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A representation formula for the inverse harmonic
mean curvature flow

Knut Smoczyk

Knut Smoczyk promovierte im Jahr 1994 an der Ruhr-Universitdt Bochum. Danach
folgten mehrere Forschungsaufenthalte in den USA, der Schweiz und in Deutsch-
land. Seit 2000 ist er Privatdozent an der Universitit Leipzig und seit April 2004
Heisenberg-Stipendiat am Albert-Einstein-Institut in Golm und am Max-Planck-Insti-
tut fiir Mathematik in den Naturwissenschaften in Leipzig.

1 Introduction

Let My be a smooth, closed, strictly convex hypersurface in euclidean space R+ and
suppose that My is given by a smooth embedding Fy : S* — R+ of the unit n-sphere
$" = {x e R"! : |x| = 1}. We consider the initial value problem for the inverse harmonic
mean curvature flow

d T |
EF(x,t)—H (x,Hv(x, 1), (%)

F(-,0) = F,
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where
1

Hi=-————
1 1

is the harmonic mean curvature of the hypersurface M; parameterized by F; := F(.,t) :

St — R ..k, denote the principal curvatures of M; and v(-, f) is the outer unit

normal vectorfield along M;.

There are numerous important works on this flow. One should for example consult An-
drews [3], [4], Chow-Liou-Tsai [8], Gerhardt [10] and Urbas [13]. It has been shown in
Urbas [13] that (%) admits a smooth solution for f € [0, co) and that the solutions tend to
infinity as ¥ — ©0. Moreover, the hypersurfaces stay strictly convex and embedded and
after a time dependent homothetic rescaling the rescaled hypersurfaces converge smoothly
to a round sphere (see also Gerhardt [10] for an extension to starshaped hypersurfaces).
In Chow-Liou-Tsai [8] the authors considered hypersurfaces driven by functions of the in-
verse harmonic mean curvature and also proved that convexity is preserved for a wide class
of such flows, including (). Andrews [3], [4] treated both inward and outward directed
flows.

For a geometric evolution equation it is in general not possible to determine the explicit
solution. If 7" denotes the first time where a singularity occurs, one rather studies the blow-
up behaviour of such flows as ¢ — T . Under certain conditions for the initial hypersurface
it is often possible to classify the singularities, at least after a suitable rescaling procedure.
E.g. under the assumption that the initial hypersurface is convex one was able to prove for
a wide class of such flows (inward and outward directed) that a homothetically rescaled
flow smoothly converges to a round sphere as t — 7.

If a convex hypersurface is evolving under the nonlinear parabolic equation () given by
the inverse harmonic mean curvature flow, it is therefore astonishing that it is possible to
obtain the explicit solution. We state the main theorem:

Theorem 1.1. Let My be a smooth, closed, strictly convex hypersurface in euclidean space
R and suppose that My is given by a smooth embedding Fy : 8" — R"*1 of the unit
n-sphere S = {x € R"*! : |x| = 1}). The inverse harmonic mean curvature flow

d _ a1
EF(x,t)—H X, Hv(x, 1),

F(',O):FO,

admits a smooth, strictly convex solution for t € [0, 00).

The hypersurfaces My := F(S",t) C R"! can be parameterized by their inverse Gauss
maps Yy . S* — M, in the following way

Vi(x) = DS(x,t), forall (x,t) e S" x [0, 00)

where S(-, t) : R*H \ {0} — R is the homogeneous extension of degree one of the support
Junction S(-, t) : S" — R of M; defined by

SOx, 1) := AS(x, 1), forall (x,1) € §" x [0, 00), and all » > 0.
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Here, D is the gradient in Rt and the support function S(-, t) is given by the formula
S(x, 1) =€”t/ H(x,y,0)S(y,0)do (y), (1.1)
SVL

where H(x,v,t) is the heat kernel and do the standard volume element on S". S(-,0)
denotes the support function of the initial hypersurface Mo.

Remark 1.2. The following theorem about the heat kernel is well-known (cf. Berger-
Gauduchon-Mazet [5]):

Theorem. [5] Let M be a compact Riemannian manifold, { f;} be an orthonormal basis of
L2(M) consisting of eigenfunctions with corresponding eigenvalues A; (i.e., Afi=—x; fi),
then

Hx,y,0)=) e i) fi(y).

