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Ein Beitrag zu den Diophantischen Approximationen
reeller Zahlen

Robert Baggenstos

Robert Baggenstos studierte Mathematik und Astronomie an der Universität Bern,
arbeitete danach in der Lehrerausbildung und unterrichtet heute Mathematik und
Astronomie an der Kantonsschule in Solothurn.

1 Einleitung
Der Versuch, reelle Zahlen mit rationalen zu approximieren, bildet ein klassisches Thema
der Zahlentheorie. Von Minkowski [4] wurde dieses Gebiet mit „Diophantische
Approximationen" umschrieben, und dieser Begriff wird heute in der Regel dann verwendet,

wenn es darum geht, bei gegebenem rel den Approximationsfehler \r - jj | durch

geeignete Wahl von ganzen Zahlen B > 0 und A nach oben abzuschätzen, oder aber ihn

möglichst klein zu gestalten.

Auf der Suche nach gültigen Aussagen in diesem Problemfeld stösst man in der Regel auf
Sätze, welche in drei Klassen unterteilt werden können:

I. Existenzsätze für den Fall, dass der Wert des Nenners B e N nicht nach oben
beschränkt ist. Diese Sätze besagen dann etwa, dass unendlich viele (gekürzte) Brüche

¦| existieren, so dass gilt \r - j < c(B), wo c{B) eine vom Nenner B abhängige
obere Schranke bildet.

Bei dieser Klasse von Aussagen sprechen wir im Folgenden von .Approximationen
mit beliebig grossen Nennern".

Ausgangstage zu den nachlolgcndcn Untersuchungen bildet ein sehr praktisches
Problem: Bei der Konstruktion eines mechanischen Werkes fur eine Uhr mit „astronomischen

Indikatoren" (Mondphasen, siderischer Tag, tropisches Jahr, u.a.) ist mit Hilfe
mehrerer Zahnräder (selbstverständlich mit beschrankt grossen und kleinen Zähnezahlen)

ein bestimmtes DrchvcrhalLnJs r zwischen zwei Achsen möglichst genau zu
erzielen. Dabei stösst man auf das Grundproblem der Diophantischen Approximation,

nämlich die Grosse A ft" ••• -ßn

liehe Zahlen mil tu < a,, ß, < M (/ 1 n) sind.

moglichsl klein zuhalten, wobei et, und ßt uaiur-
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II. Existenzsätze für den Fall, dass der Wert des Nenners B e N nach oben beschränkt
ist. Diese Sätze besagen dann etwa, dass mindestens ein Bruch ^ existiert, so dass

c{B), wo c{B) wiederum eine vom Nenner B abhängige oberegilt \r — jj
Schranke bildet.

Bei dieser Klasse von Aussagen sprechen wir im Folgenden von .Approximationen
mit beschränkt grossen Nennern".

III. Algorithmische Wege zur Bestimmung der bestmöglichen Approximation einer re¬

ellen Zahl r e R mit einem gekürzten Bruch -g-, wo der natürliche Nenner B (und
eventuell auch der ganzzahlige Zähler A) aus einer bestimmten endlichen Teilmenge
von N (resp. von Z) stammen muss.

Bei dieser Klasse von Aussagen sprechen wir im Folgenden von .Approximations¬
algorithmen".

Zu jeder der drei Klassen sollen hier einige der bereits bekannten Erkenntnisse zusammengestellt

werden, wobei Vollständigkeit weder angestrebt noch möglich ist. Ferner sollen
dazu auch einige zusätzliche Aussagen hergeleitet werden.

2 Grundlagen
Wo im Folgenden mit ^ eine rationale Zahl erscheint, seien A und B stets ganze Zahlen
und B > 0. Die zu approximierende Grosse sei ohne weitere Hinweise eine beliebige
reelle Zahl, und diese wird in der Regel mit r bezeichnet.

Es geht nun also darum, die Differenz zwischen einer reellen Zahl r und einer rationalen
Zahl -g- nach oben abzuschätzen mit einer positiven Schranke c{B):

< c{B) oder allenfalls

Selbstverständlich weisen zwei benachbarte Bruchzahlen ^ und ^- mit gleichem Nenner

B eine Differenz von -g auf, weshalb für jede reelle Zahl r und für jeden natürlichen
Nenner B (sowie eine geeignete ganze Zahl A) gilt:

1

2~B'
(1)

Und weil dabei die Gleichheit höchstens dann eintreten kann, wenn r rational ist, gilt für
jedes r e R \ Q und für jeden natürlichen Nenner B (sowie eine geeignete ganze Zahl A)
sogar:

1

2B' (2)

Für die Kettenbruch-Darstellung von irrationalen Zahlen verwenden wir anstelle der Form

1

+ 1

qi 1
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die einfachere Darstellung [qo; q\, #2, Q3, ¦ ¦ •]• Dabei ist qo e Z und #* e N für alle £ > 1.

Für rationale Zahlen verwenden wir dann sinngemäss die Form [qo; q\, qi,..., qn]. Dabei
ist wiederum qo e Z und qt e N für alle i > 1 sowie qn > 2, womit auch bei rationalen
Zahlen die Eindeutigkeit ihrer Kettenbruchdarstellung gewährleistet wird.

3 Approximationen mit beliebig grossen Nennern

In diesem Abschnitt betrachten wir Diophantische Approximationen von reellen Zahlen r,
wobei der Nenner B der Bruchzahlen ^ aus einer bestimmten, aber jedenfalls unendlich
mächtigen Teilmenge G der natürlichen Zahlen gewählt werden kann.

