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Periodische Positionsbriiche und elementare Zahlentheorie

Helmut Koch

Helmut Koch studierte von 1952 bis 1957 Mathematik an der Humboldt-Universitit
zu Berlin. Anschliefend arbeitete er zwei Jahre in der Halbleiterforschung. Von 1959
bis 1991 arbeitete er im Institut fiir Mathematik der Akademie der Wissenschaften der
DDR. Danach leitete er die Max-Planck-Arbeitsgruppe fiir Algebraische Geometrie
und Zahlentheorie und war gleichzeitig als Professor fiir Mathematik an der Hum-
boldt-Universitit titig. Seit 1998 befindet er sich im aktiven Ruhestand.

1 Einleitung

Jede rationale Zahl ldsst sich als endlicher oder periodischer Dezimalbruch darstellen. Die
hierbei auftretenden GesetzméBigkeiten fithren auf Fragen der elementaren Zahlentheo-
rie. Dieser Zusammenhang ist geeignet, das eigenstidndige Interesse von Schiilern an der
Mathematik zu wecken. Einige dieser GesetzmiBigkeiten lassen sich auch als Sétze tiber
natiirliche Zahlen formulieren. Multipliziert man z.B. die Zahl u = 142857 mit 2, 3, 4,
5 und 6, so erhilt man die zyklischen Permutationen der Ziffern der Zahl u (vergleiche
Abschnitt 4, Beispiel 1).

Wir betrachten im folgenden allgemeiner Positionsbriiche fiir eine beliebige nattirliche
Zahl g > 1 als Basis.

Im zweiten Abschnitt zeigen wir, dass sich jeder Bruch im wesentlichen eindeutig als end-
licher oder periodischer Positionsbruch darstellen 14sst, und formulieren die Fragen, die
sich aus dieser Darstellung ergeben. Im dritten Abschnitt beweisen wir einige Tatsachen
aus der elementaren Zahlentheorie, die dann im vierten Abschnitt zur Losung der gestell-
ten Fragen flhren.
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Beziiglich der Einordnung der hier behandelten Fragen in den Gesamtzusammenhang der
Mathematik verweisen wir auf das Buch [1], insbesondere Kapitel 3.

2 Positionsbriiche rationaler Zahlen

Fiir das folgende geniigt es, von rationalen Zahlen o mit 0 < « < 1 auszugehen. Wir
bezeichnen die Menge dieser Zahlen mit Z.

Sei g eine natiirliche Zahl mit ¢ > 1 und sei M, die Menge der Zahlen O, 1, ..., ¢—1.Eine
rationale Zahl o mit « > 0 hat eine eindeutige Bruchdarstellung o = g mit nattirlichen
Zahlen b und ¢, die zueinander teilerfremd sind. b heiflt der Zdhler und ¢ der Nenner von
«. Fiir eine beliebige reelle Zahl B bezeichnet [8] die grofite ganze Zahl a mita < .

Eine Zahl ¢ € Z hat eine Darstellung als endlicher Positionsbruch zur Basis g, wenn es
Zahlen ay, . .., as in Mg mit

§
a=Y ag™ (1)
i=1
gibt.

Satz 2.1

a) Eine Zahl o € Z hat genau dann eine Darstellung (1) fiir ein gewisses s, wenn der
Nenner ¢ von « nur Primfaktoren enthdlt, die Teiler von g sind.

b) Sind ay, ..., as beliebige Zahlen aus Mg, die nicht simtlich gleich O sind, so ist
durch (1) eine Zahl o aus Z gegeben.

¢) Die Darstellung (1) ist eindeutig.

Beweis. a) Sei o eine Zahl mit der Darstellung (1). Dann hat « die Bruchdarstellung

s A
< > a; g“‘) /g*, d.h. im Nenner von « gehen nur Teiler von g auf. Wenn umgekehrt
i=1

o = % eine Zahl ist, deren Nenner nur Primteiler hat, die durch g teilbar sind, so gibt es
eine Potenz gh mit ¢| gh. Dabher ist « von der Form o = gdh' mit einer natiirlichen Zahl d.

