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Ein Beitrag zu den Diophantischen Approximationen
reeller Zahlen

Robert Baggenstos

Robert Baggenstos studierte Mathematik und Astronomie an der Universitat Bern,
arbeitete danach in der Lehrerausbildung und unterrichtet heute Mathematik und
Astronomie an der Kantonsschule in Solothurn.

1 Einleitung

Der Versuch, reelle Zahlen mit rationalen zu approximieren, bildet ein klassisches Thema
der Zahlentheorie. Von MINKOWSKI [4] wurde dieses Gebiet mit ,,.Diophantische Ap-
proximationen” umschrieben, und dieser Begriff wird heute in der Regel dann verwen-
det, wenn es darum geht, bei gegebenem r € R den Approximationsfehler |r - -g—| durch
geeignete Wahl von ganzen Zahlen B > 0 und A nach oben abzuschitzen, oder aber ihn
moglichst klein zu gestalten.

Auf der Suche nach giiltigen Aussagen in diesem Problemfeld stosst man in der Regel auf
Sétze, welche in drei Klassen unterteilt werden konnen:

1. Existenzsitze fiir den Fall, dass der Wert des Nenners B € N nicht nach oben be-
schrinkt ist. Diese Sitze besagen dann etwa, dass unendlich viele (gekiirzte) Briiche
% existieren, so dass gilt |r — %| < ¢(B), wo c(B) eine vom Nenner B abhingige
obere Schranke bildet.

Bei dieser Klasse von Aussagen sprechen wir im Folgenden von ,,Approximationen
mit beliebig grossen Nennern®.




Ein Beitrag zu den Diophantischen Approximationen reeller Zahlen 155

II. Existenzsitze fiir den Fall, dass der Wert des Nenners B € N nach oben beschrankt
ist. Diese Sitze besagen dann etwa, dass mindestens ein Bruch % existiert, so dass
gilt [r — 4| < ¢(B), wo c(B) wiederum eine vom Nenner B abhingige obere
Schranke bildet.

Bei dieser Klasse von Aussagen sprechen wir im Folgenden von ,, Approximationen
mit beschrinkt grossen Nennern®.

III. Algorithmische Wege zur Bestimmung der bestmoglichen Approximation einer re-
ellen Zahl r € R mit einem gekiirzten Bruch %, wo der natiirliche Nenner B (und
eventuell auch der ganzzahlige Zihler A) aus einer bestimmten endlichen Teilmenge
von N (resp. von Z) stammen muss.

Bei dieser Klasse von Aussagen sprechen wir im Folgenden von ,,Approximations-
algorithmen®.

Zu jeder der drei Klassen sollen hier einige der bereits bekannten Erkenntnisse zusammen-
gestellt werden, wobei Vollstidndigkeit weder angestrebt noch moglich ist. Ferner sollen
dazu auch einige zusétzliche Aussagen hergeleitet werden.

2  Grundlagen

Wo im Folgenden mit % eine rationale Zahl erscheint, seien A und B stets ganze Zahlen
und B > 0. Die zu approximierende Grosse sei ohne weitere Hinweise eine beliebige
reelle Zahl, und diese wird in der Regel mit r bezeichnet.

Es geht nun also darum, die Differenz zwischen einer reellen Zahl r und einer rationalen
Zahl % nach oben abzuschitzen mit einer positiven Schranke c(B):

A A
r ——| < c(B) oder allenfalls r——| <c(B).
B B
Selbstverstindlich weisen zwei benachbarte Bruchzahlen 4 und 44! mit gleichem Nenner

B eine Differenz von % auf, weshalb fiir jede reelle Zahl r und fiir jeden nattirlichen

Nenner B (sowie eine geeignete ganze Zahl A) gilt:

_ﬁ.

A <1 0
r__
B

Und weil dabei die Gleichheit hochstens dann eintreten kann, wenn r rational ist, gilt fiir
jedesr € R\ Q und fiir jeden natiirlichen Nenner B (sowie eine geeignete ganze Zahl A)
sogar:

A 1
Fiir die Kettenbruch-Darstellung von irrationalen Zahlen verwenden wir anstelle der Form
1
qo + T
a1+ T
q2 +

3t .
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die einfachere Darstellung [go; ¢1, g2, 43, - - -]. Dabeiist go € Zund g; € N fiir alle i > 1.
Fiir rationale Zahlen verwenden wir dann sinngemiss die Form [qo; g1, g2, - - ., gn]. Dabei
ist wiederum gop € Z und ¢; € N fiir alle i > 1 sowie g, > 2, womit auch bei rationalen
Zahlen die Eindeutigkeit ihrer Kettenbruchdarstellung gewéhrleistet wird.

3 Approximationen mit beliebig grossen Nennern

In diesem Abschnitt betrachten wir Diophantische Approximationen von reellen Zahlen r,
wobei der Nenner B der Bruchzahlen % aus einer bestimmten, aber jedenfalls unendlich
michtigen Teilmenge G der natiirlichen Zahlen gewéhlt werden kann.

