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Loi de Benford, relations de récurrence
et suites équidistribuées

Paul Jolissaint

Paul Jolissaint studied physics and mathematics at the University of Geneva where
he obtained his doctoral degree in 1987. He is a part time lecturer at the Institute of
Mathematics of the University of Neuchdtel and a part time professor of mathematics
and physics at the Lycée cantonal de Porrentruy (Jura, CH). His main interests are von
Neumann algebras, harmonic analysis and actions of groups.

1 Introduction

Lorsque I’on considere un ensemble de valeurs numériques relevées au hasard (cours
de la Bourse, nombres extraits de journaux,...), on constate que les chiffres de 1 2 9
n’apparaissent pas avec la méme fréquence comme chiffre significatif (le premier chiffre
a gauche) dans I’écriture décimale de 1’ensemble de valeurs étudiées: en fait, étant donné
d e {1,...,9}, la proportion de valeurs de la liste dont le chiffre significatif est d est
voisine de log(1l 4+ 1/d). Ainsi, la proportion de valeurs commengant par 1 est environ
égale 2 log(2) ~ 0.301, celle des valeurs commencgant par 2 vaut a peu pres log(3/2) ~
0.176, et ainsi de suite jusqu’a la proportion des valeurs commencant par 9 qui est de
I’ordre de 1log(10/9) ~ 0.046. Cette constatation fut la premiére fois publiée en 1881 par
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S. Newcomb dans la revue American Journal of Mathematics, mais passa compleétement
inapercue. Cinquante ans plus tard, le physicien Franck Benford fait la méme constatation
et publie en 1938 un article dans les Proceedings of the American Philosophical Society
contenant 20 229 observations provenant de divers domaines. Il constate que la table cor-
respondante des premiers chiffres s’accorde avec la loi qui portera désormais son nom.
Pour davantage de détails sur la loi de Benford et son histoire, nous conseillons au lecteur
de consulter I’excellent article de T. Hill [3].

11 est plus ou moins connu que cette loi est aussi vérifiée pour certaines suites de nombres
telles que la suite de Fibonacci (Fy)u>0 ou la suite (2"),>0, par exemple. Or, de telles
suites satisfont les relations de récurrence Fy42 = Fy41 + Fy pour la suite de Fibonacci,
et an+1 = 2a, pour la seconde. A propos de cette derniére, voir [1], pages 135 et 136 ;
c’est d’ailleurs cet exemple qui a motivé notre étude.

Le but de notre article est de présenter une condition suffisante pour qu’une suite de nom-
bres a, > 1 (non nécessairement entiers) satisfaisant une relation de récurrence de la
forme

Gntq = Cllntqg—1 + C20nyg—2 + ...+ Cqln (D

ol cy,...,cq € Retey # 0, obéisse ala loi de Benford non seulement en base 10 mais
dans d’autres bases b > 3. (Notons que toute suite (a,) C [1, oo[ satisfait trivialement la
loi de Benford en base 2.)

Avant d’énoncer le résultat précis, nous avons besoin de quelques rappels et de fixer nos
notations.

Si E désigne un ensemble fini, on note | E| son cardinal. Si x est un nombre réel, on note
[x] sa partie entiére et {x} sa partie fractionnaire: [x] est le plus grand entier inférieur ou
égal 4 x, et {x} = x — [x]. Soit maintenant » un entier > 3. Puisque I’intervalle [1, +o0o[
est la réunion disjointe

b—1
(1, +ool=|_||_]td ", @+ 1)-b'1,

r>0d=1

tout nombre a € [1, +o0o[ appartient 4 un unique intervalle [d - b", (d + 1) -b"[our > 0
etl <d < b —1sontentiers. Le digit d est le (premier) chiffre significatif de a en base b.
Si (an)n=0 C [1, +o0[ et b sont fixés, on note d, le chiffre significatif de a, en base b.