Zunächst betrachten wir hier ein paar Aussagen zur Approximation rationaler Zahlen.
Grundsätzlich muss man zunächst feststellen, dass sich rationale Zahlen weniger gut
approximieren lassen als irrationale, denn für zwei voneinander verschiedene rationale Zahlen

j| und y gilt stets (wenn diese beiden Brüche vollständig gekürzt sind):

n A

m B ¦V (3)
mB

Geht es also beispielsweise darum, eine ganze Zahl zu approximieren (m 1) mit
einer von dieser ganzen Zahl verschiedenen rationalen Zahl jj, dann kann dabei der Fehler

selbstverständlich nicht kleiner sein als 4. Und falls man eine rationale Zahl aus der
n

Menge {±0.5, ±1.5, ±2.5,...} (also mit m 2) mit einer von ihr verschiedenen rationalen

Zahl jj approximieren will, dann beträgt nach (3) der Approximationsfehler
mindestens jg. Für die übrigen rationalen Zahlen lässt sich hingegen die Aussage (1) leicht
verschärfen:

Satz 1 Zu jeder rationalen Zahl r e Q\{0, ±0.5, ±1, ±1.5, ±2,...} existieren unendlich
viele {gekürzte) Bruchzahlen jj mit der Eigenschaft

1

2B '

Beweis. Sei etwa r ^ (mit n e Z und mit m e N und m > 2 sowie (n, m) 1). Die
Gleichheit in (1) tritt genau dann ein, wenn A e Z und B eN existieren, so dass r exakt
in der Mitte zwischen -| und ^- liegt. Daraus ergibt sich:

A+l\ 2A + 1

Sei nun etwa B eine Primzahl und ß^f-. Dann kann der in (4) rechts stehende Bruch
höchstens mit B gekürzt werden (da sein Zähler ungerade ist).

1. Falls dieser Bruch nicht kürzbar ist, gilt m 2B, was im Widerspruch steht zu

2. Falls dieser Bruch mit B kürzbar ist, gilt m 2, was im Widerspruch steht zu
m > 2.
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Somit kann die Gleichheit in (1) mindestens für alle B, welche Primzahlen und von ^
verschieden sind, nicht eintreten, woraus bereits Satz 1 folgt. D

Satz 1 lässt sich noch wesentlich verallgemeinern:

Satz 2 Es sei r ^ eine rationale Zahl mit m e Nund(n,m) 1. Ferner sei m > k eN
beliebig. Dann existieren unendlich viele (gekürzte) Bruchzahlen jj mit der Eigenschaft

kB

Beweis. Bekanntlich besitzt die Diophantische Gleichung

Bn - Am 1 (5)

für n, m e Z und (n, m) 1 stets ganzzahlige Lösungen für A und B. Sei Aq, Bq eine

dieser Lösungen. Also gilt dann Bon - A^m 1. Dann sind auch alle

B{t)

A(t)

mt

nt

(mit t e Z) ganzzahlige Lösungen von (5). Für alle hinreichend grossen Werte von t gilt
wegen m > 0 auch B(t) Bo + mt > 0. Da die Werte A(t) und B(t) die Gleichung (5)
erfüllen, sind sie zudem sicher teilerfremd. Somit existieren unendlich viele teilerfremde
A e Z und BeN, für welche gilt Bn — Am 1. Daraus folgt durch Division durch B
und durch m, und wegen m > k:

n A 1

0 <
m B mB

1

ÏB

also etwas mehr noch als Satz 2 behauptet. D

Nun betrachten wir ein paar Aussagen zur Approximation irrationaler Zahlen.

Satz 3 Zu jeder irrationalen Zahl r e R \ Q existieren unendlich viele (gekürzte) Bruchzahlen

j mit
A

~ ~B

Bemerkung. Dieser Satz wurde 1889 von A. Hurwitz zunächst mit Hilfe der Theorie

der Kettenbrüche hergeleitet. Später wurden verschiedene andere Beweise gefunden,
beispielsweise von AJ. Khintchine [2]. Ausserdem hat Hurwitz nachgewiesen, dass

man diese Abschätzung nicht weiter verschärfen kann, ohne für die zu approximierende
Irrationalzahl r einschränkende Voraussetzungen einzuführen. So lässt sich zeigen, dass

für die Zahl r ^ (Goldener Schnitt!) nur endlich viele gekürzte -g- existieren, so

dass gilt r — jf\ < -pgi, sobald c > V5 ist.
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Satz4 Zu jeder irrationalen Zahl r e R\Q existieren von jedem einzelnen der dreiTypen

-, unggeer^fee unendlich viele (gekürzte) Bruchzahlen ^ mit

B2'

Satz 5 Zu jeder irrationalen Zahl r e R \ Q existieren von mindestens zwei der drei Typen

-, M"frarffe unendlich viele (gekürzte) Bruchzahlen jj mit

2B2

Bemerkung. Die Sätze 4 und 5 wurden 1940 von R.M. Robinson [7] mit Hilfe der

Theorie der Kettenbrüche hergeleitet. W.T. Scott [8] leitete Satz 4 ebenfalls 1940 unter
Zuhilfenahme geometrischer Transformationen her.

4 Approximationen mit beschränkt grossen Nennern

In diesem Abschnitt betrachten wir Diophantische Approximationen von reellen Zahlen r,
wenn der Nenner B der Bruchzahlen 4 aus einer bestimmten endlichen Teilmenge G der

natürlichen Zahlen gewählt werden kann.

