 49, 4 = ”22;449 und z = (6k £ 1)(u +4) > 0 ist (1) erfiillt.
zund u = (9k2 + 3k + 2)(6k2 + 2k — 1) sind gerade. Falls n > 26, istu > n — 1, also
x > 0. Das beweist b). O

Fiir n = 25 findet man 234:0 (0 4+ j)* = 702, und man tiberlegt sich leicht, dass dies die
einzige Summe von 25 aufeinander folgenden Quadratzahlen ist, die wieder ein Quadrat
ergibt.
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2 Rationale Losungen fiir Lucas’ Gleichungen
Fiir eine natiirliche Zahl »n und eine Primzahl p bezeichne v, (n) den Exponenten von p in
der Primfaktorzerlegung von #. <%> ist das Legendre-Symbol.

Satz 2 (L) ist iiber Q genau dann losbar, wenn fiir alle Primzahlen p > 3 die folgenden
Bedingungen erfiillt sind.:

vp(n)
D (%)pn =1 und

vy (') 1 1 1#£0 d 3),
2) ($)" =1 wobein' = el Jasmet L EYHO B
P == Jallsn+1=0(mod 3).

Falls 3 ein Teiler von n ist, kommt noch die folgende Bedingung hinzu:
3) = (—1)»" (mod 3).

Beweis. Die Gleichungen (L) und (1) sind iiber Q dquivalent, denn sie sind unter den
Nebenbedingungen (i), (ii) schon iiber N dquivalent. Notwendig und hinreichend fiir die
Existenz rationaler Losungen von (1) ist offensichtlich die Existenz rationaler Ldsungen
(U, V,Z)von

3vs(n)

nn—1n+ 1)V2
3
Um Letzteres zu begriinden muss nur gezeigt werden, dass auch im Falle einer rationalen
Losung (U, V, Z) von (3) mit V = 0 eine rationale L.osung von (1) existiert. Falls nun
V = 0 ist, dann ist 7 = k? eine Quadratzahl. Mit N := %n(n — D)(n + 1) Iosen die
rationalen u := &=L und z := XH die Gleichung (1).
Es geniigt also zu zeigen, dass die in Satz 2 genannten Bedingungen notwendig und hin-
reichend fiir die Losbarkeit von (3) sind. Dazu verwenden wir das Hasse-Prinzip und be-
nutzen die Standardresultate und Bezeichnungen iiber p-adische Zahlen, wie sie (etwa) in
[6, S. 191f.] zu finden sind, insbesondere das Hilbertsymbol (a, b) = (a, b)p im Korper
Qp. Von Bedeutung sind vor allem Theorem 1, S. 20, Theorem 3, S. 23 (Hilberts Produkt-
formel) und Theorem 8, S. 41 (Hasse-Minkowski).
Wegen der Vorzeichen der Koeffizienten besitzt Gleichung (3) sicher reelle Losungen
,v,Z) # (0,0,0). Notwendig fiir die rationale Losbarkeit von (3) ist, dass fiir alle
ungeraden Primzahlen p gilt:

72 _qU? - =0. (3)

Hp = (%n(n —Dn+1), n>p = 1.

Ist andererseits H, = 1 fiir alle ungeraden p, dann ist nach der Hilbertschen Produkt-
formel auch Hp = 1. Daher ist ,,H, = 1 fiir alle ungeraden p* nach Hasse-Minkowski
auch hinreichend fiir die Losbarkeit von Gleichung (3) (d.h. von (1)) iiber den rationalen
Zahlen.

Wir schreiben kiinftig, wie oben
1
N = gn(n —Dn+1)

und kiirzen eine (ungerade) Primzahl stets mit p ab.



Summen aufeinander folgender Quadrate, die ein Quadrat ergeben 69

Wir zeigen jetzt, dass die Bedingung (3) dquivalent ist zu den in Satz 2 genannten Bedin-
gungen; dazu sind mehrere Félle zu unterscheiden:

1.Fall:n =3k + 1,k e N,

a) Ist p ein Teiler von n, also vp(n) > O (und damit p > 3), dann gilt vy (N) = vy (n) =: a,
N = kQBk + 1)(3k + 2) =: p*u, n =: p®v, mit p-adischen Einheiten u, v € Z. Daraus
folgt # = vk(3k + 2). Damit ist dann

o (—1)“2 (vk(3k+2)>a (u)a
g p P p
3k+2=1 (mod p) (—_1)“ ‘ <§)“

) )
3k=—1 (mod p) (3_k> (ﬁ)“_(i)“”m)

p p p )

vp(N)
b) Ist p Teiler von n — 1 dann rechnet man analog nach: H, = <%> =1
vp(N) vp(n+1)
¢) Ist p Teiler von n + 1, so ergibt sich: H, = <%ﬂ> i (_71-) . .

