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A short proof of the formula of Faa di Bruno

Karlheinz Spindler
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erations Centre (ESOC) in Darmstadt. At present, he teaches mathematics and data
processing at the Fachhochschule Wiesbaden. His research interests include geomet-
ric methods in control theory and parameter estimation methods related to the study
of dynamical systems.

While Leibniz’ formula (f@)™ = Y"}_o(;)f® g% for the higher-order derivatives
of the product of two functions is common mathematical knowledge, its analogue for the
composition of two functions is much less well known.

Formula of Faa di Bruno. If [ and g possess derivatives up to order n, then
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The formula is due to Francesco Faa di Bruno (see [1]) who lived from 1825 to 1888 and
enjoys the rare (at least for mathematicians) distinction of being a Saint of the Catholic
church (canonization in 1988 by Pope John Paul II). A proof using basic umbral calculus
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was given by Steven Roman in [3] where also references to other approaches can be found;
a derivation using Hirzebruch’s m-sequences is given in [4]. In this paper we present a
completely elementary (and extremely short) proof which requires almost no prerequisites
and allows the formula of Fad di Bruno to be incorporated into undergraduate calculus
courses. (Some uses of the formula are given in [2].)

Proof. A trivial induction shows that there are polynomials Py, x (where n is the number of
variables of P, x) such that

(Fo™=>"(Pog) Pux(d.g"..... 8" *)
k=0

for all f and g. In fact, the induction shows that these polynomials are recursively given
by Poo(x) = 1 and Pruyi k(X1 - -, Xn, Xn1) = X1+ Prg—1(X1s ooy X0) 4+ Dieq Xig1 -
(0; Pux) (X1, ..., Xn), if we interpret Py, o and P, ,41 as zero, but this is irrelevant for our
argument. What is important to realize from (x) is that (f o g)™ (xo) depends only on
the values g™ (xo) and f®(g(x0)) where 0 < k < n; hence to establish the validity
of the formula at any given point xo, we may replace the given functions f and ¢ with
any functions F and G which have the same derivatives up to order n as f and g at
g(xo) and xp, respectively. Hence, it suffices to prove the formula of Faa di Bruno for
polynomials! Assuming xo = 0 and g(xo) = 0 without loss of generality, we may thus
write f(x) = a0+ a1x + -+ + a,x" and g(x) = bix + box? + --- + byx" where
axr = f®0)/k! and by = ¢®(0)/k! for all k. In this case the formula to be proved
reduces to the claim that the coefficient of x” in the expansion of f (g (x)) is

é k! ki k
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But this is trivial! In fact, applying the multinomial formula

k!
Hitoo+ X = 3 e XX X
Kty =k 12 e

with Xy := brx*, we find

n
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