Zunichst betrachten wir hier ein paar Aussagen zur Approximation rationaler Zahlen.
Grundsitzlich muss man zunéchst feststellen, dass sich rationale Zahlen weniger gut ap-
proximieren lassen als irrationale, denn fiir zwei voneinander verschiedene rationale Zah-
len % und % gilt stets (wenn diese beiden Briiche vollstidndig gekiirzt sind):

n A 1
—— S (3)
m B mB

Geht es also beispielsweise darum, eine ganze Zahl zu approximieren (m = 1) mit ei-

ner von dieser ganzen Zahl verschiedenen rationalen Zahl %, dann kann dabei der Feh-

ler selbstverstandlich nicht kleiner sein als %. Und falls man eine rationale Zahl aus der
Menge {£0.5, 1.5, 2.5, ...} (also mit m = 2) mit einer von ihr verschiedenen ratio-
nalen Zahl % approximieren will, dann betrdgt nach (3) der Approximationsfehler min-
destens %. Fiir die tibrigen rationalen Zahlen l4sst sich hingegen die Aussage (1) leicht
verschirfen:

Satz 1 Zu jeder rationalen Zahlr € Q\{0, 0.5, £1, £1.5, £2, .. .} existieren unendlich
viele (gekiirzte) Bruchzahlen % mit der Eigenschaft

A 1
r——|<=—.
B 2B

Beweis. Sei etwar = % (mit n € Z und mit m € Nund m > 2 sowie (n,m) = 1). Die
Gleichheit in (1) tritt genau dann ein, wenn A € Z und B € N existieren, so dass r exakt
in der Mitte zwischen % und % liegt. Daraus ergibt sich:

n 1 /A A+1 2A+1
_:§.<_+ ): X )

m B B 2B

Sei nun etwa B eine Primzahl und B;«é%. Dann kann der in (4) rechts stehende Bruch
hochstens mit B gekiirzt werden (da sein Zihler ungerade ist).

1. Falls dieser Bruch nicht kiirzbar ist, gilt m = 2B, was im Widerspruch steht zu
B#AL.

2. Falls dieser Bruch mit B kiirzbar ist, gilt m = 2, was im Widerspruch steht zu
m > 2.
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Somit kann die Gleichheit in (1) mindestens fiir alle B, welche Primzahlen und von %
verschieden sind, nicht eintreten, woraus bereits Satz 1 folgt. O

Satz 1 lasst sich noch wesentlich verallgemeinern:

Satz 2 Esseir = % eine rationale Zahlmitm € Nund (n,m) = 1. Fernerseim > k € N
beliebig. Dann existieren unendlich viele (gekiirzte) Bruchzahlen % mit der Eigenschaft

n A 1

< .
m B kB

Beweis. Bekanntlich besitzt die Diophantische Gleichung
Bn—Am =1 &)

fiir n,m € Z und (n,m) = 1 stets ganzzahlige Losungen fiir A und B. Sei Ag, By eine
dieser Losungen. Also gilt dann Bon — Agm = 1. Dann sind auch alle

B(t) = Bo+mt,
A(l) Ao + nt

(mit t € Z) ganzzahlige Losungen von (5). Fir alle hinreichend grossen Werte von ¢ gilt
wegen m > 0 auch B(t) = Bo + mt > 0. Da die Werte A(f) und B(¢) die Gleichung (5)
erfiillen, sind sie zudem sicher teilerfremd. Somit existieren unendlich viele teilerfremde
A € Zund B € N, fiir welche gilt Bn — Am = 1. Daraus folgt durch Division durch B
und durch m, und wegen m > k:

also etwas mehr noch als Satz 2 behauptet. [

Nun betrachten wir ein paar Aussagen zur Approximation irrationaler Zahlen.

Satz 3 Zu jeder irrationalen Zahl v € R\ Q existieren unendlich viele (gekiirzte) Bruch-
zahlen % mit

i A ‘ 1

- < =

B 5. B2

Bemerkung. Dieser Satz wurde 1889 von A. HURWITZ zunéichst mit Hilfe der Theo-
rie der Kettenbriiche hergeleitet. Spédter wurden verschiedene andere Beweise gefunden,
beispielsweise von A.J. KHINTCHINE [2]. Ausserdem hat HURWITZ nachgewiesen, dass
man diese Abschitzung nicht weiter verschérfen kann, ohne fiir die zu approximierende
Irrationalzahl r einschrinkende Voraussetzungen einzufiihren. So lidsst sich zeigen, dass
fiir die Zahl r = £52_—1 (Goldener Schnitt!) nur endlich viele gekiirzte % existieren, so
dass gilt |[r — 4] < —L5, sobald ¢ > /5 ist.

c-B2?
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Satz 4 Zu jeder irrationalen Zahl r € R\Q existieren von jedem einzelnen der drei Typen

ungerade  gerade  ungerade . . . A, ot
ingerade’ ngerade’ ~gerade Whendlich viele (gekiirzte) Bruchzahlen g mit

Satz 5 Zu jeder irrationalen Zahlr € R\Q existieren von mindestens zwei der drei Typen

ungerade  gerade  ungerade . . i A
ungerade’ ngerade’ gerade Whendlich viele (gekiirzte) Bruchzahlen g mit

A 1
=< —.
B 2B2
Bemerkung. Die Sitze 4 und 5 wurden 1940 von R.M. ROBINSON [7] mit Hilfe der

Theorie der Kettenbriiche hergeleitet. W.T. SCOTT [8] leitete Satz 4 ebenfalls 1940 unter
Zuhilfenahme geometrischer Transformationen her.

4 Approximationen mit beschriankt grossen Nennern

In diesem Abschnitt betrachten wir Diophantische Approximationen von reellen Zahlen r,
wenn der Nenner B der Bruchzahlen % aus einer bestimmten endlichen Teilmenge G der
natiirlichen Zahlen gewdhlt werden kann.