S
Wegen o < 1istd < g und hat eine Darstellung d = 3" a;¢' mita; € M. Es folgt
i=0

Damit ist a) bewiesen.

b) Wir haben o < 1 zu zeigen. Es gilt

8 8
DoagT <) (@-Dgt=1-¢""
i=1 i=1
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§
ag =ar+ . a;g %1, Daher ist a; nach b) der ganze Teil von «g. Die eindeutige
=2
Bestimmtheit von ap, . . ., ay zeigt man entsprechend durch Induktion. O
Die durch Satz 2.1 nicht erfassten rationalen Zahlen werden durch Positionsbriiche ap-
proximiert:

Satz 2.2 Sei o eine Zahl aus Z, in deren Nenner mindestens eine Primzahl aufgeht, die
nicht g teilt. Dann gibt es eine Zahlenfolge (an | n € N) mit a, € My, sodass fiir alle
s € Ndie Ungleichung

§ §
Doagt <a<g )y ag” 2)
i=1 i=1
gilt. Die Folge (a, | n € N) ist durch « eindeutig bestimmt.

Beweis. Wir beweisen Satz 2.2 durch Induktion iiber s.

Fir s = 1 gibt es genau ein a; € My mit a3 < ag < ap + 1: In der Tat ist nach
Voraussetzung o < 1. Weiter ist «g nach Satz 2.1 keine ganze Zahl, also ist a1 = [ag] zu
setzen. Mit oy = g —ay gilt0 < o1 < 1.

s "
Sei jetzt (2) fiir ein gewisses s bereits bewiesen. Wir setzen oy = ag® — > a;¢°~*. Dann
i=1
ist (2) gleichbedeutend mit O < oy < 1. Wir haben az41 mit

s+1 s+1

Zaig3+l—i . olgH'l <1+ Zaigs+l—i

i=1 i=1
zu bestimmen. Das ist gleichbedeutend mit ds4+1 < @s¢ < 1 4 dg4+1. Man kann daher die
Uberlegung von Fall s = 1 wiederholen und hat a;41 = [osg]l und agq1 = 58 — [os 2]
Zu setzen. u

Beispiel 1. Sei g = 10und o = % Dannista; ausa; < 10a < @ + 1 zu bestimmen, d.h.
ar =1lund oy = 3. Aus ap < 100y < ap + 1 ergibt sich ap = 4, o = 2. Entsprechend
findet man a3z = 2, a3 = g, as = 8, ay = %,as =505 = %, ag = 7, dg = %.Wegen
o = o wiederholt sich der Prozess der Bestimmung der ¢;. Man erhilt a; = a; und
allgemein a;+¢ = a; flir i € N. Man spricht von einem periodischen Dezimalbruch.

Beispiel 2. Sei ¢ = 10und o = £. Indiesem Fall wirda; = 1,1 = 3, a2 = 6,00 = 3.

Es folgt ajy1 = a; fiiri > 2.

Satz 2.3 Sei o eine Zahl aus Z, in deren Nenner mindestens eine Primzahl aufgeht, die
nicht g teilt. Dann ist die entsprechend Satz 2.2 zu o und g gehorige Folge (a; | i € N)
periodisch, das heift, es gibt eine nichinegative ganze Zahl m und eine natiirliche Zahl I,
sodass ai+; = a; fiir allei € Nmiti > m gilt.