Moreover, the eigenfunctions fr on the unit n-sphere are the spherical harmonics Y, ¢
which are restrictions to §” of the homogeneous harmonic polynomials of degree k in
R”*L They can be expressed in terms of the Legendre polynomials (see Miiller [12] for
more details on spherical harmonics).

Example 1.3. Let us briefly discuss the one-dimensional situation. If n = 1, then H™! =
%, where k denotes the curvature of the evolving convex curves y;. In this case, the flow

a1 ,
Z=5Y (")

can also be viewed as the one-dimensional version of the inverse mean curvature flow

d 1
— F=—=v
dt H
which is important in General Relativity (see Huisken-Ilmanen [11] for details). The eigen-
values Ax of the Laplacian on S* = [0, 2) are Ax = k2, k € N with multiplicity 2. More-
1

over, the functions o cos (kx), % sin (kx) form an orthonormal basis of L2(S1). For the

heat kernel on S' we get

1
H(x,y, 1) =— Z ekt (cos (kx)cos (ky) + sin (kx) sin (ky)).
4 keN
According to Theorem 1.1, the support function S(-, ) of y; is given by the formula
S, 1) = Z e(l_kz)t(ck cos (kx) + s sin (kx)), (1.2)
keN

where the constants cg, sx are defined by

1 2w 1 2w
%:—/cwwwmmw,&:—f sin (k)S(y, 0)dy
T Jo T Jo
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and S(-, 0) denotes the support function of the initial curve yo. If S denotes the extension
of S to R? \ {0} as above, then

= COS X —sinx
DS, t) = S(x, t)< ) ) + 5 (x, t)< ) forall x € [0, 2m),
sin x COS X
where we have set 3
S'(x, ) = —Sx, 1).
ax

Consequently

Ck COS X — ksg sin x
Y, n = Ze(l_kz>tcos(kx)(k k )

Cr Sinx + ks cos X
keN & &

—K2V . Sk COS X + kcg sinx
+ Ze(l K1 sin (kx) ,
b Sk $in X — k¢ COS X

is the parameterization of y; by the inverse Gauss map.

Example 1.4. We give an explicit example. Let g € [0, 1) be a number and assume that
the initial support function is given by

2
S, 0)=14a sinz(y) = % — %cos 2y).

It then easily follows that
s =0 forall k e N;

a
co=2+a, ¢ = —3 and ¢z =0 forall k e N\ {0,2}.
By formula (1.2) the support function of the evolving curves y is
a
Sx, 1) =Q2+a) — 5 e~ cos (2x)

and the inverse Gauss maps are

Yx, 1) = ((2 +a)et — e ¥ cos (Zx)) (c§s x) 4 aesin (2x)(— sin x)
2 sin x

Cos X

If we consideNr the rescaled curves y; := e_tyt, then the support functions S and inverse
Gauss maps Y(x, t) of y; are

S, )=2+a - %e“” cos (2x),

Cos X

V.0 = (2 +a-— ge“” cos (2x)) Cf)sx + ae~* sin 2x) —sinx .
2 sin x

In particular, if 1 — o0, then the support functions S (x, 1) tend to the constant @ +2 which
means that the curves converge uniformly to the circle of radius a + 2 centered at the
origin. Fig. 1 shows the flow fora = —% at different time steps, Fig. 2 depicts the rescaled
solution and Fig. 3 shows the curves in a single coordinate plane.
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\

dh
N

Fig. 1 The flow -Lf-l; Vi = 71€V for the curve y; with support function S(x) =1 — % sin? (x) at the different time

stepst = 15, j €{0,1,2,3,4,5,6,7}
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Fig. 2 The rescaled curves y; = efty,; with y; asin Fig. 1

2 Support functions

Let M be a smooth, closed, strictly convex hypersurface in R+, We shall recall some
facts about the support function of convex hypersurfaces (for more results see Bonnesen-
Fenchel [6]). Since M is strictly convex, the Gauss map is invertible. Thus, we may assume
that M is parameterized by the inverse Gauss map ) : $” — M < R"*!, This means that
v(x) = x. Without loss of generality, we may assume that M encloses the origin. The
support function S of M is defined by

Sx) = (x,Yx)) forall x € S,
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7
\J

Fig. 3 The curves in Fig. 1 resp. Fig. 2 in a single coordinate plane

where (-, -) denotes the standard inner product of R+, One can extend S to a homoge-
neous function S on R"*+1\ {0} of degree one by

S(x) ;= AS(x) forall x € " and A > 0.