Satz 6 Zu jeder reellen Zahl r e R und zu jeder natürlichen Schranke M e N existiert
mindestens eine Bruchzahl ¦§ mit B < M und mit der Eigenschaft

MB

Wir beweisen hier gleich eine etwas allgemeinere Aussage:

Satz 7 Zu jeder reellen Zahl r e R und zu den beiden beliebigen natürlichen Schranken

n, M e N (mit n < M) existiert mindestens eine Bruchzahl ^ mit n < B < M und mit
der Eigenschaft

1

Dabei ist [x] max {p | p e Z a p < x}.

Beweis. Es sei zt '¦= tr — [tr], mit t 0, 1, 2,..., M. Diese M + 1 Zahlen liegen alle
im Intervall [0, 1). Es sei nun c := [^-]. Nun unterteilen wir das Emheitsmtervall [0, 1) in

c gleich grosse Teilintervalle, gemäss [0, 1) [0, £) U [£, 2) u U [^-, 1). Von den

Zahlen zt hegen m einem solchen Teilintervall im Durchschnitt

M + \ M+ 1 M+\
c - M > n

Zahlen. Also existiert mindestens ein solches Teilintervall, welches mindestens n+1 dieser

Zahlen zt enthält, etwa die Zahlen mit den Indizes t\, Î2,..., tn+\ und mit t\ < Î2 < • • • <
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tn+\. Dann gilt mit Sicherheit n < tn+\ - h < M. Da die entsprechenden Zahlen zt im
selben Teilintervall liegen, gilt somit

1

c'

also: \tn+\r - [tn+ir] - {t\r - [hr])\ \(tn+i - h)r - ([tn+ir] - [hr])\ < \. Mit
A [tn+ir] - [tir] und mit B tn+\ - t\ gilt: A e Z, B e N, n < B < M, sowie

\Br — A\ < \. Nach Division durch B ergibt sich unmittelbar die Aussage von Satz 7. D

Bemerkungen. Satz 6 wurde 1842 von G.P. Lejeune Dirichlet [3] mit Hilfe des

Schubfachprinzips hergeleitet, welches hier im Beweis des Satzes 7 verwendet wurde.
Satz 6 ergibt sich natürlich unmittelbar aus Satz 7 für n 1. Ebenso ergeben sich die
Sätze 6 und 7 als Spezialfälle aus dem Satz 9. Auf die Voraussetzung M e N (und neN)
kann nach geringfügiger Modifikation der Beweisführung im letzten Satz auch verzichtet
werden.

Satz 8 Es existieren höchstens zwei verschiedene (gekürzte) Bruchzahlen -|, welche die

Bedingungen von Satz 6 erfüllen.

Beweis. Es sei r e R und M e N beliebig. Innerhalb der Farey-Folge der Ordnung MV)

betrachten wir die beiden konsekutiven Bruchzahlen |f und ^±L, für welche gilt: |f <

r < 1^. Innerhalb einer solchen Farey-Folge sind bekanntlich alle Nenner bj < M,

und für zwei konsekutive Brüche der Folge gilt zudem ^- - %- ^j—. Somit gilt

tt^ - tt > TTKi und ^^ - jr > h 1,,. Für einen beliebigen Bruch ^- dieser Folge,
Of+l o\ — b,M b;+1 b, — bl+1M b bj-k b

welcher unterhalb von S liegt, gilt daher:

wegen
ai-k 1 1 1

r —- > 1 1 1

bi-k Mbi-i Mbi-2 Mbi-k
und somit

1

>
bi-k M \bi-i bi-2 bi

Ebenso kann man zeigen, dass für jeden beliebigen Bruch ?+1+* oberhalb von C^L gilt:

— r >

Somit verbleiben lediglich die beiden konsekutiven Brüche %- und ^±L, welche die Be-fe bi b;+1 '

dingungen von Satz 7 allenfalls zu erfüllen vermögen. D

Bemerkung. Der Satz 8 wurde bereits von Sierpinski [9] nachgewiesen.

^Ordnet man die gekürzten Bruche mit einem Nenner kleiner oder gleich M der Grosse nach, dann erhalt

man die Farey-Folge der Ordnung M. Aufgrund ihrer besonderen Eigenschaften sind die Farey-Folgen für
Approximationsprobleme besonders gut geeignet.
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Satz 9 Es sei f : No^N eine streng monoton wachsende Funktion. Ferner sei M e R,

M > /(l) und r e R. Dann existieren zwei Zahlen m, n2 e No «m/ em gekürzter Bruch

j;, mit A e Z, 0 < B f(m) - f(n2) < M, so dass

A
r

B

1

(M)B

1

falls ß > /(O)

wf g(x) := max{y e No | f(y) < x] für x > /(O).

Beweis. Eine beliebige Zahl r e R soll approximiert werden mit -g-, mit A, ß
mit 0 < ß /(«i) - /(«2) < M für geeignete «i,«2 e No. Für fi,f2

e Z und
e No mit

i < f2 <
0, 1, 2

Teilintervall [J71

undî2 e {O, 1,2

gilt 0 < /te) - f(h) < M. Nun gilt: zt f(t)r - [f(t)r] e [O, 1) für

g (M). Von diesen g (M) + 1 Zahlen liegen mindestens zwei im gleichen
für i 1,2,..., g(M) (Schubfachprinzip). Also existieren t\

g{M)} mit und mit
Sei nun ß f(t2) - f{t\) und A [f(t2)r] - [f(h)r], somit also A e Z und ß e N
mit B < M. Dann gilt:

K/te)?" - [/te)r]) - (f(h)r -
- ([/te)r] -

\Br-A\<

woraus unmittelbar folgt:
A

r
B

1

g(M)B
Mit B < M, also ^(ß) < g{M), folgt schliesslich auch die Klammerbemerkung.