Beweis. Sei ¢ der Nenner von «. Die Zahlen «,, aus dem Beweis von Satz 2.2 sind rationale
Zahlen in Z, deren Nenner Teiler von ¢ sind. Mit «,, = bT" folgt 0 < by < c. Es gibt also
ein n und ein [ mit b,4; = b,,. Daraus folgt b;4; = b; fir alle i > n. O
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Die Zahlen m und [ in Satz 2.3 sind nicht eindeutig bestimmt. Seien mp und Iy die kleinst-
moglichen. Dann heilt die Folge a1, . . . , am, die Vorperiode von a und dmyi1, - - - , Gmgtiy
heiBt die Periode von «. Weiter heillt mq die Vorperiodenlinge und ly die Periodenlinge
von «. Nach dem Beweis von Satz 2.3 gilt mp < ¢ —2und lp < ¢ — 1. Im Beispiel 1 ist
mo = 0 und lp = 6, im Beispiel 2 ist mp = 1 und lp = 1. Im Falle mo = 0 heilt « und die
Folge (a; | i € N) reinperiodisch.

Wir haben jeder Zahl @ € Z, in deren Nenner eine Primzahl aufgeht, die g nicht teilt, eine
unendliche Folge (a; | i € N) mit a; € Mg zugeordnet, sodass

(o9
a=) ag”
=1

n . [©.9] .
gilt, d.h. die Folge < >aig™l | ne N) konvergiert gegen . Die Reihe > a;¢~" heift
i=1 i=1
Positionsdarstellung von « zur Basis g.

Ist umgekehrt eine periodische Folge (a; | i € N) mit a; € M, gegeben, so konvergiert

die Folge <§: aig”l | ne N> gegen eine rationale Zahl o mit 0 < « < 1. Genauer gilt

der folgendé:SIatz:

Satz 2.4 Sei (a; | i € N) eine reinperiodische Folge mit a; € Mg und sei die Perio-

denliinge der Folge gleich s. Dann konvergiert die Folge < il aig” | ne N) gegen die
i=

Zahl

5 s

g —i
. aig .
1 .
Beweis. Mita = lim > a;g~" gilt
B8 G
n § n
(/A : St a8 —i : Lo 8—i
o = Jim Yag~=Yag~+ i Y ae
i=1 i=1 i=s+1
§ n—s §
= Zaigs_’ + lim Zaig_‘ = Zaigs_l + a.
—%
i=1 " ooi:l i=1
Daraus folgt die Behauptung. O

Eine Zahl ¢ € Z, in deren Nenner nur Primzahlen aufgehen, die g teilen, hat nach Satz 2.1
§ .

eine Darstellung « = > a;¢~". Fiir eine einheitliche Schreibweise ordnen wir « die
i=1

unendliche Folge (a; | i € N) mit q; = 0 fiiri > s zu. Wir sagen, dass « die Perio-

denldnge O hat.

Damit haben wir jeder Zahl o aus Z eine periodische Folge (a; | i € N) mit a; € My

zugeordnet. In Positionsschreibweise setzt man

a=:0,a1...0n Gutl---Antl
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wobei a1, - - -, dm+r die Periode von « ist. Bei der Zuordnung von (a; | i € N) zu «
kommen nicht alle periodischen Folgen (b; | i € N) mit b; € M, vor. Wenn es einm € N
mithy, < g—1lundb; = g — 1 fiirallei > m gibt, gilt

DobigT =) bigT 4+ Y (@-DgT =) higT +g "
i=l i=l =1

i=m+1

& .
Der Zahl o = > b;g~" ist also die Folge by, .. ., bu—1, bm + 1 zugeordnet. Entsprechend
i=1
0 .
ist Y (¢ — g™ = 1. Man iiberzeugt sich leicht, dass die eben beschriebenen Folgen
i=1
(b; | i € N) und die triviale Folge (0 | i € N) die einzigen sind, die nicht einer Zahl
a € Z zugeordnet sind.
Es ergeben sich die folgenden Fragen iiber die Struktur des Positionsbruches einer Zahl
a€Z:

1. Wann ist der Positionsbruch reinperiodisch?

2. Was kann man iiber die Vorperioden- und Periodenlénge von « in Abhédngigkeit von
dem Nenner von « sagen?

3. Seien o und B zwei Zahlen aus Z, deren Perioden sich nur um eine zyklische Vertau-
schung unterscheiden. Was kann man in diesem Fall {iber die arithmetische Struktur
von « und B sagen?