Satz 6 Zu jeder reellen Zahl r € R und zu jeder natiirlichen Schranke M € N existiert
mindestens eine Bruchzahl % mit B < M und mit der Eigenschaft

Wir beweisen hier gleich eine etwas allgemeinere Aussage:

Satz 7 Zu jeder reellen Zahl v € R und zu den beiden beliebigen natiirlichen Schranken
n,M € N (mit n < M) existiert mindestens eine Bruchzahl % mitn < B < M und mit

der Eigenschaft
A 1

B S TH R
B‘[?W
Dabeiist [x] =max{p | peZAp <x}.

o

Beweis. Es sei z; := tr — [tr], mitt = 0,1,2,..., M. Diese M + 1 Zahlen liegen alle
im Intervall [0, 1). Es sei nun ¢ := [%]. Nun unterteilen wir das Einheitsintervall [0, 1) in
¢ gleich grosse Teilintervalle, gemiss [0, 1) = [0, %) U [%, %) U...u [C;—l, 1). Von den
Zahlen z; liegen in einem solchen Teilintervall im Durchschnitt

M+1 M+1_M+1

>
T

>n

Zahlen. Also existiert mindestens ein solches Teilintervall, welches mindestens 7+ 1 dieser
Zahlen z; enthilt, etwa die Zahlen mit den Indizes #1, f2,..., lpprund mit ) < fp < ... <
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tn+1. Dann gilt mit Sicherheit n < 1,41 — ©1 < M. Da die entsprechenden Zahlen z; im
selben Teilintervall liegen, gilt somit
1

‘Zthrl _Ztl‘ =< -

also: |tyy1r — [twpar] — (ur — (1)) = |(npr — 107 — (tngar] — [rD] < 1. Mit
A = [tyr1r] — [Arlund mit B = t,41 — 1 gilt: A € Z, B € N,n < B < M, sowie
|Br — Al < % Nach Division durch B ergibt sich unmittelbar die Aussage von Satz 7. [

Bemerkungen. Satz 6 wurde 1842 von G.P. LEJEUNE DIRICHLET [3] mit Hilfe des
Schubfachprinzips hergeleitet, welches hier im Beweis des Satzes 7 verwendet wurde.
Satz 6 ergibt sich natiirlich unmittelbar aus Satz 7 fiir n = 1. Ebenso ergeben sich die
Sédtze 6 und 7 als Spezialfille aus dem Satz 9. Auf die Voraussetzung M € N (und n € N)
kann nach geringfiigiger Modifikation der Beweisfithrung im letzten Satz auch verzichtet
werden.

Satz 8 Es existieren hochstens zwei verschiedene (gekiirzte) Bruchzahlen %, welche die
Bedingungen von Satz 6 erfiillen.

Beweis. Es sei r € Rund M € N beliebig. Innerhalb der Farey-Folge der Ordnung M

betrachten wir die beiden konsekutiven Bruchzahlen %j- und Zi—ﬂ, fiir welche gilt: Z—; <

r o< Z—E Innerhalb einer solchen Farey-Folge sind bekanntlich alle Nenner b; < M,

und fiir zwei konsekutive Briiche der Folge gilt zudem Z?—E - g—j = ﬁ. Somit gilt

1 1
Zivl _ 4 o~ 1 ditl 4 1
by B = mam und B b = G
welcher unterhalb von Z—; liegt, gilt daher:

Fiir einen beliebigen Bruch g:—:i dieser Folge,

ai—k - 1 X 1 - : 1
= —> oo ——
bi—k — bibi_1  bi—1bis Di—k+1Di—k
wegen
poily L 1 s
biox = Mbi_y  Mb;_» Mbi_y’
und somit
. ai—k 5 1 < 1 n 1 4 + 1 ) 5 1
bixk ~ M \bi_1 bio bi—k) ~ Mbi_y

Ebenso kann man zeigen, dass fiir jeden beliebigen Bruch Zji—ii’; oberhalb von Zi—ﬂ gilt:

dit1+k 1
r >

bit14x MDbiy14k

Somit verbleiben lediglich die beiden konsekutiven Briiche Z—j und Z’i—ﬂ, welche die Be-

dingungen von Satz 7 allenfalls zu erfiillen vermégen. O

Bemerkung. Der Satz 8 wurde bereits von SIERPINSKI [9] nachgewiesen.

DOrdnet man die gekiirzten Briiche mit einem Nenner kleiner oder gleich M der Grosse nach, dann erhalt
man die Farey-Folge der Ordnung M. Aufgrund ihrer besonderen Eigenschaften sind die Farey-Folgen fiir
Approximationsprobleme besonders gut geeignet.



160 R. Baggenstos

Satz 9 Es sei f : No—N eine streng monoton wachsende Funktion. Ferner sei M € R,
M > f(1) undr € R. Dann existieren zwei Zahlen ny, ny € No und ein gekiirzter Bruch
%, mitAeZ, 0< B= f(n)— f(np) <M, sodass

A 1 1
‘r_§‘<g(M)B (Sg(B)B’ Jalls BZf(O)).

Dabeiist g(x) .= max{y € No | f(¥) < x} fiir x = f(0).

Beweis. Eine beliebige Zahl r € R soll approximiert werden mit %, mit A, B € Z und
mit 0 < B = f(n1) — f(ny) < M fiir geeignete ny1,ny € Np. Fiir 11,7, € Ny mit
<t <gM)gilt0 < f(tp) — f(t1) < M. Nun gilt: z; = f(t)r — [f(&)r] € [0, 1) fiir
t=0,1,2,...,g(M). Von diesen g(M) + 1 Zahlen liegen mindestens zwei im gleichen
Teilintervall [ﬁ, g(;M) fiiri = 1,2,..., g(M) (Schubfachprinzip). Also existieren #;
und p € {0, 1,2,..., g(M)} mit 1y < o und mit |z, — 24, | < £7i7-

Seinun B = f(t2) — f(t1)und A = [f(t2)r] — [f(t1)r], somitalso A € Zund B € N
mit B < M. Dann gilt:

|z —z0| = [(f@r —[f()rD) — (f@)r — [f @)rD)]
I(f(t) — fFa) T — (Lf t2)r] = [f tO)rD]

1
= |Br—A|l < ——,
8(M)
woraus unmittelbar folgt:
A 1
— == < %
B| g(M)B
Mit B < M, also g(B) < g(M), folgt schliesslich auch die Klammerbemerkung. O

Zu Satz 9 seien hier drei Beispiele angefiigt.

