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Periodische Positionsbrüche und elementare Zahlentheorie

Helmut Koch

Helmut Koch studierte von 1952 bis 1957 Mathematik an der Humboldt-Universität
zu Berlin. Anschließend arbeitete er zwei Jahre in der Halbleiterforschung. Von 1959

bis 1991 arbeitete er im Institut für Mathematik der Akademie der Wissenschaften der

DDR. Danach leitete er die Max-Planck-Arbeitsgruppe fur Algebraische Geometrie
und Zahlentheorie und war gleichzeitig als Professor für Mathematik an der Hum-
boldt-Universitat tatig. Seit 1998 befindet er sich im aktiven Ruhestand.

1 Einleitung
Jede rationale Zahl lässt sich als endlicher oder periodischer Dezimalbruch darstellen. Die
hierbei auftretenden Gesetzmäßigkeiten führen auf Fragen der elementaren Zahlentheorie.

Dieser Zusammenhang ist geeignet, das eigenständige Interesse von Schülern an der

Mathematik zu wecken. Einige dieser Gesetzmäßigkeiten lassen sich auch als Sätze über
natürliche Zahlen formulieren. Multipliziert man z.B. die Zahl u 142857 mit 2, 3, 4,
5 und 6, so erhält man die zyklischen Permutationen der Ziffern der Zahl u (vergleiche
Abschnitt 4, Beispiel 1).

Wir betrachten im folgenden allgemeiner Positionsbrüche für eine beliebige natürliche
Zahl g > 1 als Basis.

Im zweiten Abschnitt zeigen wir, dass sich jeder Bruch im wesentlichen eindeutig als

endlicher oder periodischer Positionsbruch darstellen lässt, und formulieren die Fragen, die
sich aus dieser Darstellung ergeben. Im dritten Abschnitt beweisen wir einige Tatsachen

aus der elementaren Zahlentheorie, die dann im vierten Abschnitt zur Lösung der gestellten

Fragen führen.

Eine rationale Zahl, deren Nenner durch eine von 2 und 5 verschiedene Primzahl teilbar

ist, hat eine DezimalbruchdarsLeOung als unendlicher periodischer Dezimalbruch.
Die Eigenschaften der zugehörigen Periode ergeben sich aus Sätzen der elementaren

Zahlentheorie, insbesondere aus dem kleinen Fermatschen Satz und seiner
Verallgemeinerung von Euler. Der Autor untersucht in der vorliegenden Arbeit allgemeiner
Posiiionsbruehe zu beliebiger Basis. Die ArbeiL isL geeignet. Schuler ab der Mittelstufe
;in l-ViiL-on Ja ek'iiiaiiiiivii /.aliloiiihoi-ric lior:iii/ululiivii.
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Bezüglich der Einordnung der hier behandelten Fragen in den Gesamtzusammenhang der

Mathematik verweisen wir auf das Buch [1], insbesondere Kapitel 3.

2 Positionsbrüche rationaler Zahlen

Für das folgende genügt es, von rationalen Zahlen a mit 0 < a < 1 auszugehen. Wir
bezeichnen die Menge dieser Zahlen mit Z.
Sei g eine natürliche Zahl mit g > 1 und sei Mg die Menge der Zahlen 0, 1,..., g— 1. Eine

rationale Zahl a mit a > 0 hat eine eindeutige Bruchdarstellung a | mit naturlichen
Zahlen b und c, die zueinander teilerfremd sind, b heißt der Zähler und c der Nenner von

a. Für eine beliebige reelle Zahl ß bezeichnet [ß] die größte ganze Zahl a mit a < ß.

Eine Zahl a e Z hat eine Darstellung als endlicher Positionsbruch zur Basis g, wenn es

Zahlen a\,..., as in Mg mit

a

gibt.

