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Ky Fan’s inequality with binomial expansion

Jamal Rooin
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In this note, given n arbitrary nonnegative real numbers xy, . .., X,, we denote by A, and
G, the unweighted arithmetic and geometric means of xi, . .., X5, respectively, i.e.,
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and moreover, if x; € (0, 1/2], we denote by A;l and G;l, the unweighted arithmetic and
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geometric means of 1 — xy, ..., 1 — x,, respectively, i.e.,
1 n n
1
Ay =~ ;a -x),  Gp= E(l —x)'".

In 1961 the following remarkable inequality, due to Ky Fan, was published for the first
time in the well-known book Inequalities by Beckenbach and Bellman [2, p. 5]:

If x; € (0, 1/2], then
Al - Ay

= 1
G, = Gy M

with equality holding if and only if x1 = - - - = Xy.
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Inequality (1) has evoked the interest of several mathematicians and in numerous articles
new proofs, extensions, refinements and various related results have been published; see
the survey paper [1] and the references therein.

By replacing the apparent binomial expansion, it is easily established that the following
recursive identity holds (see [3]):

n n—k n=1 n—1
Ap— Gy = % > (Z)AZI (x;/n _ A,l/_”l)k T+ x <AZ1 - GZI) )
k=2
Using this identity, we now give a striking new proof of (1) which shows the power of
binomial expansion on the one hand and the close relations between AGM and Ky Fan
inequalities on the other:
Actually, dividing each side of (2) by
n=1 1

Gn=G," xp #0,

n

we get the following recursive identity
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Now, we proceed by induction on n. If n = 1, there is nothing to prove. Suppose that

n > 2 and (1) holds forn — 1. If x; = - - - = Xy, then obviously equality holds in (1). Let
x;’s not all be equal. By a rearrangement if necessary, we can suppose that x, = 1rn_ax X;.
<i<n

Now, considering
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with the induction hypothesis

/
An—1 s An—l
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and taking into account that
Gp-1 < G:1_17 Ap_1 < A;l_p Xn <1 —Xp,
A;z—l =1-Ap-1, Xpn> Ap-1,
and
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we get 2_2 > % and the proof is completed. |
n
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