Beispiel 1 Fiir f(n) = n ist g(M) = [M], und es ergibt sich wiederum unmittelbar
DIRICHLETS Satz 6.

Beispiel 2 Ist f(n) die (n + 1)-te Primzahl, also f(0) = 2, f(1) = 3, f(2) = 5 etc,,
dann ist g(M) = (M) — 1. Dabei bezeichnet 7 (M) die Primzahlfunktion, sie bestimmt
die Anzahl der Primzahlen p; < M. Dies bedeutet: Fiir alle » € R und fiir alle M > 3

existiert A € Zund B € Nmit B < M und B = p; — p» (Differenz zweier Primzahlen),
so dass gilt

A 1 1
r——=|< — <—}.

B| @(M)-1B (m(B)—1)B
Fir M > 2 gilt 7(M) > 752 (MONKEMEYER [5]), womit also auch die folgende
Abschitzung zutrifft:
Fiir aller € Rund fiir alle M > 2 existiert A € Zund B e Nmit B < Mund B = p1—p»
(Differenz zweier Primzahlen), so dass gilt

1 3 31n M

(ZM >B_(2M—31nM)B'

i
r——=| <
B 2M

3InM
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Beispiel 3 Ist f(n) = n? (mit p € N), dann ist g(M) = [{/M]. Dies bedeutet: Fiir alle
r € R, fiir alle p € N und fiir alle M > 1 existiert A € Z und B € N mit B < M und mit
B =nf —m? (n,m € Np), so dass gilt:

R

Im Folgenden werden zwei Approximationen untersucht, bei welchen die Bruchzahlen
% die Bedingung zu erfiillen haben, dass der Nenner B als Produkt einer bestimmten
Anzahl von natiirlichen Faktoren g; dargestellt werden kann, wobei diese Faktoren aus
einer beschrankten Teilmenge von N stammen miissen, also etwa 1 < m < 8; < M fiir
allei.

r —

Satz 10 Es sei M > 1 eine beliebige Schranke und n € N eine natiirliche Zahl. Dann
existiert zu jedem r € R mindestens eine rationale Zahl %, mit B = " sowie A = ",

(¢ € Zund B € N) und mit B < M (also B < ~/M), so dass gilt

A Iy n (
r——=| < |VIr|+—=1) —|r| < JIr| +
B‘ (vll ”FMB) I vV

1 n—1
YMB «”/MB) '
Beweis. Grundsitzlich konnen wir uns auf 7 > 0 beschrénken. Sei also r > 0 und ¥/7 eine
reelle n-te Wurzel von r. Gemiss Satz 6 existiert mindestens ein & mit« € Z, 8 € Nund

B
mit B < /M, so dass gilt
o 1
{’/7 ——| < =\
‘ Bl IYMpB

Damit ist
n
r— <%) <max{(\”/7—|—A)n — B e (\”/_—A)n} = ((’/7+A)n—r.
Im Weiteren gilt fiir die auf [0, c0) konvexe Funktion f(x) = x"* (n € N)
F+A —x" <Af'(x+A) = An(x + A",
weshalb weiter abgeschitzt werden kann:
(Y7 +A) —r < An (Y7 +A)""".

i _ 1 _ 1 y i
Mit A = Vi = s folgt schliesslich Satz 10. a

Eine weitere Aussage in Bezug auf Approximationsbriiche mit zerlegbaren Zihlern und
Nennern macht der folgende

Satz 11 Zu jeder reellen Zahlr € R und zu zwei beliebigen natiirlichen Schrankenn, M €
N mit 2 < n < M existiert mindestens eine Zahl % mit A= A1Ay, B = B1B) (A1, A €
Z, B, B e N) mitn < B; < M, so dass gilt:

Al 142kMJTr]
g —_—

r — —
B k2B

Dabeiistk = [4].
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Bemerkung. Die Einschriankung auf By > 2 und By > 2 (und damit auf B > 4) ist
sinnvoll, weil der Fall mit By = 1 (resp. mit By = 1) bereits mit Satz 6 wesentlich besser
abgeschitzt werden kann.

Beweis. Grundsitzlich konnen wir uns wie beim Beweis des Satzes 10 auf r > 0 beschrin-
ken. Sei also r > 0, /7 > 0 sowie n, M € Nmit 2 < n < M beliebig. Gemiss Satz 7
existiert mindestens eine Zahl % mit A € Z, B eN,n < B < M, so dass gilt

1 1
= — = A. (6)

MO

=

Es seien nun % und %% zwei solche (nicht notwendigerweise verschiedene) Zahlen. Nun

denken wir uns die Zahl r als den Flicheninhalt eines Quadrates der Seitenlidnge /7 und
% g—z als den Fldcheninhalt des Rechtecks mit den Seitenldngen %1- und %;.

