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Loi de Benford, relations de récurrence
et suites équidistribuées

Paul Jolissaint
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1 Introduction

Lorsque l'on considère un ensemble de valeurs numériques relevées au hasard (cours
de la Bourse, nombres extraits de journaux,...), on constate que les chiffres de 1 à 9

n'apparaissent pas avec la même fréquence comme chiffre significatif (le premier chiffre
à gauche) dans l'écriture décimale de l'ensemble de valeurs étudiées: en fait, étant donné
d e {1,..., 9}, la proportion de valeurs de la liste dont le chiffre significatif est d est

voisine de log(l + l/d). Ainsi, la proportion de valeurs commençant par 1 est environ

égale à log(2) « 0.301, celle des valeurs commençant par 2 vaut à peu près log(3/2) «
0.176, et ainsi de suite jusqu'à la proportion des valeurs commençant par 9 qui est de

l'ordre de log(10/9) « 0.046. Cette constatation fut la première fois publiée en 1881 par

Betrachtet man numerische Daten, die von verschiedensten Quellen stammen wie z.B.
Aktienkurse oder Zahlenmaterial aus Zeitungsartikeln, usw., so stellt man fest, dass

die Ziffern 1,..., 9 nicht mit gleicher Wahrscheinlichkeit als erste Ziffer dieser Daten
auftreten. In den 30er Jahren des letzten Jahrhunderts hat der Physiker F. Benford mehr
als 20 000 solcher Daten gesammelt und ist dabei zur Beobachtung gelangt, dass die

Ziffer d mil Wahrschcialichkeil ^ log1(J( 1 + 1 /d) als crslc auiirilt. Man kann sich nun

fragen, ob dieses Gesetz auch für Zahlenfolgen (a„)„>o im Intervall [1, oo[ Gültigkeit
besitzt. In der Tat lässt sich diese Frage für die Folge a„ 2" unter Anwendung
von H, Weyls Ergodensatz positiv beantworten. In dem vorliegenden Beitrag zeigt der

Autor, dass eine grosse Klasse von Folgen, die durch lineare Rekursionen definiert
sind, das Benfordsche Gesetz erfüllen. Als wesentliches Werkzeug wird dazu II. Weyls
berühmter Satz über die „Gleichverteilung von Zahlen mod 1" herangezogen.
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S. Newcomb dans la revue American Journal of Mathematics, mais passa complètement
inaperçue. Cinquante ans plus tard, le physicien Franck Benford fait la même constatation

et publie en 1938 un article dans les Proceedings of the American Philosophical Society
contenant 20 229 observations provenant de divers domaines. Il constate que la table

correspondante des premiers chiffres s'accorde avec la loi qui portera désormais son nom.
Pour davantage de détails sur la loi de Benford et son histoire, nous conseillons au lecteur
de consulter l'excellent article de T. Hill [3].

Il est plus ou moins connu que cette loi est aussi vérifiée pour certaines suites de nombres
telles que la suite de Fibonacci (Fn)n>o ou la suite (2")„>o, par exemple. Or, de telles
suites satisfont les relations de récurrence Fn+2 Fn+\ + Fn pour la suite de Fibonacci,
et an+\ 2an pour la seconde. A propos de cette dernière, voir [1], pages 135 et 136 ;

c'est d'ailleurs cet exemple qui a motivé notre étude.

Le but de notre article est de présenter une condition suffisante pour qu'une suite de nombres

an > 1 (non nécessairement entiers) satisfaisant une relation de récurrence de la
forme

an+q c\an+q-\ + c2an+q-2 + ¦ ¦ ¦ + cqan (1)

où ci,..., cq e R et cq ^ 0, obéisse à la loi de Benford non seulement en base 10 mais
dans d'autres bases b > 3. (Notons que toute suite (an) c [1, oo[ satisfait trivialement la

loi de Benford en base 2.)

Avant d'énoncer le résultat précis, nous avons besoin de quelques rappels et de fixer nos

notations.

