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Note on the diophantine equation
1+2p+Q2p)*+---+Q2p)" =y’

Tom Miiller

Tom Miiller ist 25jahrig. Er studierte Mathematik an den Universititen Ziirich und
Trier. Seine Interessen liegen in der Analysis, der Zahlentheorie sowie der Mathe-
matik-Geschichte.

In a note published in 1987, A. Rotkiewicz [2] showed that repunits, i.e., numbers of the
form 111...11 = 1 + 10 + --- + 10", are never squares or cubes for n > 1. He did
this using a more general result on the diophantine equations 1 + x + -- - + x" = y? and
14+ x+---+x" =y proved by W. Ljunggren in 1943 [1].

The following result implies that repunits are never fifth powers of integer numbers as
well.

Theorem. Let p be an odd prime number or a Carmichael number and let n € N. Then,
the diophantine equation 1 +2p + 2p)? + - -- + 2p)* = yP has no solution v.

Proof. For n = 1 the diophantine equation gives

14+2p =yP. (1)

Because of y# = 1 mod p, y cannot be a multiple of p. Moreover, Fermats little theorem
gives y¥ = y mod p. Therefore, y has to be of the form y = pk+ 1 with ak € Ny. Hence,
the Bernoulli inequality implies 1 +2p = y? > 1+ p?k, i.e., 2 > pk. This is possible
only if k = 0 (and y = 1) contradicting (1).
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Suppose now that there is an n > 1 leading to the solution y € Z. Then the two congru-
ences
y? =1mod2p (2)

and
y? =2p+ 1 mod 2p)> 3)

have to be fulfilled simultaneously. To get equation (2), y must be of the form (2p)k + 1
with ak € Z. This can be seen writing y = 2pk+r withk € Zandr € {0,1,...,2p—1}.
Then

Qpk + 1P =r? mod 2p

and again with Fermat
Qpk+r) =r mod p,

leading to y# = 2pl + rP and y? = pm +r with [,m € Z. As r and r? are both
either odd or even, pm is a multiple of 2 and therefore, m is an even number. Hence,
yP=1=rmod2p,andsor = 1.

Using the binomial formula we obtain v = Q2pk + 1)? =2 pzk + 1 mod (2 p)z. Then
an even k leads to y# = 1 mod (2p)?, while we get y? = 2p? + 1 mod (2p)? with k
odd. Considering the inequality I < 2p 4+ 1 < 2p> 4+ 1 < (2p)? this contradicts the
congruence (3). Therefore, the assumed #n does not exist. O

Choosing p = 5, the diophantine equation 1 + 10 + - - - 4+ 10" = y> has no solution, and
so the numbers 11, 111, 1111, ... are never fifth powers of integer numbers.
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