Beispiel. Im Dezimalsystem gilt

— 1 — 10
0,09=—, 0,90 =—.
11 11
Wir beantworten diese Fragen im vierten Abschnitt, nachdem wir im dritten Abschnitt die
zahlentheoretischen Grundlagen gelegt haben.

3 Hilfsmittel aus der elementaren Zahlentheorie

In diesem Abschnitt stellen wir einige Sétze der elementaren Zahlentheorie zusammen.
Bei deren Beweisen in den Lehrbiichern wird die Gruppentheorie benutzt. Da diese in der
Schule nicht gelehrt wird, geben wir hier direkte Beweise ohne Benutzung von Gruppen-
theorie.

Satz 3.1 (Kleiner Fermatscher Satz) Sei p eine Primzahl und h eine beliebige natiirliche
Zahl. Dann ist p ein Teiler von h? — h.

Beweis. Wir beweisen den Satz durch Induktion tiber i2. Fiir o = 1 ist die Behauptung klar.
Sei sie schon fiir ein # bewiesen. Dann gilt nach dem binomischen Lehrsatz (b + 1)7 —

-1
B+ )=y (f)h

i=1
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PN\ _ p(p-—b-....(p—it+])
i) 1-2.u0d
durch p teilbar. Daraus folgt, dass p ein Teiler von (A + 1) — (h? + 1) ist. Nach
Induktionsvoraussetzung ist p ein Teiler von #” — h. Daher ist p auch ein Teiler von

Die Binomialkoeffizienten sind fiir 1 <i<p-—1

(h+DP =P +D+W = =w+D? — (i +1). O

Die Verallgemeinerung von Satz 3.1 auf beliebige natiirliche Zahlen n stammt von Euler.
§
Dazu fithren wir die Eulersche Funktion o(n) ein: Sein = [] p:-’ ! die Primzahlzerlegung

i=1
von xn. Dann setzen wir

o) =T — Dp) ™"
i=1

Satz 3.2 Seien n und h natiirliche teilerfremde Zahlen. Dann ist n ein Teiler von h*™) — 1.

Beweis. Sei n = p zunichst eine Primzahl. Dann gilt p|(h? — h) nach Satz 3.1. Nach
Voraussetzung gilt p { i. Daher ist p ein Teiler von h? —L-1,

Sei jetzt n = p? eine Primzahlpotenz. Wir beweisen die Behauptung durch Induktion iiber
v. Fiir v = 1 haben wir sie bereits bewiesen. Sei fiir ein gewisses v bereits p¥|(h(P~DP"™" —
1) bewiesen, Wir setzen w := A?~UP"™" _ 1. Dann gilt

RP=0PY _ = (w4 P — 1.
Analog zum Beweis von Satz 3.1 folgt daraus p*+1|(w 4+ 1)? — 1.
Sei jetzt n = ]i[1 p;" beliebig. Wir setzen n; = ];[ pjj. Dann gilt (1) = n;)e(p;")
i= j#i
und p¥|(RemYPi=DB _ 1) fiirj = 1,..., s und daher n|(R¢® — 1), 0

Fiir eine gegebene zu n teilerfremde Zahl 7 ist ¢ (n) im allgemeinen nicht die kleinste Zahl
s mit n|(h® — 1). Diese Zahl s heiBt die Ordnung von h modulo n.

Satz 3.3 Sei s die Ordnung von h modulo n. Dann gilt fiir eine natiirliche Zahl m die
Beziehung n|(h™ — 1) genau dann, wenn m ein Vielfaches von s ist.

Beweis. Wir setzen w := h* — 1.
a) Sei m = sa ein Vielfaches von s. Dann gilt
hm—1—(w+1)“—1—za:(a)w*'
io \

und daher n|(h™ — 1).
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b) Sei m eine natiirliche Zahl mit n|(A™ — 1) und sei m = as + b die Division von m durch
s mit Rest b, wobei 0 < b < s ist. Dann gilt

a
h’”—l:h”.hb—lz(w+1)“hb—1=Z(7)wihb+hb—1.
i=1 !

