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Note on the diophantine equation
1 + 2/7 + (2/7)2 + • • • + (2/7)" y

Tom Müller

Tom Müller ist 25jährig. Er studierte Mathematik an den Universitäten Zurich und
Trier. Seine Interessen liegen in der Analysis, der Zahlentheorie sowie der
Mathematik-Geschichte.

In a note published in 1987, A. Rotkiewicz [2] showed that repunits, i.e., numbers of the

form 111... 11 1 + 10 + --- + 10", are never squares or cubes for n > 1. He did
this using a more general result on the diophantine equations 1 + x + ¦ ¦ ¦ + x" y2 and
1 + x + ¦ ¦ ¦ + xn y3 proved by W. Ljunggren in 1943 [1].

The following result implies that repunits are never fifth powers of integer numbers as

well.

Theorem. Let p be an odd prime number or a Carmichael number and let n e N. Then,

the diophantine equation 1 + 2p + (2p)2 + - - - + (2p)n yp has no solution y.

Proof. For n 1 the diophantine equation gives

l+2p yp. (1)

Because of yp 1 mod p, y cannot be a multiple of p. Moreover, Fermats little theorem

gives y^ y mod p. Therefore, y has to be of the form y pk +1 with a k e No. Hence,
the Bernoulli inequality implies 1 + 2p yp > 1 + p2k, i.e., 2 > pk. This is possible
only if k 0 (and y 1) contradicting (1).

,,Repunits" sind Zahlen mit lauter Binsen 1, 11, 111, 1111,... Ks ist bekannt, dass sie
niemals Quadrate oder Kubikzahlen sein können In dieser Arbeit wird gezeigt, dass

sie auch keine fünfte Potenzen sein können Dies ist der Spezialfall p 5 des hier
durch Kongraenzschlusse bewiesenen Satzes, dass die im Titel genannte Gleichung
keine Losungen n, y in positiven ganzen Zahlen hat, wenn p eine ungerade Primzahl,
oder allgemeiner eine ungerade Zahl ist, fur die der kleine Fermatsche Satz in der Form

l' \ Hlii'J /'i Uli ;illo V ;Jlll.
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Suppose now that there is an n > 1 leading to the solution jeZ. Then the two congruences

yp 1 mod 2p (2)

and

yp 2p + 1 mod (2p)2 (3)

have to be fulfilled simultaneously. To get equation (2), y must be of the form (2p)k + 1

with aS: eZ. This can be seen writing y 2pk + r with k e Z andr e {0, 1,..., 2p — 1}.
Then

+ r)p rp mod 2p

and again with Fermât

(2pk + r)p =r mod p,

leading to yp 2pi + rp and yp pm + r with l, m e Z. As r and rp are both
either odd or even, pm is a multiple of 2 and therefore, m is an even number. Hence,

yp 1 r mod 2p, and so r 1.

Using the binomial formula we obtain yp (2pk + l)p 2p2k + 1 mod (2p)2. Then

an even k leads to yp 1 mod (2p)2, while we get yp 2p2 + 1 mod (2p)2 with A;

odd. Considering the inequality 1 < 2p + 1 < 2p2 + 1 < (2p)2 this contradicts the

congruence (3). Therefore, the assumed n does not exist. D

Choosing p 5, the diophantine equation 1 + 10+-+10" y5 has no solution, and

so the numbers 11, 111, 1111,...are never fifth powers of integer numbers.
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