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A representation formula for the inverse harmonic
mean curvature flow

Knut Smoczyk
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Seit 2000 ist er Privatdozent an der Universität Leipzig und seit April 2004

Heisenberg-Stipendiat am Albert-Einstein-Institut in Golm und am Max-Planck-Insti-
tut fur Mathematik in den Naturwissenschaften in Leipzig.

1 Introduction

Let Mo be a smooth, closed, strictly convex hypersurface in euclidean space R"+1 and

suppose that Mq is given by a smooth embedding Fq : Sn -> R"+1 of the unit «-sphere
Sn [x e R"+1 : |jc | 1}. We consider the initial value problem for the inverse harmonic
mean curvature flow

jtF{x,t) n-\
F(-, 0) Fo,

Im nachfolgenden Beitrag erhalten wir Einblick in einen aktuellen Forschungszweig
der Differentialgeometrie. Bekanntlich lassen sich geometrische Strukturen auf Man-
nigfaltigkeiten mit besonderen Eigenschaften sehr oft durch partielle Differentialgleichungen

beschreiben, eine Thematik, die auch bei den jüngsten Lösungsansätzen zur
Poincaré Vermutung eine zentrale Rolle spielt. Zu diesen Gleichungen gehören
beispielsweise die geometrischen Flussgleichungen, die im allgemeinen aus nichtlinearen
Systemen parabolischer Differentialgleichungen bestehen. Die Lösbarkeit solcher

Gleichungen bringt oft erhebliche Schwierigkeiten mit sich. So ist es in der Regel
unmöglich, aus beliebigen Anfangsdaten die exakte Lösung zu einem späteren
Zeitpunkt explizit zu berechnen, Umso erstaunlicher ist es, dass dies beim inversen
harmonischen mittleren Krümrnungsfluss dennoch möglich ist. Durch die Betrachtung
eJntachcr Beispiele gelingt es dem Aulor, (Jen komplexen Gegenstand konkret zu illu-
siriavn.
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where

H:=
Kl K«

is the harmonic mean curvature of the hypersurface Mt parameterized by Ft := F(-, t) :

Sn -> R"+1, K\,...,Kn denote the principal curvatures of Mt and v(-, f) is the outer unit
normal vectorfield along Mt.

There are numerous important works on this flow. One should for example consult
Andrews [3], [4], Chow-Liou-Tsai [8], Gerhardt [10] and Urbas [13]. It has been shown in
Urbas [13] that (*) admits a smooth solution for t e [0, oo) and that the solutions tend to

infinity as t -> oo. Moreover, the hypersurfaces stay strictly convex and embedded and

after a time dependent homothetic rescaling the rescaled hypersurfaces converge smoothly
to a round sphere (see also Gerhardt [10] for an extension to starshaped hypersurfaces).
In Chow-Liou-Tsai [8] the authors considered hypersurfaces driven by functions of the
inverse harmonic mean curvature and also proved that convexity is preserved for a wide class

of such flows, including (*). Andrews [3], [4] treated both inward and outward directed
flows.

For a geometric evolution equation it is in general not possible to determine the explicit
solution. If T denotes the first time where a singularity occurs, one rather studies the blowup

behaviour of such flows as t -> T. Under certain conditions for the initial hypersurface
it is often possible to classify the singularities, at least after a suitable rescaling procedure.
E.g. under the assumption that the initial hypersurface is convex one was able to prove for
a wide class of such flows (inward and outward directed) that a homothetically rescaled

flow smoothly converges to a round sphere as t -> T.

If a convex hypersurface is evolving under the nonlinear parabolic equation (*) given by
the inverse harmonic mean curvature flow, it is therefore astonishing that it is possible to

obtain the explicit solution. We state the main theorem:

Theorem 1.1. Let Mo be a smooth, closed, strictly convex hypersurface in euclidean space
R"+1 and suppose that Mo is given by a smooth embedding 7-b : S" -> R"+1 of the unit
n-sphere Sn [x e R"+1 : |jc | 1}. The inverse harmonic mean curvature flow

— F(x,t) H~1(x,t)v(x,t),
dt

F(;0) F0,

admits a smooth, strictly convex solution for t e [0, oo).