Si E désigne un ensemble fini, on note \E\ son cardinal. Si x est un nombre réel, on note

[x] sa partie entière et {x} sa partie fractionnaire: [x] est le plus grand entier inférieur ou

égal à x, et {x} x - [x]. Soit maintenant b un entier > 3. Puisque l'intervalle [1, +oo[
est la réunion disjointe

6-1

[l,+oo[=| II |[<i-&r, (d+l)-br[,
r>0d=l

tout nombre a e [1, +oo[ appartient à un unique intervalle [d ¦ br, (d + 1) ¦ br[ où r > 0

etl<d<b-l sont entiers. Le digit d est le (premier) chiffre significatif de a en base b.

Si (an)n>o c [1, +oo[ et b sont fixés, on note dn le chiffre significatif de an en base b.

Définition 1.1 La suite (an)n>o C [1, +oo[ satisfait la loi de Benford par rapport à la
base b si, pour tout d e {1, ...,b — 1}, on a

lim -J-|{« | 0 < n < N - 1, dn d}\ logfe(l + 1/d).

Nous allons également utiliser quelques faits sur les relations de récurrence d'ordre q telles

que la relation (1). Récrivons-la ainsi:

an+q - c\an+q-\ - - cqan 0. (2)
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On associe à une telle relation un polynôme p(x') appelé polynôme caractéristique: c'est
le polynôme

p(x) xq -cxxq~x -...-cq. (3)

La raison en est que toute solution (an)n>o de la relation de récurrence s'exprime à l'aide
des racines de p(x) de la façon suivante: écrivons p(x) (x - fi)w (x - &)'X2 ¦ ¦¦ (x -
Hm)llmi où %i,..., %m e C sont les racines distinctes de p(x), et, pour 1 < / < m, l'entier

[Zj > 1 est l'ordre de f;-. Alors toute solution (an)n>o de la relation (2) est une combinaison
linéaire des suites (nk^")n>o pour 0 < k < \x-} et 1 < / < m. Plus précisément, il existe
des constantes «;.* déterminées par les conditions initiales ao, fli, ¦ ¦ ¦, aq-\ telles que

pour tout « > 0.

Nous sommes prêts à énoncer le résultat principal de l'article:

Théorème 1.2 Soit p{x) xq - C\xq~l - - cq-\x - cq un polynôme de degré q
qui possède une racine f > 1 de multiplicité 1 telle que \r]\ < | pour toute autre racine r\

de p(x). Soit (an)n>o c [1, +oo[ une suite satisfaisant la relation de récurrence associée

an+q - c\an+q-\ - - cqan 0 et telle que

n >0 >0. (5)inf|#

Si b > 3 e^f m« enf/er tel que logfe(f esf irrationel, alors la suite (an) satisfait la loi de

Benfordpar rapport à b, et il en est de même de toute sous-suite (flg(n))n>o où Q(x) est

un polynôme non constant à coefficients entiers tel que Q(n) > 0 pour tout entier n > 0.

Remarque. Observons que la condition (5) est indispensable: en effet, la suite (an) définie

par an 4" satisfait la relation de récurrence

an+2 9an+i - 20an

les racines du polynôme caractéristique associé sont 4 et 5, et elle ne satisfait évidemment

pas la loi de Benford pour b 4 bien que Iog4(5) soit irrationnel.

La preuve du théorème s'articule ainsi: le polynôme Q(x) étant fixé, on associe à la suite

(flß(«))«>o la suite (A.„)„>0 c [0, 1[ définie par: Xn {logfe(ae(„))} logfe(aß(„)) -
[logfe(ag(„))]. On montre d'abord que si cette dernière est équidistribuée dans [0, 1] (voir
le paragraphe 3), alors (flg(n)) satisfait la loi de Benford par rapport à b; ensuite, grâce à

un théorème de Weyl [5] (théorème 2.4 ci-après), les hypothèses du théorème 1.2 assurent

que (kn)n>o est équidistribuée dans [0, 1]. La preuve du théorème 1.2 est donnée dans le

paragraphe 3, et le paragraphe 4 est consacré à quelques exemples.
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2 Les suites équidistribuées

Nous commençons par rappeler la notion de suite équidistribuée:

Définition 2.1 Une suite (un)n>o contenue dans l'intervalle [0, 1] est équidistribuée si,

pour tous 0<fl<ft<l,ona

lim — \{n | 0 < n < N - 1, a < un < b}\ b - a
N^oo N

Autrement dit, une suite équidistribuée se répartit très uniformément dans chaque sous-
intervalle de [0, 1]. Cette notion est due à H. Weyl [5], ainsi que le critère suivant qui
permet de donner des exemples de telles suites.