Satz 2.1

a) £me ZaW a e Z hat genau dann eine Darstellung (l)fü'r ein gewisses s, wenn der
Nenner c von a nur Primfaktoren enthält, die Teiler von g sind.

b) Sind ai,..., as beliebige Zahlen aus Mg, die nicht sämtlich gleich 0 sind, so ist
durch (1) eine Zahl a aus Z gegeben.

c) Die Darstellung (1) ist eindeutig.

Beweis, a) Sei a eine Zahl mit der Darstellung (1). Dann hat a die Bruchdarstellung

2 Uigs l )/gs7 d.h. im Nenner von a gehen nur Teiler von g auf. Wenn umgekehrt
=1

a \ eine Zahl ist, deren Nenner nur Primteiler hat, die durch g teilbar sind, so gibt es

eine Potenz gh mit c\gh. Daher ist a von der Form a -^ mit einer natürlichen Zahl d.
ö

h-l
agl mit a e Mg.Wegen a < 1 ist d < gh und hat eine Darstellung d ^ atgl mit a, e Mg. Es folgt

1=0

A-l A

„i-A
° 1=0 1 1

Damit ist a) bewiesen.

b) Wir haben a < 1 zu zeigen. Es gilt
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s

c) ag a\ + Y, aig~s+l. Daher ist a\ nach b) der ganze Teil von ag. Die eindeutige
1=2

Bestimmtheit von ü2, ¦ ¦ ¦, as zeigt man entsprechend durch Induktion. D

Die durch Satz 2.1 nicht erfassten rationalen Zahlen werden durch Positionsbrüche
approximiert:

Satz 2.2 Sei a eine Zahl aus Z, in deren Nenner mindestens eine Primzahl aufgeht, die

nicht g teilt. Dann gibt es eine Zahlenfolge (an \ n e N) mit an e Mg, sodassfür alle

jeN die Ungleichung

s s

^a^~l < a < g~s + J2ai8~* (2)
1=1 1=1

gilt. Die Folge (an \ n e N) ist durch a eindeutig bestimmt.

Beweis. Wir beweisen Satz 2.2 durch Induktion über s.

Für s 1 gibt es genau ein a\ e Mg mit a\ < ag < ai + 1: In der Tat ist nach

Voraussetzung a < 1. Weiter ist ag nach Satz 2.1 keine ganze Zahl, also ist a\ [ag] zu
setzen. Mit ai := ag - a\ giltO < a\ < 1.

Sei jetzt (2) für ein gewisses s bereits bewiesen. Wir setzen as := ags - J2 aig"~l ¦ Dann
i=i

ist (2) gleichbedeutend mit 0 < as < 1. Wir haben as+\ mit

s+l s+l

zu bestimmen. Das ist gleichbedeutend mit as+\ < asg < 1 + as+\. Man kann daher die
Überlegung von Fall s 1 wiederholen und hat as+\ [asg] und as+i asg - [asg]
zu setzen. D

Beispiel 1. Sei g 10 und a ^. Dann ist a\ aus a\ < 10a < a\ + 1 zu bestimmen, d.h.

a\ 1 und «i |. Aus ß2 < lOai < ü2 + 1 ergibt sich a2 4, «2 f- Entsprechend

findet man ü3 2, «3 ^, 04 8, «4 ^, 05 5, «5 |, ß6 7, «6 7. Wegen
q?6 a wiederholt sich der Prozess der Bestimmung der a;. Man erhält aq a\ und
allgemein ai+6 at für i e N. Man spricht von einem periodischen Dezimalbruch.

Beispiel 2. Sei g 10 und a g. In diesem Fall wird ßi 1, a\ |, ß2 6, «2 §¦
Es folgt fli+1 flj für j > 2.

Satz 2.3 Sei a erne ZaÄ/ aM^ Z, m deren Nenner mindestens eine Primzahl aufgeht, die

nicht g teilt. Dann ist die entsprechend Satz 2.2 zu a und g gehörige Folge (at \ i e N)
periodisch, das heißt, es gibt eine nichtnegative ganze Zahl m und eine natürliche Zahl l,
sodass üi+i üi für alle i e N mit i > m gilt.

