Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 60 (2005)

Artikel: An interesting application of algebra to genetics
Autor: Langer, Helmut

DOl: https://doi.org/10.5169/seals-10194

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-10194
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

© Swiss Mathematical Society, 2005
Elem. Math. 60 (2005) 25 —-32
0013-6018/05/010025-8 | Elemente der Mathematik

An interesting application of algebra to genetics

Helmut Linger

Helmut Linger studied mathematics at the Vienna University of Technology where he
received his Ph.D. in 1976. Since 1984 he holds the position of an associate professor
at the Institute of Discrete Mathematics and Geometry of the mentioned university.
His main research interests are algebra, foundations of axiomatic quantum mechanics
and discrete mathematics.

1 Introduction

From the beginnings algebraic methods were used for investigating genetic principles and
structures. In particular, this is the case with so-called factor-union phenotype systems in-
troduced by Cotterman ([1]). In these systems a set of properties can be assigned to each
gene in such a way that phenotypes are determined by unions of these sets. These prop-
erties which can be considered to correspond to imaginary or actual physical factors may
help in explaining and understanding the evolution and structure of phenotype systems.

In the literature there exist several algorithms for deciding if a given phenotype system
possesses a so-called factor-union representation and for constructing such a representa-
tion (cf. e.g. [7], [3] and [4]). (In [5] some results of [3] are generalized.) We mainly follow
the method published in [4]. However, the presentation given here explains in more detail
the algebraic background and so is giving more insight into the mutual relations between
algebra and genetics. Thus, the reader may better understand the main algebraic ideas and
methods forming the background for the provided algorithm solving a problem of gene-
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tics. Moreover, it is shown that some of the basic algebraic ideas used in this paper follow
from results in universal algebra that can be formulated in a very general way.

We start by explaining some fundamental notions of genetics and then giving an illustrative
example.

The fundamental idea of mathematical population genetics is the fact that certain proper-
ties of individuals depend on a couple of so-called “genes” which are located at a certain
“locus”. This couple of genes is called a “genotype”. Different genotypes may cause the
same property, meaning, they may belong to the same “phenotype”. It is natural to assume
that certain “factors™ assigned to each single gene are responsible for the occurrence of
this phenomenon. The following example will illustrate this in more detail:

Example 1.1. The human A;A, B O-blood group system is based on the four genes Ay,
A», B and O. The blood groups (phenotypes) A1, Az, A1B, A2B, B and O correspond to
the following genotypes:

Phenotype system of blood groups

blood group | corresponding genotypes
Aq A1A1, A142,A10

Ay ArAj, A0

A1B A1B

ArB A>B

B BB,BO

o 00

Now the question arises if this correspondence between blood groups and genotypes can
be explained by assigning to each gene x a set f(x) of certain “factors” in such a way that
two genotypes yz and uv correspond to the same blood group if and only if f(y)U f(z) =
f )V f(v). If we assign to the genes A1, Ap, B and O some of the factors 1, 2, 3 and 4
according to the following table:

gene | assigned factors

Aq 1,2,4
Ay 2,4
B 3.4
o 4

then this is the case since to the genotypes A1A1, A1Ap, A10, ArAp, AyO, A1B, AB,
BB, BO and O O there are then assigned factors according to the table on the top of the
next page.

Now the following problems arise:

Problem 1 Decide if a given phenotype system possesses a factor-union representation.
Problem 2 Construct such a representation if it exists.

Problem 3 Is the representation (if it exists) unique up to some identification?

Problem 4 If a representation exists, can one find a minimal one (with a minimum number
of factors)?
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genotype | assigned factors
Al1Aq 1,2,4
A1Ar 1,2,4
A0 1,2,4
ArAj 2,4

Ay O 2,4
A1B 1,2,3,4
ArB 2,3,4
BB 3,4

BO 3,4

00 4

E.g., the representation given in Example 1.1 is not minimal (as indicated at the end of the
paper).

The aim of this paper is to present the algorithm published in [4] for solving the first two of
these problems and to explain the corresponding algebraic background in a clear manner
in more detail.