Ap A

ﬁ

Die Seitenléngen der beiden Rechtecke unterscheiden sich gemass (6) um weniger als A
resp. Ap. Fiir die Differenz der beiden Flacheninhalte gilt damit

Al Ay

B1 B>

< max{(\/7+A1)(x/7+A2)—fvr—(*/—_Al)(\/__Aﬂ}
= (Wr+A)(Vr+Ay)—r,

da sowohl 4/7 als auch A; positiv sind. Also gilt:

AlA r (A A
B, B, 102+ /1 (A1 + Ayp)

1 NS
- k23132+7<3_1+3_2)
1 JTBi1+ By
k2B1B, ' k BiB;
1+ ky/r (B1 + By)

k2BB;

’ A1 A
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Mit By 4+ By < 2M sowie mit AjAp, = A und By B, = B folgt schliesslich:

A 1+ 2kMr
r——| < ———,
B k’B

wobei fiir < 0 im Abschitzungsterm /7 durch /]r]| ersetzt werden muss. O

S5 Approximationsalgorithmen

Dieser Abschnitt befasst sich mit der Suche nach moglichst guten Approximationen einer
beliebigen reellen Zahl r geméss |r — % , wenn die ganzen Zahlen A und B (mit B > 0)
aus bestimmten (endlichen) Teilmengen von Z (resp. von N) stammen sollen.

Wir werden sehen, dass es sich bei diesen ,,Algorithmen eigentlich immer um die Be-
stimmung einer (moglichst kleinen) endlichen Menge von in Frage kommenden Bruch-
zahlen % handelt, unter welchen anschliessend der beste Ndherungsbruch lediglich durch
ein moglichst kurzes ,,Versuchsverfahren” ermittelt werden kann. Das klassische Beispiel
dieser Ausgangslage bildet die Bestimmung von

A
r—=l,
B

min
B<M

wo also der Nenner B durch eine bestimmte obere (und in der Regel natiirliche) Schranke
M begrenzt sein soll. Dabei wird meistens auf eine Begrenzung des Zihlers A verzichtet,
was aber aufgrund der Tatsache, dass der Zahler A ohnehin durch den Nenner B deter-
miniert wird, unserer allgemeinen Ausgangslage entspricht. Die Losung dieses Problems
scheint bereits CHRISTIAN HUYGENS bekannt gewesen zu sein, obwohl zu seiner Zeit
ein Beweisverfahren vermutlich noch nicht bekannt war. Jedenfalls hat er davon Gebrauch
gemacht bei der Konstruktion eines mechanischen Planetariums (HUYGENS [1]).

Heute bedient man sich dazu der umfangreichen Kenntnisse der Eigenschaften der Ket-
tenbruchdarstellung reeller Zahlen. Es sei fiir die Herleitungen der folgenden Aussagen
verwiesen auf die entsprechende Fachliteratur, beispielsweise auf das Standardwerk von
O. PERRON [6].

Wir gehen hier aus von der Kettenbruchdarstellung einer beliebigen reellen Zahl r, also
von der Darstellung r = [qo; 91, 92, 43, - - ), qo € Z, gi € N fiiri > 1. Den Bruch %ﬁ' =
[qo; g1, q2, -...qi] (fir i = 0,1,2,...) bezeichnet PERRON als den i-ten Hauptnihe-
rungsbruch der Zahl r, und wir wollen diese Bezeichnung hier ebenfalls verwenden. Falls
r rational ist, ist i < n, wobei fiir den letzten der n + 1 Hauptndherungsbriiche von r dann
gilt g—z = r. Die Hauptndherungsbriiche weisen zahlreiche interessante Eigenschaften auf,
von welchen wir hier vier festhalten:

E1 Die Hauptnidherungsbriiche einer Zahl r sind stets beste Naherungen der Zahl r in
dem Sinne, dass jeder andere Bruch, welcher mindestens so nahe bei r liegt, einen
grisseren Nenner aufweist als der betrachtete Hauptndherungsbruch. Fiir i = O trifft
diese Figenschaft allerdings nur dann zu, wenn g > 1 ist.
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E2 Die Hauptndherungsbriiche approximieren den Wert r alternierend, so dass gilt

Ay A;
‘r—l—H <‘r——l fiiralle i > 0
Bit1 i
und
Ay A Az Ay
By B Bs B

E3 Zihler A; und Nenner B; der Hauptndherungsbriiche einer Zahl r = [qo; g1, 42, 93,
...] konnen direkt rekursiv bestimmt werden gemiss

A = qiAi-1+ A,
Bi = ¢iBi-1+ B

fiiri =1,2,3,..., mitden Startwerten A_; = 1, Ag = go, B-1 =0, Bo = 1.

E4 Fir auf diese Weise bestimmte Zihler und Nenner zweier aufeinander folgender
Hauptniherungsbriiche %ﬁ und ‘gj—ﬁ gilt:
BiAiy1 — Bit+1A;, = (—1)i+lA

Damit sind insbesondere Zihler und Nenner eines jeden Hauptniherungsbruches
teilerfremd, die Hauptndherungsbriiche sind also bereits vollstidndig gekiirzt.

Allerdings vermogen die Hauptniherungsbriiche einer reellen Zahl r das Problem, den
Wert ming<py |r — %| resp. den bestmoglichen Ndherungsbruch % Zu bestimmen, noch
nicht vollstidndig zu 16sen. Die dazu entscheidende Eigenschaft E1 besitzen ndmlich noch
weitere Briiche: Die Briiche % (mit ¢ € N) haben unter Umstidnden ebenfalls
die Eigenschaft ,,beste Ndherungen von r = [qo; 91, g2, 43, - . -] Zu sein, und zwar genau
dann, wenn gilt & < ¢ < g;, und zudem fiir ¢ = %, falls [¢i; gi—1. Gi2. ... q1] >
[gi; gi+1, gi+2, - - .]. Bei diesen weiteren besten Ndherungen spricht PERRON von Neben-
ndherungsbriichen. Fiir die Nenner ¢B;_1 4+ B;_» dieser Nebenndherungsbriiche gilt ge-
miss der Eigenschaft E3: B;_; < ¢B;_1 + B;—» < B;. Ihr Wert liegt somit zwischen den
Nennern zweier benachbarter Hauptndherungsbriiche.