Beweis. Sei c der Nenner von a. Die Zahlen an aus dem Beweis von Satz 2.2 sind rationale
Zahlen in Z, deren Nenner Teiler von c sind. Mit an ^ folgt 0 < bn < c. Es gibt also

ein n und ein / mit bn+i bn. Daraus folgt bt+i b, für alle i > n. D
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Die Zahlen m und l in Satz 2.3 sind nicht eindeutig bestimmt. Seien nio und k die kleinst-
möglichen. Dann heißt die Folge ai,..., amo die Vorperiode von a und amo+\,..., amo+io
heißt die Periode von a. Weiter heißt mç, die Vorperiodenlänge und /o die Periodenlange
von a. Nach dem Beweis von Satz 2.3 gilt nio < c - 2 und /o < c - 1. Im Beispiel 1 ist

mo 0 und /o 6, im Beispiel 2 ist nio 1 und /o 1- Im Falle nio 0 heißt a und die
Folge (ßi ieN) reinperiodisch.

Wir haben jeder Zahl a e Z,in deren Nenner eine Primzahl aufgeht, die g nicht teilt, eine

unendliche Folge (ai \ i e N) mit a* e Mg zugeordnet, sodass

1=1

gilt, d.h. die Folge Y ^g~l \ n e NI konvergiert gegen a. Die Reihe Y. O-ig~l
S=i '

i=i
Positionsdarstellung von a zur Basis ^.
Ist umgekehrt eine periodische Folge (at | i e N) mit a* e M^ gegeben, so konvergiert

die Folge [ Y ai8 l I w e N1 gegen eine rationale Zahl a mit 0 < a < 1. Genauer gilt
v 1=1

'

der folgende Satz:

Satz 2.4 Sei (at \ i e N) eine reinperiodische Folge mit at e Mg und sei die

Periodenlänge der Folge gleich s. Dann konvergiert die Folge Y aîS
l I n e N) gegen die

vi=i '

Zahl

*'-i ^r

Beweis. Mit a lim Föig"1 gilt
«^oo

lim VW* * VW* *

+ lim V
n-r<x> *¦—' *¦—' n-*cx> *¦—'

1 1 1 1 i=s+l

1=1 1=1 1=1

Daraus folgt die Behauptung. D

Eine Zahl a e Z, in deren Nenner nur Primzahlen aufgehen, die g teilen, hat nach Satz 2.1
s

eine Darstellung a Y aiS~' ¦ Für eine einheitliche Schreibweise ordnen wir a die
1=1

unendliche Folge (a; | i e N) mit fli 0 für j > s zu. Wir sagen, dass a die
Periodenlänge 0 hat.

Damit haben wir jeder Zahl a aus Z eine periodische Folge (ai | i e N) mit a; e M^
zugeordnet. In Positionsschreibweise setzt man

a =: 0, ai... am am+\.. .am+i,
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wobei am+i,..., am+i die Periode von a ist. Bei der Zuordnung von (cii \ i e N) zu a
kommen nicht alle periodischen Folgen {b\ \ i e N) mit b\ e Mg vor. Wenn es ein m e N
mit bm < g - 1 und &f g - 1 für alle i > m gibt, gilt

co m co m

J2blg~i YJbig-i+ J2 te - ^~l Eb^~l+g~m-
1=1 1=1 i=m+l 1=1

co

Der Zahl a J] öi^~' ist also die Folge &i,..., &m-i, bm + \ zugeordnet. Entsprechend
1=1

co

ist Y.(8 - 1)^ ' 1- Man überzeugt sich leicht, dass die eben beschriebenen Folgen
1=1

(b; | i e N) und die triviale Folge (0 | i e N) die einzigen sind, die nicht einer Zahl
a e Z zugeordnet sind.