Théorème 2.2 (H. Weyl) Pour une suite {un)n>o contenue dans l'intervalle [0, 1], les

conditions suivantes sont équivalentes:

(1) (un) est équidistribuée ;

(2) pour toute fonction continue (à valeurs réelles ou complexes) f sur [0, 1] telle que
/(0) /(l), on a

/
Jo

1 1 w-1

f(x)dx= lim -V/(««);/ lim
Jo A^oo N

(3) pour tout entier I ^ 0,

N-l

N

N-l
A. y e2^un 0_

N t—1
n=0

La preuve est exposée notamment dans [1] et dans [4]. En guise d'application, rappelons
l'exemple classique:

Exemple 2.3 Soit f e M un nombre irrationnel et soit un=n% — \n%] la suite des parties
fractionnaires de la suite {ne, )n>o- Alors (m„)„>o est équidistribuée.

Preuve. La condition (3) du théorème est particulièrement bien adaptée à ce cas. Fixons
donc un entier £ ^ 0 et posons z e2ltte^. Observons que z ^ 1 quel que soit £ ^ 0

puisque £, est irrationnel.
Comme e2lIilUn e2lTi£n^ z" pour tout n, on a:

1 N~1 1 N~1 1 JV _ i

N ^ N ^ N z- 1

n=0 n=0

lorsque N ^ oo. D

La preuve du théorème 1.2 utilise la généralisation suivante de l'exemple ci-dessus dont la

preuve est nettement plus complexe (voir [5] et le théorème 21 de [2]):



14 Eiern. Math. 60 (2005)

Théorème 2.4 (H. Weyl) Soit R(x) rmxm + rm-\xm~x +... + T\x + r0 unpolynôme à

coefficients réels avec rm ^ 0 et m > 0 tel que l'un au moins des rt soit irrationnel parmi
ri,..., rm. Alors la suite des parties fractionnaires ({R(n)})n>o est équidistribuée.

Voyons maintenant quelle est la relation entre une suite (an) c [1, oo[ qui satisfait la loi
de Benford par rapport à une base b et les suites équidistribuées dans [0, 1].

Proposition 2.5 Soit (an)n>o C [1, +oo[ et soit b > 3 un entier. Posons

kn \ogb(an) - [logfe(fl„)] e [0, 1]

pour tout n > 0. Si la suite (kn)n>o est équidistribuée alors la suite (an)n>o satisfait la loi
de Benford par rapport à b.

Preuve. Comme dans le paragraphe précédent, notons dn le chiffre significatif de an en

base b. Il existe un entier r rn > 0 tel que

dn-br <an < (d„ + l)-br;

ceci est équivalent à

logfe(d„) < logfe(fl„) - r < logb(d„ + 1).

Cela montre entre autres que r est égal à [logfe(a„)]. Ainsi, si d e {1, ...,b — 1} est fixé,
on a dn d si et seulement si k„ e [\ogb(d), \ogb(d + 1)[. Si (k„) est équidistribuée, on

obtient:

— |{n | 0 <n < JV- 1, dn d}\

-\{n\0<n<N-\,kn
-> \ogb(d + 1) - \ogb(d) lo

lorsque N -+ oo.
Cela achève la preuve de la proposition. D

3 Preuve du théorème 1.2

Rappelons les hypothèses: (an)n>o c [1, +oo[ est une suite qui satisfait la relation de

récurrence

an+q - cian+q-i - - cqan 0. (6)