Mit 2™ — 1 und w ist auch A? — 1 durch n teilbar. Da s nach Definition die kleinste
natiirliche Zahl mit n|(h* — 1) ist, folgt b = 0, d.h. m ist durch s teilbar. O

Insbesondere gilt s|¢ (). Die Zahl ¢(n) hat die folgende inhaltliche Bedeutung: Sei R(n)
die Menge der zu # teilerfremden natiirlichen Zahlen ¢ mit 1 < a < n. Dann ist die Anzahl
|R(n)| der Elemente von R(n) gleich ¢(n). Wir beweisen das in Satz 3.5. Dazu bendtigen
wir den folgenden Satz, der als Chinesischer Restklassensatz bezeichnet wird.

Satz 3.4 Seien ny und ny teilerfremde natiirliche Zahlen und sei f(x1, x2) die Abbildung
von R(n1) x R(ny) in N, die dem Paar (x1, xp) den kleinsten positiven Rest von x1ny +
Xany bei der Division durch niny zuordnet. Dann ist [ eine eineindeutige Abbildung von
R(n1) x R(ny) auf R(niny).

Beweis. Seien (x1, x2) und (y1, y2) Paare in R(n1) x R(np) mit f(x1, x2) = f(¥1, »2).
Dann gilt n1ny|(x172 + X211 — y1:i2 — yon1). Es folgt 71| (x1 — y1) und n2|(x2 — y2) und
daher x; = y1, xp = yp. Die Abbildung f ist also eineindeutig. Nach der Definition von
J ist klar, dass f(x1, xp) teilerfremd zu n; und n, ist. Daher liegt f (X1, x2) in R(ninz).

Es bleibt zu zeigen, dass f auf R(nin,) abbildet: Sei m € R(ninz). Da ny und ny teiler-
fremd sind, lasst sich jede ganze Zahl als ganzzahlige Linearkombination von n1 und 7,
darstellen. Es gibt also ganze Zahlen xj und x} mit m = x{nz + xjn;. Da m teilerfremd
zZu n1ny ist, ist xi teilerfremd zu 71 und xé teilerfremd zu n,. Sei x1 bzw. x» der kleinste
positive Rest von xj bzw. x5. Dann ist f (xy, X2) = m. O

Satz 3.5 |R(n)| = ¢(n).

Beweis. Sei n = p? zunichst eine Primzahlpotenz. Dann haben die Zahlen x mit 1 < x <
pY, die mit p? einen gemeinsamen Teiler haben, die Form ph, h = 1,..., p”_l. Daher
8

gilt |[R(p*)| = p” — p*~ L= (p — Dp¥~! = p(p?). Sei jetzt n = [] p;" beliebig. Nach
=1
Satz 3.3 gilt
s 8
IR =[[IR@GHI=]Tew) = o). m
i=l i=1
4 Uber die Perioden von Positionsbriichen rationaler Zahlen

Wir kommen jetzt zu den GesetzmaBigkeiten tiber die Perioden rationaler Zahlen. Dabei
bezeichnet « immer eine rationale Zahl mit O < « < 1 und der reduzierten Bruchdarstel-
lung g.

Satz 4.1 Die Positionsbruchdarstellung von o zur Basis g ist genau dann reinperiodisch,
wenn c teilerfremd zu g ist.
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Beweis. Wenn die Positionsbruchdarstellung von « reinperiodisch mit der Periodenldnge
s .
s ist, gilt nach Satz2.4: b(g* — 1) = c( > aigs_l>. Daher ist ¢ ein Teiler von g¥ — 1, also
i=1
teilerfremd zu g.