2 Formulation of the problem in mathematical terms

Let G be a fixed finite non-empty set of genes and G, denote the set of all one- or two-
element subsets of G. G, may be considered as the set of all genotypes where each geno-
type xy is identified with the set {x, y}. A phenotype system « is nothing else than an
equivalence relation on G, so may be considered as a subset of G, x G». By a factor-
union representation of « we understand a mapping f assigning to each element of G a
certain set such that

[(A, B) eG%’ U rw= Uf(x)] =,

x€A X€eB

« is called a factor-union system if it possesses a factor-union representation. Now the first
two of the above questions can be formulated as follows: Is a given phenotype system a
factor-union system? If it is a factor-union system, how could one construct a correspond-
ing factor-union representation?

3 Algebraic background

The basic algebraic structure used in the following is that of a semilattice. A semilattice is
a commutative idempotent semigroup. There is a natural bijective correspondence between
semilattices (S, V) and posets (S, <) every two elements of which have a supremum. (Here
and in the following the term “poset” is used as an abbreviation of the term “partially
ordered set”.) The correspondence is given by

x <y ifandonlyif xvy=y resp. XV y:=sup(x, y).
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If A is an arbitrary set and B denotes the set of all finite non-empty subsets of A then
(B, U)is aso-called free semilattice with free generating set A where the elements of A are
identified with their corresponding singletons. This means that every mapping f from A
to the base set S of some semilattice (S, V) can be uniquely extended to a homomorphism
¢ from (B,U) to (S, V), namely via g(x) := \/ f(z) for all x € B.If A coincides

€ex
with the finite non-empty set G then B = 2¢ \ {#}. From the fact that 2 \ {@}, U)
is a free semilattice with free generating set G and from the definition of a factor-union
representation of a phenotype system one obtains

Remark 3.1. The factor-union systems are exactly the restrictions of the kernels of the
homomorphisms from (2 \ {#}, U) to semilattices of the form (2, U) (with an arbitrary
set F) to G since they arise by assigning to each element of G a certain subset of F and
by extending this mapping f from G to 2¥ to a mapping f from G5 to 2F by defining
FUx, ) == fx)U f(y) for all x,y € G. Hence f may also be considered as the
restriction of the unique extension of f to a homomorphism from (ZG, U) to (2F ,U) to Ga.

In order to see that these kernels are exactly the congruences on (26 \ {8}, U) we need a
representation theorem for semilattices. But first we consider a more general situation.

By an algebra we mean a set together with a (possibly infinite) family of finitary operations
on it. The corresponding family of the varieties of the operations is called the type of the
algebra. A variety is an equationally definable class of algebras of the same type, i.e. the
class of all algebras of a fixed type which satisfy a fixed set of laws. For every class I
of algebras of the same type H(K), I(K) and S(X) denote the class of all homomorphic
images, isomorphic images and subalgebras of members of /C, respectively. By the kernel
of a mapping f with domain M we mean the equivalence relation {(x, y) € M?| f(x) =
J(y)} on M. Now we can state the following

Lemma 3.1. If K1, K are classes of algebras of the same type, H(K1) € I(S(Ky)) and
A € Ky then the congruences on A are exactly the kernels of the homomorphisms from A
to members of Cy.

Proof. Let ® be a congruence on .A. Then 4/® € H({A}) € H(K;) € I(S(K;)). Hence
there exists some 5 € Ky and some C € S({B}) withC = A/©. Let f denote the canonical
homomorphism from A to .A/® and g an isomorphism from .4/® to C. Then g can be
regarded as a homomorphism from .4/ to B. Since g is injective, g o f has the same
kernel as f and hence © is also the kernel of the homomorphism g o f from A to the
member B of K». O

As a consequence we obtain

Corollary 3.1. If'V is a variety, IKC a subclass of V such that every member of V can be
embedded into some member of K and A € V then H(V) = V C I(S(K)) and hence
the congruences on A are exactly the kernels of the homomorphisms from A to members
of K. O
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Now we state the above mentioned representation theorem (cf. e.g. [6]; for the case of
distributive lattices see [2]).

Theorem 3.1. (Representation theorem for semilattices) Every semilattice (S, V) can
be embedded into (25, U).