Fiir die entsprechenden Herleitungen und insbesondere fiir den Beweis des folgenden
Satzes orientiere man sich etwa bei O. PERRON [6].

Satz 12 Es sei r = [qo; g1, 92, q3, - - -] eine beliebige reelle Zahl und M > gy + 1. %,

f,—;, f,—g . Z—l’z sei die (endliche) Folge aller Haupt- und Nebenndherungsbriiche von r,
mit Ni < M (fiirallei = 1,2, ..., k), und zwar geordnet nach steigendem Nenner. Dann
gilt: 4 ,

min [r — —| = |r — == :

B<M B Ni

Ist in der Kettenbruchdarstellung vonr = [qo; q1, 42, q3, - - .] der Teilnenner g1 = 1, dann
ist der Hauptniherungsbruch %g = q_lo in dieser Folge % wegzulassen.
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Beispiel. Esseietwar =[6;2,1,3,7,3] (= % = 6.3625498). Die Hauptndherungs-
briiche () und die Nebenndherungsbriiche von r, deren Nenner kleiner sind als M = 100,

lauten in der Reihenfolge aufsteigender Nenner:

Z1 6 A
(%) —=- r — —| =0.36255
Np 1 Ny
Z, 13 z
) Z2=2 r— 221 ~0.13745
Ny 2 Ny
Zs 19 Z
(k) 2= r— 2 ~0.02022
N3 3 N3
Zs 51 7y
L4 _ 20 — 221 ~0.01245
Ny 8 ’ Ny
Zs 70 Zs
i L — 221 > 0.00109
() Ns 11 d N5
7
Zs _ 299 r_ 28| g 4710
Ng 47 Ng
Z Z
Z7 _ 369 -2~ 4811074
N7 58 Ny
Zs 439 Zs 4
i 22 ~23110
Ng 69 g Ng
Zo 509 Zy s
L _ 2P — 22| ~40810
) No 80 d Ny

Gemass Satz 12 bildet also der Bruch 58%9 die beste Approximation der Zahl r = % =

i
6.3625498, wenn der Nenner den Wert M = 100 nicht tiberschreiten darf.

Entsprechend wire der Bruch %9 die beste Approximation dieser Zahl r, wenn der Nenner

etwa den Wert M = 75 nicht iiberschreiten diirfte.

Dass in diesem Beispiel die Zahl r rational ist, ist tibrigens ohne Belang, und die Be-
stimmung der Folge 7% fiir irrationale Werte von r ist nicht aufwéndiger als fiir rationale
Werte.

Satz 13 Es seien % und %ﬁ zwei Bruchzahlen mit %1 < %ﬁ, mit Ay, Ap € Z, B, B e N

A

sowie mit AoB1— A1By = 1. Ferner sei g eine Bruchzahl im Intervall [B1 y

Ap .
B_z] mitp € Z
und q € N. Dann existieren zwei Zahlen t, s € Ny, so dass gilt:

p 1AL+ sA

g IBi+sBy’
Beweis. Aus dem linearen Gleichungssystem

D = tA1+5As,
q tB1+ 5By
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folgt unmittelbar
s pB1 —qA:
AyB1— A1By’
b qA2 —pBs
AyB1 — A1By’
Der gemeinsame Nenner besitzt nach Voraussetzung den Wert 1. Wegen % =< % < 2—;

gilt fiir die ganzzahligen Zdhler pB; — qA; > O und gA, — pBy > 0. Damit haben wir
tatsdchlich s € No und ¢ € Ny. O
tA1+s Ay
tB1+sBy
Medianwert der beiden Briiche % und g—z.

Bemerkungen. Den Bruch S = (mit 5, € Np) bezeichnen wir als einen

Die Voraussetzung A>B; — A1B = 1 des Satzes 13 wird beispielsweise erfiillt von zwei
konsekutiven Haupt- oder Nebenndherungsbriichen einer Zahl r. Sie wird jedoch ebenfalls
erfiillt von zwei konsekutiven Briichen einer Farey-Folge. Die Hauptndherungsbriiche bie-
ten sich jedoch fiir das nachfolgend beschriebene Vorgehen besonders gut an, weil zwei
aufeinander folgende die zu approximierende Zahl r stets zwischen sich ,einrahmen®.

Vorgehen

Es soll eine reelle Zahl r approximiert werden mit einer Bruchzahl 4 wobei der Nenner B

(und/oder der Zihler A) aus einer bestimmten (endlichen) Teilmenge Kp € N (resp. K4 C

Z) stammen soll. Insbesondere gilt dann B < Mp (und/oder |A| < M4). Bestimmt man

dann zwei konsekutive Hauptndherungsbriiche der Zahl r, so ist geméss der Figenschaft
A

E2 der eine kleiner und der andere grosser als die Zahl r, also etwa # <r < %'
1 1
Jeder Naherungsbruch von r, welcher mindestens so nahe bei r liegt wie B’,—E, muss nach
1
. . . . . . A; . N
Satz 13 ein Medianwert dieser beiden Briiche % und B’—“ sein, er muss somit die Form
1

i+1
% = % aufweisen (mit 7, s € Np). Da zudem Nenner (und/oder der Betrag des
H i

Zihlers) lediglich eine beschrinkte Grosse aufweisen diirfen, muss ferner gelten
B(t,s) :=1tB; + sBi+1 < Mpund/oder |A(t, s)| := [tA; + sAjr1| < Ma.

Damit wird die Menge der moglichen Bruchzahlen sehr eingeschréankt, und eine Priifung
danach, welche dieser Nenner (und/oder Zihler) Elemente der geforderten Teilmenge Kp
(und/oder K 4) sind, ist leicht moglich. Aus den verbleibenden Briichen 14sst sich danach
der beste Approximationsbruch mit geringem Aufwand bestimmen. Praktischerweise wer-
den diese letzten beiden Schritte mit einem geeigneten Computerprogramm durchgefiihrt.