Zu Satz 9 seien hier drei Beispiele angefügt.

D

Beispiel 1 Für /(«) n ist ^(M) [M], und es ergibt sich wiederum unmittelbar
Dirichlets Satz 6.

Beispiel 2 Ist /(«) die (n + l)-te Primzahl, also /(0) 2, /(l) 3, /(2) 5 etc.,
dann ist g(M) n{M) - 1. Dabei bezeichnet n{M) die Primzahlfunktion, sie bestimmt
die Anzahl der Primzahlen pi < M. Dies bedeutet: Für alle r e R und für alle M > 3

existiert A e Z und ß e N mit B < M und ß p\ — p2 (Differenz zweier Primzahlen),
so dass gilt

1 / 1

(;r(M)-l)ß \ (;r(ß)-l)ß/
(Mönkemeyer [5]), womit also auch die folgendeFür M > 2 gilt n{M) >

Abschätzung zutrifft:
Für alle r e R und für alle M > 2 existiert A e Z und ß e N mit ß < M und B p\-p2
(Differenz zweier Primzahlen), so dass gilt

3 In M1

IM _\3biM
(2M-31nM)ß
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Beispiel 3 Ist /(«) np (mit p e N), dann ist g{M) [\/M], Dies bedeutet: Für alle

r e R, für alle p eN und für alle M > 1 existiert A eZ und ß e N mit ß < M und mit
B np - mp (n, m e No), so dass gilt:

A
~ ~B

B

Im Folgenden werden zwei Approximationen untersucht, bei welchen die Bruchzahlen

¦p die Bedingung zu erfüllen haben, dass der Nenner B als Produkt einer bestimmten
Anzahl von natürlichen Faktoren ßi dargestellt werden kann, wobei diese Faktoren aus

einer beschränkten Teilmenge von N stammen müssen, also etwa 1 < m < ßi < M für
alle i.

Satz 10 Es sei M > 1 eine beliebige Schranke und n e N eine natürliche Zahl. Dann
existiert zu jedem r e R mindestens eine rationale Zahl jj, mit B ß" sowie A a",
(a e Z und ß e N) und mit B <M (also ß < UM), so dass gilt

B 1/Mb

Beweis. Grundsätzlich können wir uns auf r > 0 beschränken. Sei also r > 0 und ^/r eine
reelle n-te Wurzel von r. Gemäss Satz 6 existiert mindestens ein | mit a e Z, ß e N und

mit ß < \/M, so dass gilt
1

^M/3
=: A.

Damit ist

r - - <max F+ A)'!-r, r - (^F-A)"} (^F+A)"-
Im Weiteren gilt für die auf [0, oo) konvexe Funktion f(x) xn (n e N)

(x + A)n - xn < Af'(x + A) An(x + A)""1,

weshalb weiter abgeschätzt werden kann:

Mit A folgt schliesslich Satz 10. D

Eine weitere Aussage in Bezug auf Approximationsbruche mit zerlegbaren Zählern und
Nennern macht der folgende

Satz 11 Zu jeder reellen Zahl r e Rund zu zwei beliebigen natürlichen Schranken n, M e

Nmit2<n<M existiert mindestens eine Zahl ^ mit A Ai A% B B\Bi(A\,Ai e
Z, B\, B2 e N) mit n < Bt < M, so dass gilt:

k2B

Dabei ist k= [f ].
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Bemerkung. Die Einschränkung auf B\ > 2 und B2 > 2 (und damit auf B > 4) ist

sinnvoll, weil der Fall mit B\ 1 (resp. mit B2 1) bereits mit Satz 6 wesentlich besser

abgeschätzt werden kann.

Beweis. Grundsätzlich können wir uns wie beim Beweis des Satzes 10 auf r > 0 beschränken.

Sei also r > 0, *fr > 0 sowie n, M e N mit 2 < n < M beliebig. Gemäss Satz 7

existiert mindestens eine Zahl ^ mit A e Z, B e N, n < B < M, so dass gilt

1 1

(6)

Es seien nun 41 und 41 zwei solche (nicht notwendigerweise verschiedene) Zahlen. Nun

denken wir uns die Zahl r als den Flächeninhalt eines Quadrates der Seitenlänge *fr und
4r^r als den Flächeninhalt des Rechtecks mit den Seitenlängen 41 und 41.

Ai Ai

A2

A2

Die Seitenlängen der beiden Rechtecke unterscheiden sich gemäss (6) um weniger als Ai
resp. A2. Für die Differenz der beiden Flächeninhalte gilt damit

r — max {(VF + Ai) (VF + A2) - r, r - (VF - Ai) (VF - A2)}
fil B2

da sowohl VF als auch A; positiv sind. Also gilt:

AiA2
r —

B2
< AiA2 A2)

k BXB2
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Mit B\ + B2 < IM sowie mit A\A2 A und B\B2 B folgt schliesslich:

A

k2B

wobei für r < 0 im Abschätzungsterm *Jr durch */\F\ ersetzt werden muss. D

5 Approximationsalgorithmen

Dieser Abschnitt befasst sich mit der Suche nach möglichst guten Approximationen einer

beliebigen reellen Zahl r gemäss r — jj wenn die ganzen Zahlen A und B (mit B > 0)
aus bestimmten (endlichen) Teilmengen von Z (resp. von N) stammen sollen.