Es ergeben sich die folgenden Fragen über die Struktur des Positionsbruches einer Zahl
a e Z:

1. Wann ist der Positionsbruch reinperiodisch?

2. Was kann man über die Vorperioden- und Periodenlänge von a in Abhängigkeit von
dem Nenner von a sagen?

3. Seien a und ß zwei Zahlen aus Z, deren Perioden sich nur um eine zyklische Vertau¬

schung unterscheiden. Was kann man in diesem Fall über die arithmetische Struktur
von a und ß sagen?

Beispiel. Im Dezimalsystem gilt

_ 1 _ 10
0,09=—, 0,90=—.

11 11

Wir beantworten diese Fragen im vierten Abschnitt, nachdem wir im dritten Abschnitt die
zahlentheoretischen Grundlagen gelegt haben.

3 Hilfsmittel aus der elementaren Zahlentheorie

In diesem Abschnitt stellen wir einige Sätze der elementaren Zahlentheorie zusammen.
Bei deren Beweisen in den Lehrbüchern wird die Gruppentheorie benutzt. Da diese in der
Schule nicht gelehrt wird, geben wir hier direkte Beweise ohne Benutzung von Gruppentheorie.

Satz 3.1 (Kleiner Fermatscher Satz) Sei p eine Primzahl und h eine beliebige natürliche
Zahl. Dann ist p ein Teiler von hp - h.

Beweis. Wir beweisen den Satz durch Induktion über h. Für h 1 ist die Behauptung klar.
Sei sie schon für ein h bewiesen. Dann gilt nach dem binomischen Lehrsatz (h + l)p -

i=l V
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(p\ p(p-l)-...(p-i + l)
Die Binomialkoefflzienten sind für 1 < t < p — 1\ij 1.2...../ - -^
durch p teilbar. Daraus folgt, dass p ein Teiler von (h + l)p — (hp + 1) ist. Nach

Induktionsvoraussetzung ist p ein Teiler von hp - h. Daher ist p auch ein Teiler von

(h + l)p - (/^ + 1) + (/^ -h) (h + \)p -{h + 1). D

Die Verallgemeinerung von Satz 3.1 auf beliebige natürliche Zahlen n stammt von Euler.
s

Dazu führen wir die Eulersche Funktion cp{n) ein: Sei n Yl v"i die Primzahlzerlegung

von n. Dann setzen wir

Satz 3.2 Seien n und h natürliche teilerfremde Zahlen. Dann ist n ein Teiler von h*?^ - 1.

Beweis. Sei n p zunächst eine Primzahl. Dann gilt p\(hp — h) nach Satz 3.1. Nach

Voraussetzung gilt p \h. Daher ist p ein Teiler von hp~l — 1.

Sei jetzt n pv eine Primzahlpotenz. Wir beweisen die Behauptung durch Induktion über

v. Für v 1 haben wir sie bereits bewiesen. Sei für ein gewisses v bereits pv \ (h<-p~1^pV —

1) bewiesen. Wir setzen w := h^p~ï)pV - 1. Dann gilt

h(P-i)Pv _i (u,+ iy _i.

Analog zum Beweis von Satz 3.1 folgt daraus pv+1\(w +1)^-1.
s

Sei jetzt « fi Pf beliebig. Wir setzen nt := Yl p7- Dann gilt <p(n) <p{tii)(p{pf)
1=1 ;#;

unâpV!\((h'p(n!))(P!~1)pV:'
'
- 1) für t 1,..., s und daher n\{hv(n) - 1). D

Für eine gegebene zu n teilerfremde Zahl h ist <p(n) im allgemeinen nicht die kleinste Zahl
s mit n\(hs - 1 Diese Zahl s heißt die Ordnung von h modulo n.

Satz 3.3 Sei s die Ordnung von h modulo n. Dann gilt für eine natürliche Zahl m die

Beziehung n\{hm - 1) genau dann, wenn m ein Vielfaches von s ist.