The hypersurfaces Mt := F(Sn, t) c R"+1 can be parameterized by their inverse Gauss

maps yt : Sn ->¦ Mt in the following way

yt(x) DS(x, t), for all (x, t) e S" x [0, oo)

where S(-, t) : R"+1 \ {0} ->¦ R is the homogeneous extension of degree one of the support
function S(-, t) : Sn -+ R ofMt defined by

S(Xx, t) := XS(x, t), for all (x, t) e S" x [0, oo), and all X > 0.
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Here, D is the gradient in R"+1 and the support function S(-, t) is given by the formula

S(x,t) ent f H(x,y,t)S(y,O)da(y), (1.1)
Jsn

where H(x, y, t) is the heat kernel and da the standard volume element on Sn. S(-, 0)
denotes the support function of the initial hypersurface Mq.

Remark 1.2. The following theorem about the heat kernel is well-known (cf. Berger-
Gauduchon-Mazet [5]):

Theorem. [5] Let M be a compact Riemannian manifold, [f] be an orthonormal basis of
L2(M) consisting of' eigenfunctionswith corresponding eigenvalues k{ (i.e., Af -ktf),
then

Moreover, the eigenfunctions fk on the unit «-sphere are the spherical harmonics Yn,k

which are restrictions to Sn of the homogeneous harmonic polynomials of degree k in
R"+1. They can be expressed in terms of the Legendre polynomials (see Müller [12] for
more details on spherical harmonics).

Example 1.3. Let us briefly discuss the one-dimensional situation, lin 1, then H~1

j, where k denotes the curvature of the evolving convex curves yt. In this case, the flow

— Yt t v (*')
dt k

can also be viewed as the one-dimensional version of the inverse mean curvature flow

d _,
1

— F — v
dt H

which is important in General Relativity (see Huisken-Ilmanen [11] for details). The
eigenvalues kk of the Laplacian on Sl [0, lit) are kk k2,k eN with multiplicity 2. Moreover,

the functions -t= cos (kx), A= sin (kx) form an orthonormal basis of L2{Sl). For the

heat kernel on S1 we get

H(x, y,t) — ^2 e~k2' (cos (kx) cos (ky) + sin (kx) sin (ky)).

According to Theorem 1.1, the support function S(-, t) of yt is given by the formula

S(x,t) J2 e(1-k2)t(ck cos (kx) + sk sin (kx)), (1.2)

where the constants c*, Sk are defined by

1 f2n 1 f7- / cos (ky)S(y, 0)dy, sk := - /ck := — / cos (ky)S(y, 0)dy, sk := — I sin(ky)S(y,O)dy
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and S(-, 0) denotes the support function of the initial curve yo.lî S denotes the extension

of S to R2 \ {0} as above, then

DS(x,t) S(x,t)(C0SX + S'(x,t)(~ SmXY for all x e [0,2tt),
\smx/ \ cosx /

where we have set

S'(x,t) := -foS(x,

Consequently

¦M, ,-> V^ (l-k2)t n JCk COS X-kSk Sin X
y(x,t) y e[ -'cos (ta)^ \ck sin x + ksk cos x

Ea-k2)t • /, fsk cos x + kck sin x\
^gN \sk sin x - kck cos xJ

is the parameterization of yt by the inverse Gauss map.

Example 1.4. We give an explicit example. Let a e [0, 1) be a number and assume that
the initial support function is given by

S(y, 0) 1 + a sin2(j) —— - - cos (2y).

It then easily follows that

sk=0 for all k eN;

co 2 +a, c2 -- and ck 0 for all k e N \ {0, 2}.

By formula (1.2) the support function of the evolving curves yt is

S(x, t) (2 + a)é - - e~3t cos (2x)

and the inverse Gauss maps are

n-3ty(x, t) ((2 + a)é - V3' cos (2x)) fC°SX
V 2 /\svnx

- smxae~" sin (2x) ' cosx

If we consider the rescaled curves yt := e fyt, then the support functions S and inverse
Gauss maps y(x, t) of yt are

S(x, t) 2 + a e~At cos (2x),

Af /-sinx
- ae~4t sin (2x)

\ cosx

In particular, if t -* oo, then the support functions 5(x, f) tend to the constant a +2 which
means that the curves converge uniformly to the circle of radius a + 2 centered at the

origin. Fig. 1 shows the flow for a -1 at different time steps, Fig. 2 depicts the rescaled
solution and Fig. 3 shows the curves in a single coordinate plane.
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Fig. 1 The flow jj yt jv for the curve yq with support function S(x) 1 — \ sin2 (x) at the different time