Wir werden sehen, dass es sich bei diesen .Algorithmen" eigentlich immer um die
Bestimmung einer (möglichst kleinen) endlichen Menge von in Frage kommenden Bruchzahlen

-g- handelt, unter welchen anschliessend der beste Näherungsbruch lediglich durch
ein möglichst kurzes „Versuchsverfahren" ermittelt werden kann. Das klassische Beispiel
dieser Ausgangslage bildet die Bestimmung von

mm
B<M

wo also der Nenner B durch eine bestimmte obere (und in der Regel natürliche) Schranke

M begrenzt sein soll. Dabei wird meistens auf eine Begrenzung des Zählers A verzichtet,
was aber aufgrund der Tatsache, dass der Zähler A ohnehin durch den Nenner B
determiniert wird, unserer allgemeinen Ausgangslage entspricht. Die Lösung dieses Problems

scheint bereits Christian Huygens bekannt gewesen zu sein, obwohl zu seiner Zeit
ein Beweisverfahren vermutlich noch nicht bekannt war. Jedenfalls hat er davon Gebrauch

gemacht bei der Konstruktion eines mechanischen Planetariums (Huygens [1]).

Heute bedient man sich dazu der umfangreichen Kenntnisse der Eigenschaften der Ket-
tenbruchdarstellung reeller Zahlen. Es sei für die Herleitungen der folgenden Aussagen
verwiesen auf die entsprechende Fachliteratur, beispielsweise auf das Standardwerk von
O. Perron [6].

Wir gehen hier aus von der Kettenbruchdarstellung einer beliebigen reellen Zahl r, also

von der Darstellung r [qo; q\, q2, #3,...], qo e Z, q; e N für i > 1. Den Bruch jj-
[qo; q\, q2, ¦ ¦ ¦, qt] (für i 0, 1, 2,...) bezeichnet Perron als den /-ten Hauptnäherungsbruch

der Zahl r, und wir wollen diese Bezeichnung hier ebenfalls verwenden. Falls

r rational ist, ist i < n, wobei für den letzten der n + \ Hauptnäherungsbrüche von r dann

gilt ^- r. Die Hauptnäherungsbrüche weisen zahlreiche interessante Eigenschaften auf,

von welchen wir hier vier festhalten:

El Die Hauptnäherungsbrüche einer Zahl r sind stets beste Näherungen der Zahl r in
dem Sinne, dass jeder andere Bruch, welcher mindestens so nahe bei r liegt, einen

grosseren Nenner aufweist als der betrachtete Hauptnäherungsbruch. Für i 0 trifft
diese Eigenschaft allerdings nur dann zu, wenn q\ > 1 ist.
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r -

Ao

Bo

Af+i
Bi+i

A2

<
A,

f*

< r <

für alle

A3

'" <
#3

i >O

< —

E2 Die Hauptnäherungsbrüche approximieren den Wert r alternierend, so dass gilt

und

E3 Zähler A; und Nenner Bt der Hauptnäherungsbrüche einer Zahl r [qo; q\,
...] können direkt rekursiv bestimmt werden gemäss

Ai qtAi-i + Ai-2,

für i 1, 2, 3,..., mit den Startwerten A_i 1, Ao qo, B-\ 0, Bo 1.

E4 Für auf diese Weise bestimmte Zähler und Nenner zweier aufeinander folgender

Hauptnäherungsbrüche ^- und ^- gilt:

Damit sind insbesondere Zähler und Nenner eines jeden Hauptnäherungsbruches
teilerfremd, die Hauptnäherungsbrüche sind also bereits vollständig gekürzt.

Allerdings vermögen die Hauptnäherungsbrüche einer reellen Zahl r das Problem, den

Wert min#<M r — ^-| resp. den bestmöglichen Näherungsbruch ^ zu bestimmen, noch

nicht vollständig zu lösen. Die dazu entscheidende Eigenschaft El besitzen nämlich noch

weitere Brüche: Die Brüche cl'"'^'"2 (mit c e N) haben unter Umständen ebenfalls

die Eigenschaft „beste Näherungen" von r [qo; q\, q2, #3,...] zu sein, und zwar genau
dann, wenn gilt fy < c < qi, und zudem für c §¦, falls [qi; qi-i, qi-2, ¦ ¦¦ ,qü >
[qt; qt+i, qt+2,...]. Bei diesen weiteren besten Näherungen spricht Perron von
Nebennäherungsbrüchen. Für die Nenner cBi-\ + Bi-2 dieser Nebennäherungsbrüche gilt ge-
mäss der Eigenschaft E3: flj_i < cBt-i + Bt-2 < B{. Ihr Wert liegt somit zwischen den

Nennern zweier benachbarter Hauptnäherungsbrüche.

Für die entsprechenden Herleitungen und insbesondere für den Beweis des folgenden
Satzes orientiere man sich etwa bei O. Perron [6].