Beweis. Wir setzen w := hs — 1.

a) Sei m sa ein Vielfaches von s. Dann gilt

hm -\
und daher n\(hm - 1).
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b) Sei m eine natürliche Zahl mit n \ (hm - 1 und sei m as + b die Division von m durch
s mit Rest b, wobei 0 < b < s ist. Dann gilt

hm - 1 has ¦ hb - 1 (w + \fhb - 1 Y " )w'hb + hb - 1

Mit hm - 1 und w ist auch hb - 1 durch « teilbar. Da s nach Definition die kleinste
natürliche Zahl mit n\{hs - 1) ist, folgt b 0, d.h. m ist durch s teilbar. D

Insbesondere gilt s\<p(n). Die Zahl <p(n) hat die folgende inhaltliche Bedeutung: Sei R(n)
die Menge der zu n teilerfremden natürlichen Zahlen a mit 1 < a < n. Dann ist die Anzahl
\R(n)\ der Elemente von R(n) gleich <p(n). Wir beweisen das in Satz 3.5. Dazu benötigen
wir den folgenden Satz, der als Chinesischer Restklassensatz bezeichnet wird.

Satz 3.4 Seien n\ und n2 teilerfremde natürliche Zahlen und sei f(x\, X2) die Abbildung
von R{n\) x R(ti2) in N, die dem Paar {x\, xi) den kleinsten positiven Rest von xi«2 +
X2«i bei der Division durch «i«2 zuordnet. Dann ist f eine eineindeutige Abbildung von

R(m) x R(n2) aufR(nm2).

Beweis. Seien [x\, x2) und {y\, y2) Paare in R{n\) x R{n2) mit f(x\, x2) f(yi, y2).
Dann gilt n\n2\{x\n2 +x2n\ - y\n2 - y2n\). Es folgt n\\{x\ - y\) und «2!te - yi) und
daher x\ y\, x2 y2. Die Abbildung / ist also eineindeutig. Nach der Definition von

/ ist klar, dass f(x\, x2) teilerfremd zu n\ und n2 ist. Daher liegt f{x\,x2) in R{n\n2).
Es bleibt zu zeigen, dass / auf R{n\n2) abbildet: Sei m e R{n\n2). Da m und n2
teilerfremd sind, lässt sich jede ganze Zahl als ganzzahlige Linearkombination von n\ und n2
darstellen. Es gibt also ganze Zahlen x[ und x'2 mit m x[n2 + x'2n\. Da m teilerfremd
zu «i«2 ist, ist x[ teilerfremd zu n\ und x'2 teilerfremd zu n2. Sei x\ bzw. x2 der kleinste
positive Rest von x[ bzw. x'2. Dann ist f{x\, x2) m. D

Satz 3.5 \R(n)\ =<p{n).

Beweis. Sei n pv zunächst eine Primzahlpotenz. Dann haben die Zahlen x mit 1 < x <
pv, die mit pv einen gemeinsamen Teiler haben, die Form ph, h 1,..., pv~l. Daher

s

gilt \R(pv)\ pv - pv~l {p - l)pv~l (p(pv). Sei jetzt« Yl P? beliebig. Nach
1=1

Satz 3.3 gilt
s s

\R(n)\ Y\ \R(P?)\ Y\v(pf) Vin). D
1=1 1=1

4 Über die Perioden von Positionsbrüchen rationaler Zahlen

Wir kommen jetzt zu den Gesetzmäßigkeiten über die Perioden rationaler Zahlen. Dabei
bezeichnet a immer eine rationale Zahl mit 0 < a < 1 und der reduzierten Bruchdarstellung

f.
Satz 4.1 Die Positionsbruchdarstellung von a zur Basis g ist genau dann reinperiodisch,
wenn c teilerfremd zu g ist.
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Beweis. Wenn die Positionsbruchdarstellung von a reinperiodisch mit der Periodenlänge

s ist, gilt nach Satz 2.4: b(gs - 1) cl Y atgs~l Daher ist c ein Teiler von gs — 1, also

teilerfremd zu g.