Soient % %\ > 1 et &,..., %m les racines de son polynôme caractéristique. On suppose

que |f; | < f pour j > 2 et que inf — > 0.
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Ecrivons, compte tenu des rappels du paragraphe 1 (formule (4)):

m I-1! — 1

an as, + > > a/jfc« § (7)

7=2 jt=O

pour n > 0. Récrivons (7) ainsi:

«» *"« + ££«/,*»* y • (8)

D'après les hypothèses, a > 0 et l'expression entre parenthèses aussi. Soit ß(x) bsxs +
bs-\xs~l + + b\x + bo avec s > l,bj eZ,bs > 0, tels que Q(n) > 0 pour tout entier
n > 0. On obtient alors

D'après la proposition 2.5, il suffit de vérifier que la suite ({logfe(flg(n))})n>0 est équidistri-
buée. Or,

où );„ logfe a + 2_^ 2_^ aj,kQ(n) \~t I ~* V logfcC") lorsque« -> oo.

7=2 *=0
V Ç /

Afin d'obtenir la conclusion, nous allons utiliser le lemme suivant:

Lemme 3.1 Soient {un)n>o et (vn)n>o deux suites de nombres complexes telles que

(a) («„) converge vers u e C;

JV-l

(b) (vn) est bornée et lim — Y^ vn v e C.
JV^co N '-^

n=0

JV-l
Um >^ UnVn

n=0

Preuve. Puisque \un — u\ converge vers 0 lorsque n ->¦ oo, elle converge également au

sens de Césaro:
JV-l

1

n=0
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Soit encore C > 0 tel que \v„ \ < C pour tout n. En utilisant les majorations suivantes:

JV-1

n=0

JV-1 JV-1

— UV —_
n=0

„ JV-1

<

(u

Un — U

)v +

+ \u\

u

N

-

y^ v -uv
n=0

JV-1

J2v»-v
n=0 n=0

on obtient le résultat. D

Pour terminer la preuve du théorème, fixons un entier l =/= 0 et posons «„ e2jrilrin et

t>„ e2jn£ß(")lo&>(£). Puisque logfe(f) est irrationnel et que Q(x) est à coefficients entiers,
on a, par le théorème 2.4:

lim —
(V^co TV

0,

donc

n=0

JV-1

lim —
JV^co TV

M„u„ =0,
n=0

et le théorème 2.2 implique que la suite (logfe(aQ(«))«>o est équidistribuée. Ceci achève la

preuve du théorème 1.2. D

Remarques. (1) En fait, l'exemple 2.3 suffit à démontrer que la suite (an) elle-même
satisfait la loi de Benford.
(2) Si (an)n>o satisfait les hypothèses du théorème 1.2, certaines suites associées satisfont
également la loi de Benford. C'est le cas par exemple des suites de la forme

s„ flo + fli + • • • + an ¦

En effet, il est facile de vérifier que si an est donnée par (4) alors

sn a-
7=2 *=0 /=0

satisfait la loi de Benford pour les mêmes valeurs de b, de même que toutes les sous-suites

{SQ(n))n>o comme dans le théorème 1.2.

4 Exemples

Nous allons présenter quatre exemples pour illustrer le théorème 1.2. Les trois derniers

s'appuient sur le résultat suivant, qui nécessite quelques rappels. Un nombre f est

algébrique (sur Q) s'il est racine d'un polynôme (non identiquement nul) à coefficients dans

Q. Si c'est le cas, il existe un unique polynôme m (x) x" +an-ix"~1 + + a\x
à coefficients rationnels tel que
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(1) m(£) 0;

(2) si s(x) est un polynôme à coefficients dans Q tel que s(Ç) 0, alors m(x) divise
s(x).

On appelle m{x) le polynôme minimal de f, et le degré de m{x) s'appelle le degré de %.

Rappelons également que % est nécessairement une racine simple de m{x)\ en effet, si ce
n'était pas le cas, % serait aussi une racine du polynôme dérivé m'(x), qui est encore à

coefficients rationnels et de degré inférieur à celui de m(x).