Satz 12 Es sei r [qo; q\, q2, #3, ¦ ¦ ¦] eine beliebige reelle Zahl und M > g2 + 1. jf,
jf-, jf,..., jf- sei die (endliche) Folge aller Haupt- und NebennäherungsbrUche von r,
mit N, < M (far alle i 1, 2,..., k), und zwar geordnet nach steigendem Nenner. Dann
gilt:

A Zk
min r r
B<M B Nk

Ist in der Kettenbruchdarstellungvon r [qo; q\, q2, #3, • • •] der Teilnenner q\ 1, dann
ist der Hauptnäherungsbruch ^ ^ in dieser Folge ^- wegzulassen.
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Beispiel. Es sei etwa r [6; 2, 1, 3, 7, 3] ^ 6.3625498). Die Hauptnäherungsbrüche

(*) und die Nebennäherungsbrüche von r, deren Nenner kleiner sind als M 100,
lauten in der Reihenfolge aufsteigender Nenner:

(*) TT 7

(*) TT -r

6

Ni ï
Z2

_
13

Â^ ~ T
Z3

_
19

n~3~~
Z4 51

TU ~ Y
Z5

_
70

A^5 11

Z6 299

Afe
~ 47

Z7
_

369

Th ~ ~58~

Z8 439

Afe
~ 69

Z9
_

509

80
(*) TT "TTTT

r —

r —

Ni
Z2

r —

r -
r -

N3

N4

Z5

r -
r -
r —

Z?

z8

r —
z9

0.36255

0.13745

0.02922

0.01245

0.00109

8.47 10"4

4.81 10"4

2.31 10 -4

4.98 10 -5

Gemäss Satz 12 bildet also der Bruch ^ die beste Approximation der Zahl r X^-
6.3625498, wenn der Nenner den Wert M 100 nicht überschreiten darf.

Entsprechend wäre der Bruch ^ die beste Approximation dieser Zahl r, wenn der Nenner
etwa den Wert M 75 nicht überschreiten dürfte.

Dass in diesem Beispiel die Zahl r rational ist, ist übrigens ohne Belang, und die

Bestimmung der Folge
Werte.

für irrationale Werte von r ist nicht aufwändiger als für rationale

Satz 13 Es seien j± und j^ zwei Bruchzahlen mit jf < jf, mit Ai,A2eZ,fli,fl2eN
sowie mit A2B1 — A1B2 1. Ferner sei 2- eine Bruchzahl im Intervall \jjL,j^\mitp<EZ
und q eN. Dann existieren zwei Zahlen t, s e No, so dass gilt:

sA2

q tBi+sB2
'

Beweis. Aus dem linearen Gleichungssystem

p tAi+sA2,
q tBi+sB2
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folgt unmittelbar

pB\ -s

t

A2Bl-AlB2
qA2 - pB2

A2BX-AXB2

Der gemeinsame Nenner besitzt nach Voraussetzung den Wert 1. Wegen -^- < — < -g2

gilt für die ganzzahligen Zähler pB\ — qA\ > 0 und qA2 — pB2 > 0. Damit haben wir
tatsächlich s eN0 und t e No. D

Bemerkungen. Den Bruch ^ ^'i^2 (mit s,t e No) bezeichnen wir als einen

Medianwert der beiden Brüche ^- und I2.
Die Voraussetzung A2B\ — A\B2 1 des Satzes 13 wird beispielsweise erfüllt von zwei
konsekutiven Haupt- oder Nebennäherungsbrüchen einer Zahl r. Sie wird jedoch ebenfalls
erfüllt von zwei konsekutiven Brüchen einer Farey-Folge. Die Hauptnäherungsbrüche bieten

sich jedoch für das nachfolgend beschriebene Vorgehen besonders gut an, weil zwei
aufeinander folgende die zu approximierende Zahl r stets zwischen sich „einrahmen".

Vorgehen

Es soll eine reelle Zahl r approximiert werden mit einer Bruchzahl jj, wobei der Nenner B

(und/oder der Zähler A) aus einer bestimmten (endlichen) Teilmenge Kg c N(resp.KA C

Z) stammen soll. Insbesondere gilt dann B < Mb (und/oder \A\ < Ma). Bestimmt man
dann zwei konsekutive Hauptnäherungsbrüche der Zahl r, so ist gemäss der Eigenschaft
E2 der eine kleiner und der andere grosser als die Zahl r, also etwa jj- < r < -gr^.

Jeder Näherungsbruch von r, welcher mindestens so nahe bei r liegt wie ^±L, muss nach

Satz 13 ein Medianwert dieser beiden Bruche à- und 4^ sein, er muss somit die Form

¦f ^'+j^'+1 aufweisen (mit t,s e No). Da zudem Nenner (und/oder der Betrag des

Zählers) lediglich eine beschränkte Grosse aufweisen dürfen, muss ferner gelten

B(t, s) := tBi + sBi+i < MB und/oder \A(t,s)\ := \tAt + sAt+i\ < MA-

Damit wird die Menge der möglichen Bruchzahlen sehr eingeschränkt, und eine Prüfung
danach, welche dieser Nenner (und/oder Zähler) Elemente der geforderten Teilmenge Kb
(und/oder Ka) sind, ist leicht möglich. Aus den verbleibenden Brüchen lässt sich danach

der beste Approximationsbruch mit geringem Aufwand bestimmen. Praktischerweise werden

diese letzten beiden Schritte mit einem geeigneten Computerprogramm durchgeführt.