Définition 1.1 La suite (a,)n>0 C [1, +00[ satisfait 1a loi de Benford par rapport a la
base b si, pourtoutd € {1,...,b—1},0ona

1
lim —|{n|0<n<N-1, d, =d}| =log,(1+1/d).
N—oco N

Nous allons également utiliser quelques faits sur les relations de récurrence d’ordre g telles
que la relation (1). Récrivons-la ainsi:

Qntq — Cllnyg—1 — .. — Cqn = 0. 2)
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On associe a une telle relation un polyndme p(x) appelé polyndéme caractéristique: c’est
le polyndme

px) =x7 —cyxd7! —.—Cq. 3)

Laraison en est que toute solution (ay)x>0 de la relation de récurrence s’exprime a 1’aide
des racines de p(x) de la fagon suivante: écrivons p(x) = (x — &M (x — &2 (x —
Em)tm, o0&y, ..., &, € C sontles racines distinctes de p(x), et, pour I < j < m, I’entier
pnj = lestlordrede&;. Alors toute solution (ay)n>0 delarelation (2) est une combinaison
linéaire des suites (nké‘]'.‘)nzo pour 0 <k < pjetl < j < m.Plus précisément, il existe

des constantes o x déterminées par les conditions initiales ao, a1, . . ., aq—1 telles que
m mj—1
k
an =) ) ajnel )
j=1 k=0

pour tout n > 0.

Nous sommes préts a énoncer le résultat principal de I article:

Théoreme 1.2 Soit p(x) = x7 —cx?7 ! — ... — Cqg—1X — cq un polyndme de degré q
qui posséde une racine & > 1 de multiplicité 1 telle que |n| < & pour toute autre racine n
de p(x). Soit (an)n>0 C [1, +00l une suite satisfaisant la relation de récurrence associée
(n+qg — Cllnyg—1 — - .. — Cqly = 0 et telle que

mf{g_j]nzo}>o. 5)

Si b > 3 est un entier tel que logy, (&) est irrationel, alors la suite (a,) satisfait la loi de
Benford par rapport a b, et il en est de méme de toute sous-suite (Aguy)n=0 0t Q(X) est
un polyndme non constant a coefficients entiers tel que Q(n) > 0 pour tout entier n > 0.

Remarque. Observons que la condition (5) est indispensable: en effet, 1a suite (a, ) définie
par a, = 4" satisfait la relation de récurrence

any2 = 9any1 — 204, ,

les racines du polyndme caractéristique associé sont 4 et 5, et elle ne satisfait évidemment
pas la loi de Benford pour b = 4 bien que log,(5) soit irrationnel.

La preuve du théoréme s’articule ainsi: le polynéme Q(x) étant fixé, on associe a la suite
(@om))n=0 la suite (Ay)u=0 C [0, 1[ définie par: A, = {logy(dgwm))} = logyldom)) —
[logp(@g(n))]. On montre d’abord que si cette dernicre est équidistribuée dans [0, 1] (voir
le paragraphe 3), alors (ag(x)) satisfait 1a loi de Benford par rapport & b; ensuite, grice a
un théoreme de Weyl [5] (théoréme 2.4 ci-apres), les hypotheses du théoreme 1.2 assurent
que (Ay)n=0 est équidistribuée dans [0, 1]. La preuve du théoréme 1.2 est donnée dans le
paragraphe 3, et le paragraphe 4 est consacré a quelques exemples.
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2 Les suites équidistribuées
Nous commengons par rappeler la notion de suite équidistribuée:

Définition 2.1 Une suite (u,),>0 contenue dans I'intervalle [0, 1] est équidistribuée si,
pourtous 0 <a <b <1,ona

1
lim —|{n|0<n<N-1,a<u,<b}l=b—a.
N—ooo N

Autrement dit, une suite équidistribuée se répartit trés uniformément dans chaque sous-
intervalle de [0, 1]. Cette notion est due a H. Weyl [5], ainsi que le critére suivant qui
permet de donner des exemples de telles suites.