It then follows B
DS(x)=Y(x) forall x € §",

where DS is the gradient of S in R"*!. Let o = 0;;dx’ @ dx/ denote the standard metric
on $” and V its induced Levi-Civita connection. We want to compute the Hessian V2 of
S. We have

ViS=Vi(Y, x) = (V, Vix)

because v(x) = x and (V; Y, v) = 0. Taking another covariant derivative we obtain
ViV;S=(ViY,V;x) + (¥, ViV;x).
The Gauss-Weingarten equations imply
ViVjx = —1x,
where t;; is the second fundamental form of $” and because 7;; = o;; we have
ViVjx = —oijx.

On the other hand
ViV, Vix) = (ViV, Viv) = hij

is the second fundamental form of M, so that we derive

ViV;S§=hij —oS. 2.1)
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Moreover, the Weingarten equation gives
Viv = hi; g Vi Y.
Then
oij = (Vix, V;x) = (Viv, V;v) = (hix &'ViY, hjsg" Vi) = hichjig"

so that
oy = hixh 1", (2.2)

where g* is the inverse of the induced meiric g;; on M. From (2.1) and (2.2) we immedi-
ately obtain -
AS =0V, V;S=H"'—nS. (2.3)

Next we will compute the evolution equation of the support function S. To this end let
us assume that M; is a smooth family of closed, strictly convex hypersurfaces in R*+1
parameterized by a smooth embedding F; : $" — M, € R"*! such that

d
E Ft(x) = f(xa t)v(xa t)a

where f(x,t) is a smooth speed function. It is then possible to find a uniquely determined
diffeomorphism W; : $* — $”" such that the embedding

Vi8> My, Yi(x) = F (W (x))

is the inverse Gauss map. Thus, we obtain

d d d
ESt = E(J’t(x),ﬂ:E(E(‘I’t(x)),x)
= 9 F (Y, DF it = 9 F (W,
= <8_t (W (x)) + t<3_t)’x>_<8_t 1 ( t(x)),x>

(f (W (), v (¥ (x), 1), x) = f.
In particular, if f is given by the inverse of the harmonic mean curvature, then (2.3) implies

Lemma 2.1. If M; is a smooth family of closed, strictly convex hypersurfaces in R+
evolving by the inverse harmonic mean curvature flow (x), then the support function sat-
isfies the linear equation
d
ar
where A is the Laplacian w.r.t. the standard metric on S".

S=AS+nS,

Corollary 2.2. If M; is a smooth family of closed, strictly convex hypersurfaces in R+
evolving by the inverse harmonic mean curvature flow (x), then the support function S(-, t)
of My is given by

seun = [ Hex 3050, 0do ),

where H(x, v, t) is the heat kernel on S" and do the standard volume element on S".
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Proof. The function S (x,1) :== e 8(x, 1) satisfies the heat equation

d

—S=AS 2.4
T 2.4
and then
Sx.t) = /S CH(x, Y, D50, 0)do(y).
But since S‘(y, 0) = S(v,0) we obtain the result. O

Corollary 2.3. Let Mo be a smooth, closed, strictly convex hypersurface in R" and
let M; be the corresponding smooth family of hypersurfaces evolving by their inverse har-
monic mean curvature. Then the rescaled hypersurfaces M, :=e "M, converge smoothly
1o a round sphere centered at the origin ast — oo.

Proof . 1f S(-, 1) and S’(~, 1) are the support functions of M; resp. M;, then
S, 1) =e S, 1).

In addition, by equation (2.4) S solves the heat equation on S” and therefore smoothly
converges to a constant as f — o0. It is clear that a smooth convergence of the support
function implies a smooth convergence of the corresponding hypersurfaces as well. On
the other hand, the support function is constant if and only if the hypersurface is a round
sphere centered at the origin. O

Proof of the main theorem. It is well-known that a solution of (x) exists for ¢ € [0, co) and
that the hypersurfaces M; stay convex and embedded during the flow (cf. Urbas [13]). It
is also well-known that the rescaled hypersurfaces M; := e~ M, converge smoothly to a
round sphere centered at the origin. It remains to prove the precise formula for the support
function and the inverse of the Gauss maps. This has been shown in Corollary 2.2 and the
equation for the inverse of the Gauss maps Y follows from D S|s» = ). O
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