Beispiel. Die Kreiszahl
m=[3;7,15,1,292,1,1;1,2; 1,4, ..

soll moglichst gut approximiert werden mit einem Bruch %, wobei Zihler A und Nenner
B natiirlich und prim sein sollen, und wo A und B die Zahl 10’000 nicht iiberschreiten
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diirfen. Die ersten fiinf Hauptnaherungsbriiche von 7 lauten:

3 22 333 355 103/993
1" 77106 113" 33/102°

Weil Zihler (und Nenner) des letzten aufgefiihrten Hauptndherungsbruches den Wert
10’000 bereits iibertreffen, wird man die Suche beginnen unter den Medianwerten der

beiden Briiche fgg und ﬁg Jeder Approximationsbruch, welcher mindestens so nahe bei

55 : A _ 333143555 ;.
7 liegt wie der Bruch 333 113, wird also in der Form 5 = 55775 (mit¢, s € Np) darstellbar

sein miissen. Und da eine Beschrinkung der Grosse von Zihler und Nenner mit dem Wert
10’000 gegeben ist, miissen die beiden nicht-negativen und ganzzahligen Werte # und s die
Bedingung erfiillen:

333f + 3555 < 10'000.

Diese Bedingung wird von 393 nicht-negativen Zahlenpaaren (¢, s) erfiillt. In diesem Fall
fithrt nur ein einziges dieser 393 Zahlenpaare zu zwei Primzahlen:

333.4+355.23 = 9497¢P,
106-4+113-23 = 3/023 €P.
9497

Damit wird unter den gegebenen Bedingungen der Bruch %7555 mit Sicherheit die best-
mogliche Approximation der Zahl 7 sein. Falls man unter den Medianwerten der beiden
Hauptniherungsbriiche ?gg und % keinen Bruch hitte finden konnen, welcher die ver-
langten Bedingungen zu erfiillen vermag, dann hétte man die Suche auf dieselbe Weise
weiterfithren miissen unter den Medianwerten der beiden konsekutiven Hauptndherungs-

briiche mit den nichst kleineren Nennern, also mit 2% und 333.

Zur Veranschaulichung seien hier einige weitere Belsp1ele von optimalen Approximatio-
nen der Kreiszahl = angefiihrt mit unterschiedlichen Bedingungen fiir Z&hler und Nenner
des Approximationsbruches. Mit A ist dabei jeweils auch der Approximationsfehler, also
die Grosse |7 — 4|,

Schfanke — <100 < 17000 < 10'000

Bedingung | B ~

keine zusitzlichen Z 32 5

Bedingungen A=1.2645-1073 |A =2.6676-1077 |A = 2.6676- 1077
¥ 97 619 9497

Zihler unq 3 97 37023

Nenner prim A =1.2560-107% |A =5.3933.107% |A = 1.1443 . 107

; 91 619 9541

alle Prim- 55 197 37037

faktoren > 5 A=3.6616-10"3 [A =53933.10~* |A =5.5611-10~°

Zihler und 2 % N

Nenner ungerade A =3.6616- 1073 |A =2.6676- 10~ |A =2.6676- 10~

je 2 Faktoren ;;;(7) ggg:g;i

beschriankter Grosse A 73464 107% |A =2.89037.10" 11

je 3 Faktoren L

beschrinkter Grosse A=21216. 108
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Behtaies —» < 100/000 < 17000/000 < 10/000/000
Bedingung |
2 “ 3 99’733 833719 6565759
kem‘e zuséitzlichen 37T 3e5I8T S0S991E
Bedingungen A1.1997-1078 [A 89233107 12|A=1.10"1
o 60'661 833719 833719
Zihler unq 197309 265381 265381
Nenner prim A Z6.4986- 107 |A = 8.9233-10712| A =2 8.9233-10~12
5 99’001 833/719 7712167
alle Prim- 31/513 265381 2/454/859
faktoren > 5 A 294881077 [A 289233107 12| A = 2.8766- 10713
o 99’711 833719 5/'419'351
Zihler und 31739 265381 177257033
Nenner ungerade A 2290881077 |A = 8.9223.10712[A = 1.8463 . 10~13

6 Grenzen der Approximierbarkeit

Unter gewissen Umstédnden ldsst sich die minimale Fehlergrosse bei der Diophantischen
Approximation einer reellen Zahl r abschitzen, also in der Weise

> e firalle A,B € G C Z.

A
r__
B

Diese Abschitzung kann einerseits durch die in Frage kommenden ganzen Zahlen A und
B begriindet sein, andererseits aber auch durch die Natur der zu approximierenden Zahl
selbst. In diese Richtung fiihrt beispielsweise ein Satz von J. LIOUVILLE, welcher besagt,
dass eine algebraische Zahl der Ordnung n hochstens mit der Ordnung n approximiert
werden kann, dass somit fiir jede algebraische Zahl r n-ter Ordnung eine positive Schranke
A > 0 existiert, so dass fiir jeden rationalen Bruch % gilt

A
2% B
Noch etwas weiter fiihrt hier ein Satz von K.F. ROTH aus dem Jahre 1955, welcher nach-
weist, dass jede algebraische Irrationalzahl hochstens (und damit genau) mit der Ord-
nung 2 approximierbar ist.
Fiir den folgenden Satz sei r = [qo; g1, 42, g3, - . .] wiederum die Kettenbruchdarstellung
einer reellen Zahl r, und ferner seien die beiden reellen Zahlen «,, und z, definiert wie
folgt:

i
r__
B

an = [qn; gn-1. qn—2, .- ., q1] fiir n >1,
Zn = [qn; Gn+1, Gnt2s - - -] fiir n >0.