Théoreme 2.2 (H. Weyl) Pour une suite (i,)n>0 contenue dans lintervalle [0, 1], les
conditions suivantes sont équivalentes:

(1) (un) est équidistribuée ;
(2) pour toute fonction continue (a valeurs réelles ou complexes) [ sur [0, 1] telle que
JO) = f(),ona

N-1

/ Sx)dx = hm —Zf(un)

(3) pour tout entier £ # 0,

lim — Z eZm(iun =0.

N—oo N

La preuve est exposée notamment dans [1] et dans [4]. En guise d’application, rappelons
I’exemple classique:

Exemple 2.3 Soit & € R un nombre irrationnel et soit u, = n& — [n&] la suite des parties
fractionnaires de la suite (1€ )u>0. Alors (i, )n=0 est équidistribuée.

Preuve. La condition (3) du théoreéme est particulicrement bien adaptée a ce cas. Fixons
donc un entier £ # 0 et posons z = e2"*¢ Observons que z # 1 quel que soit £ # 0
puisque & est irrationnel.

Comme e27/tn = g27inE — 21 nour tout a1, on a:

iZean”"— NX:
N N ot Nz—l

-1

lorsque N — oo. O

La preuve du théoréme 1.2 utilise la généralisation suivante de 1’exemple ci-dessus dont la
preuve est nettement plus complexe (voir [5] et le théoréme 21 de [2]):
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Théoreme 2.4 (H. Weyl) Soit R(x) = rypx™ + Fm_1X™ L +rix+ro un polynéme Q
coefficients réels avec iy, # 0 et m > O tel que U'un au moins des r; soit irrationnel parmi
1, ..., m. Alors la suite des parties fractionnaires ({R(n)})n=0 est équidistribuée.

Voyons maintenant quelle est la relation entre une suite (a,) C [1, ool qui satisfait 1a loi
de Benford par rapport & une base b et les suites équidistribuées dans [0, 1].

Proposition 2.5 Soit (an)n=0 C [1, +00[ et soit b > 3 un entier. Posons
hn =log(an) — [logy(an)] € [0, 1]

pour tout n > 0. Si la suite (hy)n>0 est équidistribuée alors la suite (an)n>0 satisfait la loi
de Benford par rapport a b.

Preuve. Comme dans le paragraphe précédent, notons d,, le chiffre significatif de a, en
base b. 1l existe un entier r = r, > 0 tel que

dn-b" <ap < (dn+1)-D";
ceci est équivalent a
log,(dy) <logp(an) —r < logy(dy +1).
Cela montre entre autres que 7 est égal a [log,(ax)]. Ainsi, sid € {1,...,D — 1} estfixé,

on ad, = d si et seulement si &, € [log,(d), log,(d + D[. Si (A,) est équidistribuée, on
obtient:

%I{Iﬂ@fﬂﬁN—l, dy = d}|
= Lin 102 m <N <1, 3 € ogyld). gy + DI}
— log,(d + 1) —log,(d) = log, (1 4+ 1/d)
lorsque N — o0.

Cela acheve la preuve de la proposition. O

3 Preuve du théoreme 1.2

Rappelons les hypotheses: (ax)n=0 C [1, +oo[ est une suite qui satisfait la relation de
récurrence

Qntq — Cllptg—1 — .. — Cqly = 0. (6)

Soient & =& > leté&,,..., &, lesracines de son polyndme caractéristique. On suppose
a
que |&;| < & pour j > 2 et que inf — > 0.
n é:n
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Ecrivons, compte tenu des rappels du paragraphe 1 (formule (4)):
m pj—1
an ="+ ajn'e] (7)
3=2; k=0
pour n > (. Récrivons (7) ainsi:
m frj—1 £ n
an=E" a4+ > ajn (—J) . (8)
=2 k=0 §

D’apres les hypothéses, o > 0 et I’expression entre parentheéses aussi. Soit Q(x) = byx® +
bs_1x* 1. .4+ bix+boavecs > 1, bj € Z,bs > 0, tels que Q(n) > 0 pour tout entier
n > 0. On obtient alors

m i1 £\ 20
agm =EC" a4+ > Q) (?)
j=2 k=0

D’apres la proposition 2.5, il suffit de vérifier que la suite ({log,(@gn))}), -, est équidistri-

n>0
buée. Or,

logp(agm) = Q(n)logy(€) + 1

m #j~1 £\ 20
oun, =log, | o+ Z Z ozjka(n)k (é) — n = log, («) lorsque n — 0.
j=2 k=0