Ist andererseits c teilerfremd zu g, so gibt es nach Satz 3.3 eine kleinste natiirliche Zahl s
mit ¢|[(g® — 1). Daraus folgt, dass %(gs — 1) eine natiirliche Zahl ist. Sei

b ) i
;(gs -1 = leaigs by
i

§ N [0.9] X § X

Dann ist % = (1——35”) Saig™ = > ¢ > a;g7" und daherist @ = 0, ay ... dy rein-
i=1 j=0 i=1

periodisch mit der Periode s. O

Insbesondere haben wir noch den folgenden Satz bewiesen:

Satz 4.2 Sei c teilerfremd zu g. Weiter sei s die kleinste natiirliche Zahl mit c|(g* — 1).
Dann ist die Positionsbruchdarstellung von o reinperiodisch mit Periodenlinge s und die
Periode ay, . . ., as berechnet sich aus

b s
—@' =D =) g O
=1

Satz 4.3 Seic = ¢ -a eine nattirliche Zahl mit ¢’ > 1, wobei ¢’ teilerfremd zu g ist undina
nur Primteiler von g aufgehen. Weiter sei t die kleinste nichinegative ganze Zahl mit a|g’
und s die kleinste natiirliche Zahl mit ¢'|(g* — 1). Dann hat die Positionsbruchdarstellung
von o = % zur Basis g die Vorperiodenlinge t und die Periodenlinge s.

Beweis. Wir setzen
v ob o, b,
LN
c c c
Dann ist b’ eine natiirliche Zahl mit b’ < ¢’ und ggT (', ¢’) = 1. Der Positionsbruch lc’—: ist

nach Satz 4.2 reinperiodisch. Es folgt, dass 2 = [% g’] g7l + ’Z—: g~! die Vorperiodenlinge
¢ und die Periodenlinge s hat. O

Satz 4.3 zeigt, dass die Vorperiodenldnge und die Periodenldnge nur vom Nenner des
Bruches % € Z abhingen. Im weiteren untersuchen wir die Perioden von reinperiodischen
Briichen % bei festem ¢ in Abhéngigkeit von b.

Da dann b und g teilerfremd sind, konnen wir in der Menge R(c) die folgende Aquiva-
lenzrelation einfiihren: Sei s die Ordnung von ¢ modulo ¢. Wir nennen by, by € R(c)
dquivalent (by ~ bp), wenn es ein i mit 0 < i < s — 1 gibt, sodass c|(by — blgi) gilt.
Wie man leicht sieht, ist die Relation ~ eine Aquivalenzrelation in R(c), d.h. es gelten
fiir b1, b2, b3 € R(c) die Beziehungen: A) by ~ by, B) aus by ~ by folgt by ~ by, C)
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aus by ~ by und by ~ bz folgt b1 ~ b3. Demnach ist insbesondere R(c) die disjunkte
Vereinigung der Teilmengen A, die jeweils aus zueinander dquivalenten Zahlen von R(c)
gebildet sind. Es gilt |A| = s.

Satz 4.4 Seia = % € Z ein reduzierter Bruch mit ¢gT(b, g) = 1. Dann erhdlt man die
Perioden des Bruches b?/ fiir b’ ~ b durch zyklische Vertauschung der Periode von 2

o
Beweis. Bei dem im Abschnitt 2 beschriebenen Verfahren zur Berechnung der Periode von
% treten als Zihler der Zahlen g = «, @1, ..., ag—1 gerade die zu b dquivalenten Zahlen
b = bo, b1, ...,bs_1 auf, die induktiv bestimmt sind: b;y ist der kleinste positive Rest
von gb; bei der Division durch c¢. Hieraus folgt die Behauptung. g

Beispiel 1. Im Dezimalsystem gilt

1 - 2 I —
= =0,142857, = =0,285714, é =0,428571,
7 7 7
4 — — 0
- =0,571428, - =0,714285, —= =0,857142.
7 7 7
Beispiel 2. Im Dezimalsystem gilt
1 — 10 — 2 — 9 —
—=0,09, —=0,9, —=0,18, — =0, 81,
11 11 11 11
3 — 8 — 4 — 7 —
T 0 275 I 0,7,11 0, 36, I 0, 63,
5 — 6 —
— =0,45, — = 4
I 0,45, I 0,5
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