2.Fall:n =3k -1,k e N.

a) Ist p ein Teiler von n, also wieder vy (N) = vp(n) =: a, ferner N = k(3k—1)(3k—-2) =
ptuund n = p*v mit p-adischen Einheiten «, v, dann ist 4 = vk(3k —2) und man rechnet

@ 3 vp(n)
wie im Fall 1a) aus: H) = (;) .

b) Wenn p Teiler von n — 1 ist, dann ergibt sich wieder wie oben: Hp = 1.

c¢) Ist p schlieBlich Teiler von k = %, dann ergibt sich mit vy (n) =0 :

(Bl
By= ()"

3.Fall: n =3k, k € N.
Wenn p > 3, so unterscheidet man wieder die Fille

a) pteilt k,

b) pteilt3k — 1 bzw.

c) pteilt 3k + 1,
die (wie im 1. Fall) auf

3 vp(n) 1 vp(n+1)
a) Hy = (;) , b)) Hy=1 bzw. ¢) Hp = (7)

fiihren, also auf das im Satz 2 unter 1) und 2) Genannte,

Es bleibt (fiir n = 3k) der Fall p = 3. Dann ist N=k(3k — 1)(3k+ 1), 3(N)=v3(n)—1.
Mit v := o ergibtsich Hs = iy, (<3k—1>3<3k+1>)"3(”> = (—m. (7)1 gy
ist genau dann 1, wenn v = (—1)"" (mod 3). Das ergibt schlieflich die Bedingung 3)
unseres Satzes.

Insgesamt ist nunmehr Satz 2 bewiesen. |
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3 Natiirlichzahlige Losungen von (L)

Wir formulieren notwendige Bedingungen fiir die Losbarkeit von (L) tiber N (siehe auch
[1]; [4, insbes. 3.2]).

Korollar Eine Losung der Lucas’schen Gleichung in natiirlichen Zahlen ist unmaoglich fiir
Summandenzahlen n mit einer der folgenden Eigenschaften:

1) n enthdlt einen Primfaktor p = 5 oder 7(mod 12) in ungerader als hdchster Potenz.

2) n+ 1 enmthdlt 3 in gerader Potenz oder einen Primfaktor p > 3 mit p = 3 (mod 4)
in ungerader als hochster Potenz.

3) a) n enthdlt 3 in gerader als hoichster Potenz.

b) n enthdlt 3 in ungerader als hochster Potenz, aber der Restfaktor ist = 1 (mod 3).

4) n enthdlt 2 in gerader als hochster Potenz.

Beweis. 1), 2), und 3.b) sind Umformulierungen von Satz 2.
Zu 4): Fir n = 2% - r, (r,2) = 1, ergibt sich aus der in der Einleitung hergeleiteten
Gleichung (2):

3ru? —|—r(n2 - b= 372,

Diese Gleichung ist modulo 4 unerfiillbar: Beachtet man, dass (alles mod 4)
w?=1,r=1oder3,undn®>—1=3,

dann hat die linke Seite den Viererrest 2, wihrend der der rechten Seite O oder 3 ist.

Zu 3.2): Aus (2) folgert man fiir n = 3% .7, (r,3) = 1, die modulo 3 unerfiillbare Glei-
chung

3ru’ +r(n2 -1 = 372

Insgesamt ist nun das Korollar bewiesen. O

Die im Korollar formulierten Bedingungen an z fiir die Losbarkeit von (1) sind i.Allg.
nicht hinreichend, wie die Beispiele n = 842 (siehe auch [1]) oder 2306 oder 88187
zeigen. Mit Satz 2 ergibt sich leicht, dass in diesen Fillen (L) eine rationale Losung hat.
Mit [5, Theorem 108, S. 205]) kann man durch Rechnung aber definitiv ausschlieBen,
dass positive ganzzahlige L.osungen existieren. (Hinreichende Bedingungen erhilt man
allerdings, wenn fiir die zu der bindren quadratischen Form (1) gehtrenden Diskriminanten
die Geschlechter einklassig sind; dies soll aber hier nicht weiter verfolgt werden.)
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