Afin d’obtenir la conclusion, nous allons utiliser le lemme suivant:
Lemme 3.1 Soient (uy)n=0 ef (Vn)n=0 deux suites de nombres complexes telles que

(a) (un) convergeversu € C;

N-1
, . 1
(b) (vy) est bornée et Nh_)mOO v 2(:) v, =veC.
n=

Alors

1N—1
lim — E UpVUn = UV.
N—ooo N ; nen

n=

Preuyve. Puisque |u, — u| converge vers O lorsque n — o0, elle converge également au
sens de Césaro:

1N—l
7 2= =0
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Soit encore C > 0 tel que |v,| < C pour tout n. En utilisant les majorations suivantes:

| M-l | V-l e
‘NZ””U”_”U‘ = ‘N Z(un—u)vn—kﬁZvn—uv‘
n=0 n=0 n=0
c V-l N-1
< S lw—al | Y w—y
n=0 n=0
on obtient le résultat. O

Pour terminer la preuve du théoréme, fixons un entier £ # 0 et posons u, = e>7 gt
v, = XM Iog (&) puisque log, (£) est irrationnel et que Q(x) est A coefficients entiers,
on a, par le théoreme 2.4:

N-1
lim — E v, =0,
N—oo N "

n=0

donc
lim — Z Upvy =0,
N—oco N

et le théoreme 2.2 implique que la suite (10g,(a g () )n=0 est équidistribuée. Ceci acheve la
preuve du théoréme 1.2. O

Remarques. (1) En fait, 'exemple 2.3 suffit 2 démontrer que la suite (a,) elle-méme
satisfait la loi de Benford.

(2) Si (an)n=o satisfait les hypotheses du théoréme 1.2, certaines suites associées satisfont
également la loi de Benford. C’est le cas par exemple des suites de la forme

Sp =do+ a1+ ...+ au.
En effet, il est facile de vérifier que si a, est donnée par (4) alors

$n+1 m =l

Sh =« +ZZ“;kZlk§J

j=2 k=0

satisfait la loi de Benford pour les mémes valeurs de b, de méme que toutes les sous-suites
(Son))n=0 comme dans le théoreme 1.2.

4 Exemples

Nous allons présenter quatre exemples pour illustrer le théoréme 1.2. Les trois derniers
s’appuient sur le résultat suivant, qui nécessite quelques rappels. Un nombre & est algé-
brique (sur Q) s’il est racine d’un polyndme (non identiquement nul) & coefficients dans
Q. Si c’est le cas, il existe un unique polyndme m(x) = x" 4+ ap_1x" " 4+ ...+ a1x + o
a coefficients rationnels tel que
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(1) m)=0;
(2) si s(x) est un polyndme 2 coefficients dans Q tel que s(&) = 0, alors m(x) divise
§(X).

On appelle m(x) le polynome minimal de &, et le degré de m(x) s appelle le degré de &.
Rappelons également que & est nécessairement une racine simple de m(x): en effet, si ce
n’était pas le cas, & serail aussi une racine du polyndme dérivé m’(x), qui est encore a
coefficients rationnels et de degré inférieur a celui de m (x).

Proposition 4.1 Soit & > 1 un nombre irrationnel algébrigue dont p(x) = x4 —c1x971 —
... — ¢q est le polynome minimal, avec ¢; € Q pour tout i. Si toute autre racine n de p(x)
satisfait |n| < &, alors E" est irrationnel pour tout entier positif n. En particulier; 10g,(€)
est irrationnel pour tout entier b > 3.