Beispiel. Die Kreiszahl

it [3; 7, 15, 1,292, 1, 1, 1,2, 1,4,...]

soll möglichst gut approximiert werden mit einem Bruch ^, wobei Zähler A und Nenner
B natürlich und prim sein sollen, und wo A und B die Zahl lO'OOO nicht überschreiten
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dürfen. Die ersten fünf Hauptnäherungsbrüche von n lauten:

3 22 333 355 103'993

1' 7
' 106' 113' 33'102 ' '"

Weil Zähler (und Nenner) des letzten aufgeführten Hauptnäherungsbruches den Wert
lO'OOO bereits übertreffen, wird man die Suche beginnen unter den Median werten der
beiden Brüche |^| und |||. Jeder Approximationsbruch, welcher mindestens so nahe bei

it liegt wie der Bruch ||§, wird also in der Form |- ^+^^ (mit t, s e No) darstellbar
sein müssen. Und da eine Beschränkung der Grosse von Zähler und Nenner mit dem Wert
lO'OOO gegeben ist, müssen die beiden nicht-negativen und ganzzahligen Werte t und s die

Bedingung erfüllen:
333f + 355s < lO'OOO.

Diese Bedingung wird von 393 nicht-negativen Zahlenpaaren (t, s) erfüllt. In diesem Fall
führt nur ein einziges dieser 393 Zahlenpaare zu zwei Primzahlen:

333-4 + 355-23 9'497eP,
106-4+113-23 3'023eP.

Damit wird unter den gegebenen Bedingungen der Bruch 9'497
3'023 mit Sicherheit die

bestmögliche Approximation der Zahl ic sein. Falls man unter den Medianwerten der beiden

Hauptnäherungsbrüche |^| und ||| keinen Bruch hätte finden können, welcher die
verlangten Bedingungen zu erfüllen vermag, dann hätte man die Suche auf dieselbe Weise
weiterführen müssen unter den Medianwerten der beiden konsekutiven Hauptnäherungsbrüche

mit den nächst kleineren Nennern, also mit ^ und ^|.
Zur Veranschaulichung seien hier einige weitere Beispiele von optimalen Approximationen

der Kreiszahl n angeführt mit unterschiedlichen Bedingungen für Zähler und Nenner
des Approximationsbruches. Mit A ist dabei jeweils auch der Approximationsfehler, also

die Grosse \n - jj angegeben.

Schranke ->
Bedingung l
keine zusätzlichen

Bedingungen

Zähler und
Nenner prim

alle
Primfaktoren > 5

Zähler und
Nenner ungerade

je 2 Faktoren
beschränkter Grosse

je 3 Faktoren
beschränkter Grosse

< 100

22
T
A 1.2645- 10"3
97
31

A 1.2560- 10"2
91
29

A 3.6616- 10~3
91
29

A 3.6616- 10"3
51-77
25-50

A ^7.3464- 10"6
33-47-73
17-40-53

A 2.1216- 10"8

< l'OOO

355
113

A 2.6676 ¦ 10"7
619
197

A 5.3933- 10"4
619
T97

A 5.3933- 10"4
355
TÎ3
A 2.6676 ¦ 10"7
359-871
298 334

A 2.8937 -10"11

< lO'OOO

355
113

A 2.6676- 10"7
9'497
3'023

A^ 1.1443- 10"5
9'541
3'037

A 5.5611- 10"6
355
113

A 2.6676- 10"7
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Schranke ->
Bedingung -l

keine zusätzlichen

Bedingungen

Zähler und
Nenner prim
alle
Primfaktoren > 5

Zähler und
Nenner ungerade

< lOO'OOO

99'733
31'746

A 1.1997- 1(T8
60'661
19'309

A 6.4986- 1(T7
99'001
31'513

A 2.9488- 1(T7
99'711
31'739

A 2.9088- 10"7

< l'OOO'OOO

833'719
265'381

A 8.9233-lCT12
833'719
265'381

A 8.9233 -lCT12
833'719
265'381

A 8.9233 -lCT12
833'719

A 8.9223 -lCT12

< IO'000'OOO

6'565'759
2'089'946

A= 1 ¦ 1(T13
833'719
265'381

A 8.9233- 1(T12
7'712'167
2'454'859

A 2.8766-lCT13

A= 1.8463- 1(T13

6 Grenzen der Approximierbarkeit
Unter gewissen Umständen lässt sich die minimale Fehlergrösse bei der Diophantischen
Approximation einer reellen Zahl r abschätzen, also in der Weise

A
> c für alle A, B e <G c Z.

Diese Abschätzung kann einerseits durch die in Frage kommenden ganzen Zahlen A und
B begründet sein, andererseits aber auch durch die Natur der zu approximierenden Zahl r
selbst. In diese Richtung führt beispielsweise ein Satz von J. Liouville, welcher besagt,
dass eine algebraische Zahl der Ordnung n höchstens mit der Ordnung n approximiert
werden kann, dass somit für jede algebraische Zahl r «-ter Ordnung eine positive Schranke
X > 0 existiert, so dass für jeden rationalen Bruch ^ gilt

X
: Bn'

Noch etwas weiter führt hier ein Satz von K.F. Roth aus dem Jahre 1955, welcher
nachweist, dass jede algebraische Irrationalzahl höchstens (und damit genau) mit der

Ordnung 2 approximierbar ist.

Für den folgenden Satz sei r [qo; q\, q2, #3,...] wiederum die Kettenbruchdarstellung
einer reellen Zahl r, und ferner seien die beiden reellen Zahlen a„ und zn definiert wie
folgt:

für n > 1,

für n > 0.