Proof. If f denotes the mapping from S to 2% defined by f(x) :={y € S| y # x} for
all x € Sthensince x = A(S\ f(x)) forall x € S, f is injective and since for any three
elements a, b, c of S, ¢ > a v b is equivalent to (¢ > ¢ and ¢ > D), f is a homomorphism
from (S, V) to (25, U). O

Combining our results we obtain

Proposition 3.1. The kernels of the homomorphisms from (2° \ {#}, U) to semilattices of
the form QF V) (with an arbitrary set F) are exactly the congruences on (2¢ \ {@}, V).

Proof. This follows from Theorem 3.1 and Corollary 3.1 by specializing V to the variety
of semilattices, K to the class of all algebras of the form (2F | Uy (with an arbitrary set F)
and A to the algebra (2% \ {#}, U). O

Combining Remark 3.1 with Proposition 3.1 yields (cf. [4])

Corollary 3.2. The factor-union systems are exactly the restrictions of the congruences
on 26\ {#}, V) 10 Go. O

This result can be sharpened as follows (cf. [4]):

Proposition 3.2. A phenotype system « is a factor-union system if and only if it is the
restriction of the congruence on (2% \ {8}, U) generated by a to Go.

Proof. If « is the restriction of a congruence ® on (26 \ {#}), U) to G, and © denotes the
congruence on (29 \ {#}, U) generated by « then ® C @ and hence

@CONGICPNGl=a
which shows @ = ©N G%. The assertion of the lemma now follows from Corollary 3.2. O

How can one construct the congruence on (2 \ {#}, U) generated by a given phenotype
system? Since an equivalence relation © on the base set S of a semilattice (S, V) is a
congruence on (S, V) if and only if (x,y) € ® and z € S imply (x Vz,y Vv 2) € O, the
following result is easy to verify (cf. [4]):

Lemma 3.2. If « is a phenotype system then the congruence on (2% \ {#)}, U) generated
by a is the transitive closure of {(x Uz, yUz) | (x,y) €, 2 € G}. |

Now we can present a method for constructing a factor-union representation of a factor-
union system.

Theorem 3.2. (Construction of a factor-union representation) If « is a factor-union
system and © denotes the congruence on (2° \ {#}, U) generated by « then the mapping
1 from G to 2QCNIN/© Uy defined by f(x) = {y € QC\{#))/O | y # [{x}1©} for all
x € G is a factor-union representation of «.
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Proof. Since © is the kernel of the canonical homomorphism g from Q2% \ (B}, U) to
(2%\ {#))/©, U) and the mapping & from (28 \ {#))/© to 222/ ® defined by h(x) :=
{y € QC\{#})/© | y # x} forall x € 2%\ {#})/© is an embedding of (2% \ {#})/©, U)
into (22°\ED/© Uy according to the proof of Theorem 3.1, A o g is a homomorphism
from (26 \ {#}, U) to (2C“\#D/© Uy with kernel ® which together with © N Gs =«
(which holds according to Proposition 3.2) shows that the mapping f from G to 22\#)/©
defined by f(x) :== {y € QC\{#))/0 | y # [{x}]1©)} for all x € G is a factor-union
representation of «. O

Remark 3.2. If a given phenotype system « with n genes has a factor-union representa-
tion then 2” factors are sufficient. Hence the problem formulated in the beginning could be
solved in a finite number of steps by taking a fixed 2”-element set F of factors and check-
ing all (22")" = 2"2" mappings from G to 2% if they are factor-union representations of o
or not. In [7] it was proved that even « factors suffice.

Remark 3.3. The number of factors used in the factor-union representation described in
Theorem 3.2 can be reduced by using an improved version of the representation theorem
for semilattices. As a sharpening of the result in Theorem 3.1 it can be proved that every
semilattice (S, V) can be embedded into the power sets over a subset of S. In order to see
this let us define meet-irreducible elements of a poset.

An element of a poset is called meet-irreducible if it is not the meet of two other elements.
A poset is said to satisfy the ascending chain condition if every ascending chain is finite.

Now we prove the following lemma:

Lemma 3.3. In every poset (P, <) satisfyving the ascending chain condition every element
a is the meet of finitely many meet-irreducible elements.