Preuve. Supposons par 1’absurde qu’il existe un entier n > 2 et un nombre ¢ € Q tels
que &" = a. Posons 5(x) = x" — «. Ses racines sont les nombres complexes {/ae? ™/
0 <k < n — 1, dont le module est ¥« pour tout k. Comme p(x) divise s(x), ses racines
ont toutes le méme module, ce qui contredit I’hypothese. O

Exemple 4.2 (1) Soit a, = m" pour tout n, ot m > 2 est entier. C’est une suite qui
satisfait la relation de récurrence d,41 = ma, et log,(m) est irrationnel pour tout b qui
n’est pas une puissance rationnelle de m. Comme nous 1’avons indiqué dans I’introduction,
cet exemple est traité dans [1] comme application du théoreme de Weyl pour les valeurs
m=2etb=10.

(2) Soit (Fy)n=0 la suite de Fibonacci avec Fyp = I1 = 1 et Fyqp = Fyqy1 + Fy pour
n > 0. Son polyndme caractéristique est p(x) = 2_x—-1=(x- @)x + 1/¢) ol
@ = %(1 + \/5) est le nombre d’or. Cette suite satisfait les conditions du théoréme 1.2
et de la proposition 3.1. Donc (Fy)x>0 €t toutes ses sous-suites (Fp(y)) satisfont la loi de
Benford par rapport a toute base b > 3. Par ailleurs, il en est de méme de la suite (¢”) ou

plus généralement des suites de 1a forme (c¢™) avec ¢ > 1.

(3) Fixons deux entiers positifs o et B tels que «? + B ne soit pas un carré d’entier et
considérons la relation de récurrence a4 = 2aa,+1+ Bay. Les racines de son polyndme

caractéristique sont & = o + /a2 + B et n = a — /a2 + B. Par hypothese, & > 1 est

irrationnel et |n| < &. Si (ax)n>0 satisfait cette relation et si

. Qn

inf———— >0
nZO(a+ /a2_|_‘3n
alors elle satisfait la loi de Benford par rapport a toute base » > 3. Remarquons qu’il en
est de méme de la suite

Sp=do+ a1 +...+day
par la remarque de la fin du paragraphe 3. Comme il existe A > O et B € R tels que
an = A&" + By" pour tout n, on a

n+1l _ n+1 _ _ &—n n+ljen _ g—n
gH -1 1:§n(As IR et )

Sn 5_1 + 17—1 %__1 + 17—1
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11 est facile de vérifier que la suite (s,)n>0 satisfait également la relation de récurrence
suivante:
Snts = (1 + 20)8n42 + (B — 2)Su41 — BSn -

(4) Soit enfin une suite (@, )x>0 satistaisant la relation a,43 = du41 + an avec ao, di, az =

1 arbitraires. Son polyndme caractéristique est p(x) = x> — x — 1. Une étude succinte
de p(x) montre qu’il admet une unique racine réelle 1 < 6 < 2, et la formule de Cardan

donne:
3l 14 /%—37- 31 1 — /%3—
6= ~ 1.32472.
2 * 2

Notons w et @ € C \ R les deux autres racines de p(x). On a

¥-x—1 = (x—60)x?=2Re(@)x + ||
x3 — QRe(w) + 0)x% + QRe(w)f + |oH)x — ||%0,

ce qui implique que |@|?0 = 1, que 2Re(w) + 6 = 0 et que 2Re(w)d + |w|> = —1. Onen
déduit que || < 1 et que

9_{_. 4 -93 1 o +i 3—-0
©=—=+i =—|-0+4+i/—].
2 40 2 0

La suite (a,) étant manifestement non bornée, elle s’écrit a, = 8" + B + y@" pour
a > Oet B,y € C convenables. Il reste a vérifier que log, (0) est irrationnel pour tout
b > 3; cela montrera que la suite (a,) satisfait la loi de Benford par rapport a toute base
b > 3.0r, x3 —x — 1 est le polyndme minimal de €: en effet, si ce n’était pas le cas,
6 serait de degré 1 ou 2. Mais cela impliquerait que x> — x — 1 admettrait au moins une
racine rationnelle, ce qui n’est pas le cas.
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