Damit ist r = [qo; 91, g2, - -+ > gn—1,Zn], und es gilt o, = Bljfl, wo B, und B,_; die
Nenner des n-ten bzw. des (n — 1)-ten Hauptnidherungsbruches g—’; bzw. gzj der zu ap-
proximierenden Zahl r darstellen. Schliesslich gilt:
o Zn+14n + An—1

Zn+1Bn + By—1
Zur Herleitung dieser Zusammenhédnge kann man sich beispielsweise orientieren bei PER-
RON [6, S. 27ff]. Damit stehen die Begriffe bereit zur Formulierung des folgenden Satzes:

Z0=r1
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Satz 14 Es seien % und g—’; (mit n > 1) zwei konsekutive Hauptniherungsbriiche einer
reellen Zahl r, und es seien t und s zwei nicht-negative reelle Zahlen, wobei nicht beide
gleich Null sein sollen. Dann gilt fiirn > 1

tA, +5A,_1 . 1
tBy +5Bu_1 An (tBy +SBn—1)2

mit
Znt10n + 1

hop = )
|Zpg18s — 1] (tay +5)

Auf den Beweis von Satz 14 soll hier verzichtet werden. Zwei Sonderfille, welche sich
aus diesem Satz ergeben, sollen allerdings hervorgehoben werden:

t=1,5=0 r Anf_ L mit A +1
=1, — M —_ — | = 1 = —
By| ~ inB2 =l
A A, 1
t=1,5s=1: ‘r— nt An-i = =
By + By—1 A (By + Bu—1)
. 1 1
mit A, =1+

Zn+1_1_05n+1.

Satz 14 kann herangezogen werden, um ein Mass fiir die Approximierbarkeit einer reellen
Zahl r nach unten abzuschitzen: Eine reelle Zahl r sei zu approximieren mit Bruchzahlen
4 (A €Z BeNundmitO0 < B < M, wo M eine gegebene Schranke darstelle. Wir
gehen von den ersten beiden Hauptndherungsbriichen _% und —1- der Zahl r aus. Mit der
Kettenbruchdarstellung r = [qo; 91, 2. 43, - . -] gilt Ao = qo, Bo =1, A1 = goq1 + 1
und By = ¢i. Ferner gilt 3*8 <71 < %, und jede rationale Approximation der Zahl r,

welche mindestens so nahe bei r liegt wie der Hauptnidherungsbruch %, ist nach Satz 14
darstellbar in der Form

A 1A +5A A1 +5A .

4 _ A a2 O mit 1,5 € No. 7N

B tB1+ sBog tq1+s
Sofern die gegebene Schranke M die Bedingung M > Bj = g erfiillt, wird mindestens
der Hauptnaherungsbruch B L die geforderte Bedingung erfiillen, und jeder bessere Nihe-
rungsbruch wird in der Form (7) darstellbar sein miissen. Nach Satz 14 gilt fiirn = 1

r_é‘_‘_lAl—{—SAo_ 1
B tB1 4+ sBg A B2
mit
_ 2201 + 1 g1+ 1
" lzas —t|Ger+8) |z — B’
Dabei ist oy = g1, und wegen r = [go; q1, 221 = go + qliL ergibt sich zp = ﬁ.

B
1

a+t

Mit der Abschitzung r — go = < qll gilt also 7 < und damit ist

1
q1(qoq1+1—q17)°

A1<m+l qog1 — qir +2
|zos —t| B |z28 —t| B(qog1 — qir + 1)
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Nun bleibt noch, den Betrag A := |zps — f| nach oben abzuschitzen. Dabei handelt es
sich um eine ,,Approximation der zweiten Art* fiir die reelle Zahl zo mit s € N und
t € Z. Da jedoch z2 = [q2; 93,44, ...] > g2 > 1 ist, kann ohne Einschrinkung der
Allgemeinheit angenommen werden, dass nebst der Zahl s auch die Zahl ¢ positiv sei. Bei
den ,,Approximationen der zweiten Art“ bilden die Hauptnidherungsbriiche die einzigen
besten Ndherungen (siehe z.B. PERRON [6]). Ferner gilt nach Voraussetzungt A +sAg =
t(gogq1+ 1) +5qo < M sowie tB1 + sBp = tq1 + 5 < M. Also ist insbesondere

M—tggi +D _M—goqr —1
qo N qo
Damit ist der Betrag A mindestens so gross, wie der Approximationsfehler |zps — 7|, wenn
% der letzte Hauptndherungsbruch der Zahl z; ist, fiir welchen diese Bedingung (8) erfiillt

(8)

ist. Wenn wir also diesen Hauptnidherungsbruch von zp etwa mit % bezeichnen, so ist
A > |2o08(M) — T (M)|, und es ergibt sich

goq1 —qir +2
|22S(M) — T(M)| (qog1 — qir + DB~
Damit kann schliesslich die folgende Abschitzung nach unten formuliert werden:

M <

Satz 15 Eine beliebige reelle Zahl r = [qo; q1, q2, g3, - - .] soll approximiert werden mit
einer rationalen Zahl % (A€eZund B e Nymit B<M,woM > qgo(q1 + 1)+ 1 eine
gegebene Schranke darstelle. Dann gilt fiir den Approximationsfehler

‘r _ Al 2SO - T(M)| (gogs — qar +1)
B (goq1 — qir +2)B '

Dabei bezeichnen die beiden naturlzchen Zahlen T (M) und S(M) Zihler und Nenner des

letzten Hauptndherungsbruches - der Zahl zo mit s < M%
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