Proposition 4.1 Soit t; > 1 un nombre irrationnel algébrique dont p(x) xq -C\xq~x -
- cq est le polynôme minimal, avec a e Q pour tout i. Si toute autre racine r\ de p(x)

satisfait \rj\ < %, alors %n est irrationnel pour tout entier positif n. En particulier, logfe(f)
est irrationnel pour tout entier b > 3.

Preuve. Supposons par l'absurde qu'il existe un entier n > 2 et un nombre a e Q tels

que f " a. Posons s(x) xn -a. Ses racines sont les nombres complexes ^/äe2l7lk/n,
0 < k < n - 1, dont le module est Ofâ pour tout k. Comme p{x) divise s(x), ses racines
ont toutes le même module, ce qui contredit l'hypothèse. D

Exemple 4.2 (1) Soit an mn pour tout n, où m > 2 est entier. C'est une suite qui
satisfait la relation de récurrence an+\ man et logfe(m) est irrationnel pour tout b qui
n'est pas une puissance rationnelle de m. Comme nous l'avons indiqué dans l'introduction,
cet exemple est traité dans [1] comme application du théorème de Weyl pour les valeurs

m 2etb 10.

(2) Soit (Fn)n>o la suite de Fibonacci avec Fq F\ 1 et Fn+2 Fn+\ + Fn pour
n > 0. Son polynôme caractéristique est p{x) =x2-x-l (x- <p)(x + l/cp) où

cp j(l + \/5) est le nombre d'or. Cette suite satisfait les conditions du théorème 1.2

et de la proposition 3.1. Donc (Fn)n>o et toutes ses sous-suites (fg(«)) satisfont la loi de

Benford par rapport à toute base b > 3. Par ailleurs, il en est de même de la suite (<pn) ou

plus généralement des suites de la forme (c(pn) avec c > 1.

(3) Fixons deux entiers positifs a et ß tels que a2 + ß ne soit pas un carré d'entier et
considérons la relation de récurrence an+i 2aan+\ + ßan. Les racines de son polynôme
caractéristique sont f a + -Ja2 + ß et r] a - *Ja2 + ß. Par hypothèse, f > 1 est

irrationnel et \rj\ < %. Si (a«)«>o satisfait cette relation et si

inf a"
> o

«>o (a + ja2 + ß)n

alors elle satisfait la loi de Benford par rapport à toute base b > 3. Remarquons qu'il en

est de même de la suite

sn a0 + ai + + an

par la remarque de la fin du paragraphe 3. Comme il existe A > 0 et B e R tels que
an Aè,n + Bif pour tout n, on a

Sn A— \-ß — =§ A— \-ß
f 1 1 \ f 1 ï]-\
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II est facile de vérifier que la suite (sn)n>o satisfait également la relation de récurrence

suivante:

Sn+3 (1 + 2a)Sn+2 + (ß - 2a)Sn+l - ßSn ¦

(4) Soit enfin une suite (an)n>o satisfaisant la relation an+3 an+\ +an avecao, ai, ai >
1 arbitraires. Son polynôme caractéristique est p(x) x3 - x - 1. Une étude succinte
de p(x) montre qu'il admet une unique racine réelle 1 < 6 < 2, et la formule de Cardan
donne:

e

\ \
1.32472.

Notons co et co e C \ R les deux autres racines de p(x'). On a

x3-x-l (x - 9)(x2 - 2Re(co)x \co\2)

x3 - (2Re(<») + 6)x2 + (2Re(«)ö - \m\29

ce qui implique que \oj\26 1, que2Re(&)) + 0=0 et que 2Re(&>)ö + \oj\2 -1. On en

déduit que 1 et que

La suite (an) étant manifestement non bornée, elle s'écrit an aß" + ßof + y of pour
a > 0 et ß, y e C convenables. Il reste à vérifier que logb(6) est irrationnel pour tout
b > 3; cela montrera que la suite (an) satisfait la loi de Benford par rapport à toute base
b > 3. Or, x3 — x — 1 est le polynôme minimal de 6: en effet, si ce n'était pas le cas,
6 serait de degré 1 ou 2. Mais cela impliquerait que x3 - x - 1 admettrait au moins une
racine rationnelle, ce qui n'est pas le cas.
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