steps i,je(0,l,2,3,4, 5, 6, 7}

Fig. 2 The rescaled curves yt e 'yt with yt as in Fig. 1

2 Support functions

Let M be a smooth, closed, strictly convex hypersurface in R"+1. We shall recall some
facts about the support function of convex hypersurfaces (for more results see Bonnesen-
Fenchel [6]). Since M is strictly convex, the Gauss map is invertible. Thus, we may assume
that M is parameterized by the inverse Gauss map 3^ : Sn -> M c R"+1. This means that

v(x) x. Without loss of generality, we may assume that M encloses the origin. The

support function S of M is defined by

S(x) := (x,y(x)) for all x e Sn,
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Fig. 3 The curves in Fig. 1 resp. Fig. 2 in a single coordinate plane

where (¦, ¦> denotes the standard inner product of R"+1. One can extend S to a homogeneous

function S on R"+1 \ {0} of degree one by

It then follows

S(Xx) := XS(x) for all x e Sn and X > 0.

DS(x) y(x) for all x eSn,

where DS is the gradient of S in R"+1. Let a a^dx1 <g> dx1 denote the standard metric
on Sn and V its induced Levi-Civita connection. We want to compute the Hessian V25 of
S. We have

because v(x) x and (V^, v) 0. Taking another covariant derivative we obtain

The Gauss-Weingarten equations imply

where ry is the second fundamental form of Sn and because ry ay we have

On the other hand

is the second fundamental form of M, so that we derive

(2.1)
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Moreover, the Weingarten equation gives

Then

atJ (Vfx, V}x) <V,v, Vjv) (hlkgk%y,hJsgstVty) hlkh}igkl

so that

oïj h!khjigkl, (2.2)

where gkl is the inverse of the induced metric gtJ on M. From (2.1) and (2.2) we immediately

obtain

AS alJVlV}S H~1 -nS. (2.3)

Next we will compute the evolution equation of the support function S. To this end let
us assume that Mt is a smooth family of closed, strictly convex hypersurfaces in R"+1

parameterized by a smooth embedding Ft : Sn -> Mt c R"+1 such that

— Ft(x) f(x,t)v(x,t),

where f(x, t) is a smooth speed function. It is then possible to find a uniquely determined

diffeomorphism % : Sn -+ Sn such that the embedding

yt:Sn ^ Mt, yt(x) := F,

is the inverse Gauss map. Thus, we obtain

In particular, if / is given by the inverse of the harmonic mean curvature, then (2.3) implies

Lemma 2.1. If Mt is a smooth family of closed, strictly convex hypersurfaces in R"+1

evolving by the inverse harmonic mean curvature flow (*), then the support function
satisfies the linear equation

— S AS + nS,
dt

where A Is the Laplacian w. r.t.the standard metric on Sn.

Corollary 2.2. If Mt is a smooth family of closed, strictly convex hypersurfaces in R"+1

evolving by the inverse harmonic mean curvature flow (*), then the support function S(-, t)
ofMt is given by

S(x, t) ent \ H(x, y, t)S(y, 0)da(y),
Jsn

where H(x, y, t) is the heat kernel on S" and da the standard volume element on S".
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Proof. The function S(x, t) := e nt S(x, t) satisfies the heat equation

— S AS (2.4)
at

and then

S(x,t) I H(x,y,t)S(y,O)dcr(y).(x,t) f
Jsn

But since S(y, 0) S(y, 0) we obtain the result. D

Corollary 2.3. Let Mo be a smooth, closed, strictly convex hypersurface in R"+1 and
let Mt be the corresponding smooth family of hypersurfaces evolving by their inverse
harmonic mean curvature. Then the reseated hypersurfaces Mt := e~ntMt converge smoothly
to a round sphere centered at the origin as t -> oo.

Proof. If S(-, t) and S(-, t) are the support functions of Mt resp. Mt, then

S(x,t) e~ntS(x,t).

In addition, by equation (2.4) S solves the heat equation on Sn and therefore smoothly
converges to a constant as t -> oo. It is clear that a smooth convergence of the support
function implies a smooth convergence of the corresponding hypersurfaces as well. On

the other hand, the support function is constant if and only if the hypersurface is a round
sphere centered at the origin. D

Proof of the main theorem. It is well-known that a solution of (*) exists for t e [0, oo) and

that the hypersurfaces Mt stay convex and embedded during the flow (cf. Urbas [13]). It
is also well-known that the rescaled hypersurfaces Mt := e~ntMt converge smoothly to a

round sphere centered at the origin. It remains to prove the precise formula for the support
function and the inverse of the Gauss maps. This has been shown in Corollary 2.2 and the

equation for the inverse of the Gauss maps 3^ follows from DS\s» y.
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