Proof. Let M denote the set of all meet-irreducible elements of (P, <). If a € M we are
done. Otherwise there exist b,c € P \ {a} witha = b Ac.If b,c € M we are done.
If b ¢ M then there exist d,e € P \ {b} withb = d Ae. Thena = d A e A c. Since
(P, <) satisfies the ascending chain condition, the described procedure has to terminate
after a finite number of steps thus finally arriving at finitely many elements of M the meet
of which is a. |

A direct consequence of Lemma 3.3 is

Corollary 3.3. In every poset satisfying the ascending chain condition every element is
the meet of its meet-irreducible upper bounds. O

Now we are ready to prove (cf. e.g. [6]; for the case of distributive lattices see [2])

Theorem 3.3. (Improved version of the Representation theorem for semilattices)
Every semilattice (S, V) satisfving the ascending chain condition can be embedded into
(2™ U) where M denotes the set of all meet-irreducible elements of (S, <).

Proof. If f denotes the mapping from S to 2¥ defined by f(x) := {y € M | y # x)} for
all x € S then, since x = A(M \ f(x)) for all x € S according to Corollary 3.3, f is an
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injective homomorphism from (S, V) to (2, U) which follows in an analogous way as in
the proof of Theorem 3.1. O

The improved version of our theorem describing the construction of a factor-union repre-
sentation can now be formulated as follows (cf. [4]):

Theorem 3.4. (Construction of a smaller factor-union representation) If « is a factor-
union system, © denotes the congruence on (29 \ {#}, U) generated by o and M denotes
the set of all meet-irreducible elements of (2% \ {#})/©, ) then the mapping [ from
G to2M defined by f(x) := {y € M|y ¥ [{x}1®} for all x € G is a factor-union
representation of o. O

4 The algorithm

Now we can present an algorithm for solving the first two of the problems stated at the
beginning.

Algorithm for checking if a given phenotype system « is a factor-union system and
for constructing a corresponding factor-union representation (cf. [4])

Construct the congruence © on (2° \ {#}, U) generated by o by forming the transitive
closure of {(x Uz, yU2) | (x,y) € o,z € G} (Lemma 3.2). If ©® N G # o then « is not
a factor-union system (Proposition 3.2). Otherwise construct the Hasse diagram of ((2¢ \
{#})/©, <). Let M denote the set of all meet-irreducible elements of (2¢ \ {#})/®, <).
Then the mapping f from G to 2 defined by f(x) := {y € M | y # [{x}]©} for all
x € G} is a factor-union representation of « (Theorem 3.4).

Now we return to our introductory example.

Example 4.1. We have

G ={A1, Ay, B, O},

o = {{A1}, {A1. A2}, {A1, 0} U {{A2). {A2. 01} U {{A1. B})? U {42, B}Y?U

U {{B}. {B. 0}}* U {{O}}*,

® = {{A1}, {A1, A2}, {A1, O}, {A1, Az, O}}2 U {42}, {A2, O}V
U {{A1, B}, {A1, A2, B}, {A1, B, O}, {A1, Az, B, O}}* U {{A;, B}, (A2, B, O}}*U
U {{B}. (B, 0}}* U {{O}}?,

where © denotes the congruence on 2%\ {2}, V) generated by «. The Hasse diagram of
(2% \ {(#})/©, <) looks as follows:

[{A1, B}]©
[{A1}]1© [{A2, B}]©
[{A2}]1© [{B}1©

[{o}1e
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Hence, the mapping f from G to 2M (where M denotes the set {[{A1}]10, [{A1, B}]1©,
[{A2, B}1©, [{B}]©)} of all meet-irreducible elements of (2% \ {#})/©, <)) defined by

f(An = {l{B}I®, [{A2, B}]®},

f(A2) = {[{B}]®}],
rB) = {[{A1}10},
fO) = ¢

is a factor-union representation of «.

Investigating the computational complexity of the proposed algorithm seems to be very
difficult. Forming the transitive closure of the described binary relation may be a long
procedure if G is large. If © has k classes then (’;) comparisons are necessary in order to
determine the factor poset (2% \ {#})/©, <). In order to determine the meet-irreducible
elements one has to consider the possible infimum of any two distinct elements of the fac-
tor poset. The number of these pairs is again (g) Software packages for algebraic structures
may be used in order to apply the proposed algorithm in an as effective as possible way.
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