Ist andererseits c teilerfremd zu g, so gibt es nach Satz 3.3 eine kleinste natürliche Zahl s

mit c\(gs - 1). Daraus folgt, dass \(gs - 1) eine natürliche Zahl ist. Sei

b_(gS_1) ya;gS-i

s co _ s

Dann ist - n_1_s, Y aiS~l Y 8~^s Y aiS~l und daher ist a 0, ÖTTTTÖJ rein-
U g ' 1=1 7=0 1=1

periodisch mit der Perioden. D

Insbesondere haben wir noch den folgenden Satz bewiesen:

Satz 4.2 Sei c teilerfremd zu g. Weiter sei s die kleinste natürliche Zahl mit c\(gs - 1).

Dann ist die Positionsbruchdarstellung von a reinperiodisch mit Periodenlänge s und die

Periode a\,... ,as berechnet sich aus

1=1

Satz 4.3 Sei c c'-a eine naturliche Zahl mit d > 1, wobei d teilerfremd zu g ist und in a

nur Primteiler von g aufgehen. Weiter sei t die kleinste nichtnegative ganze Zahl mit a\g'
und s die kleinste natürliche Zahl mit c'\(gs - 1). Dann hat die Positionsbruchdarstellung
von a \ zur Basis g die Vorperiodenlänge t und die Periodenlänge s.

Beweis. Wir setzen

d c

Dann ist b' eine natürliche Zahl mit b' < d und ggT(b', d) 1. Der Positionsbruch ^ ist

nach Satz 4.2 reinperiodisch. Es folgt, dass \ \gl \g~l + ^ g~l die Vorperiodenlänge

t und die Periodenlänge s hat. D

Satz 4.3 zeigt, dass die Vorperiodenlänge und die Periodenlänge nur vom Nenner des

Bruches ^ e Z abhängen. Im weiteren untersuchen wir die Perioden von reinperiodischen
Brüchen | bei festem c in Abhängigkeit von b.

Da dann b und g teilerfremd sind, können wir in der Menge R(c) die folgende
Äquivalenzrelation einführen: Sei s die Ordnung von g modulo c. Wir nennen b\,b2 e R(c)
äquivalent {b\ ~ bi), wenn es ein i mit 0 < i < s - 1 gibt, sodass c\(b2 - big1) gilt.
Wie man leicht sieht, ist die Relation ~ eine Äquivalenzrelation in R(c), d.h. es gelten
für b\, b2, b3 e R(c) die Beziehungen: A) b\ ~ b\, B) aus b\ ~ &2 folgt &2 ~ b\, C)
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aus b\ ~ 02 und &2 ~ &3 folgt &i ~ £3. Demnach ist insbesondere R(c) die disjunkte
Vereinigung der Teilmengen A, die jeweils aus zueinander äquivalenten Zahlen von R(c)
gebildet sind. Es gilt \A\ s.

Satz 4.4 Sei a | e Z ein reduzierter Bruch mit ggT(b, g) 1. Dann erhält man die

Perioden des Bruches ^ für b' ~ b durch zyklische Vertauschung der Periode von \.

Beweis. Bei dem im Abschnitt 2 beschriebenen Verfahren zur Berechnung der Periode von

| treten als Zähler der Zahlen ao a,a\,..., as-i gerade die zu b äquivalenten Zahlen
b bo, b\,..., bs-\ auf, die induktiv bestimmt sind: bt+i ist der kleinste positive Rest

von gb, bei der Division durch c. Hieraus folgt die Behauptung. D

Beispiel 1. Im Dezimalsystem gilt

1

-=0,142857, -=0,285714, -=0,428571,

-=0,571428, -=0,714285, -=0,857142.

Beispiel 2. Im Dezimalsystem gilt

1 10 2 9

_ 0, 09, — 0, 90, — 0, 18, — 0, 81,
11 11 11 11

11=0,27,1=0,72,1 0,36,^ 0,63,

1=0,45,1=0,54.
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