B„

an [qn;qn-i,qn-2, • • •, <?i]

zn [qn; qn+i,qn+2, •• •]

Damit ist r [q0; q\, qi,..., qn-i, zn], und es gilt a„ ^-j-, wo Bn und Bn-\ die

Nenner des m-ten bzw. des (n — l)-ten Hauptnäherungsbruches 4s- bzw. 42-^- der zu ap-^ b i>n Bn_1 r
proximierenden Zahl r darstellen. Schliesslich gilt:

_ _
Zn+lAn + An-\
Zn+lBn + Bn-\

Zur Herleitung dieser Zusammenhänge kann man sich beispielsweise orientieren bei Perron

[6, S. 27ff]. Damit stehen die Begriffe bereit zur Formulierung des folgenden Satzes:
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^f-Satz 14 Es seien -jf-1 und^f- (mitn > 1) zwei konsekutive Hauptnäherungsbrüche einer
reellen Zahl r, und es seien t und s zwei nicht-negative reelle Zahlen, wobei nicht beide

gleich Null sein sollen. Dann giltfür n>\

r —
tAn 1

mit

\z„+is - t\ (ta„ + s)

Auf den Beweis von Satz 14 soll hier verzichtet werden. Zwei Sonderfälle, welche sich

aus diesem Satz ergeben, sollen allerdings hervorgehoben werden:

t l, s 0

t 1, s 1

A„
'

Bn

A„
Bn

1

^nBl
+ An-\
+ B„-1

mit X„

1

1

"Xn (Bn + '

mit Xn 1 +
1 1

1Zn+l ~ 1 C

Satz 14 kann herangezogen werden, um ein Mass für die Approximierbarkeit einer reellen
Zahl r nach unten abzuschätzen: Eine reelle Zahl r sei zu approximieren mit Bruchzahlen

¦p (A e Z, B e N) und mit 0 < B < M, wo M eine gegebene Schranke darstelle. Wir

gehen von den ersten beiden Hauptnäherungsbrüchen ^ und jf- der Zahl r aus. Mit der

Kettenbruchdarstellung r [qo; qi, q2, q~i, • • •] gilt Aq qo, Bq 1, A\ qoq\ + 1

und B\ q\. Ferner gilt ^ < r < j±, und jede rationale Approximation der Zahl r,
welche mindestens so nahe bei r liegt wie der Hauptnäherungsbruch jf-, ist nach Satz 14

darstellbar in der Form

mit t, s e Nq. (7)
B tB\ + sBo tq\ + s

Sofern die gegebene Schranke M die Bedingung M > B\ q\ erfüllt, wird mindestens
der Hauptnäherungsbruch jf- die geforderte Bedingung erfüllen, und jeder bessere

Näherungsbruch wird in der Form (7) darstellbar sein müssen. Nach Satz 14 gilt für n 1

r —
tA\ +sA0

+sB0

1

mit

\Z2S -t\ (ta\ + s) \z2S-t\B
Dabei ist «i q\, und wegen r [qo; q\, zû qo~\ l—r ergibt sich Z2

Mit der Abschätzung r - qo —l—r < rf- gilt also Z2
q\-\— q\ -v, und damit ist

1
qpqi -q\r + 2

\z2s-t\B Z2S -t\B(qoqi - qxr
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Nun bleibt noch, den Betrag A := \Z2S — t\ nach oben abzuschätzen. Dabei handelt es

sich um eine .Approximation der zweiten Art" für die reelle Zahl Z2 mit s e N und
t e Z. Da jedoch Z2 te; #3, q\, ¦ ¦ •] > #2 > 1 ist, kann ohne Einschränkung der

Allgemeinheit angenommen werden, dass nebst der Zahl 5 auch die Zahl f positiv sei. Bei
den .Approximationen der zweiten Art" bilden die Hauptnäherungsbrüche die einzigen
besten Näherungen (siehe z.B. Perron [6]). Ferner gilt nach Voraussetzung t A\ + sAq

t(qoqi + 1) + sqo < M sowie tB\ + sBo tq\ + s < M. Also ist insbesondere

M - t(qoqi + 1) M - qoqi - 1

s < — < — (8)

Damit ist der Betrag A mindestens so gross, wie der Approximationsfehler \z2S — t\, wenn

j der letzte Hauptnäherungsbruch der Zahl Z2 ist, für welchen diese Bedingung (8) erfüllt
ist. Wenn wir also diesen Hauptnäherungsbruch von Z2 etwa mit WjQ bezeichnen, so ist
A > \Z2S(M) - T(M)\, und es ergibt sich

qoqi -qir + 2

Z2S(M) - T(M)\ (qoqi - qxr + \)B
Damit kann schliesslich die folgende Abschätzung nach unten formuliert werden:

Satz 15 Eine beliebige reelle Zahl r te; qi, q2, #3, ¦ ¦ •] soll approximiert werden mit
,undB e N) mit B < M,
•nn giltfür den Approximati

Z2S(M)-T(M)\(qoqi-,

einer rationalen Zahl |(AeZ und B e N) mit B < M, wo M > qo(qi + 1) + 1 eine

gegebene Schranke darstelle. Dann giltfür den Approximationsfehler

(qoqi-qir+2)B
Dabei bezeichnen die beiden natürlichen Zahlen T{M) und S{M) Zahler und Nenner des

letzten Hauptnäherungsbruches l- der Zahl Z2 mit s < M~gogl~1.
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