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Stirling numbers of the second kind and
Bonferroni's inequalities

Horst Wegner

Horst Wegner studierte Mathematik an der Universität Hamburg. Nach dem Diplom
1966 und kurzer Tätigkeit in der Industrie promovierte er 1970 über ein Problem

zu Stirlingschen Zahlen zweiter Art an der Universität Köln. Seit 1973 ist er als

Akademischer Oberrat an der Universität Duisburg tatig, zunächst in der Lehrerausbildung

und seit 1982 im Fachgebiet Stochastik.

1 Introduction
The number of ways of partitioning a set of« elements into k nonempty subsets is usually
denoted S(n, k). The numbers S(n, k) are called Stirling numbers of the second kind. It is

well-known that
1 —

forn,k eN.
By an easy application of Bonferroni's inequalities, it can be shown that the partial sums

successively overcount and undercount the number S(n, k) (see Theorem 3).

Auf wie viele Weisen lässt sich eine Menge von n Elementen in k nicht-leere
Teilmengen zerlegen? Die Antwort hierauf liefern die Stirlingschen Zahlen S(n, k) zweiter
Art. Der Zusatz „zweiter Art" hat historische Gründe. Die Stirlingschen Zahlen erster
Art können z.B. als Koeffizienten von xk in dem Polynomx(x — 1) •,,, • (x — n + 1

und die Stirlingschen Zahlen zweiter Art umgekehrt als Koeffizienten in der Darstellung

von x" als Linearkombination der Ausdrücke (x)* := x(x - 1) •... • (x - k + 1)

eingeführt werden. In der nachfolgenden Arbeit wird mit elementaren kombinatorischen

Überlegungen, insbesondere den Ungleichungen von Bonferroni, gezeigt, dass

die Partialsummen der bekannten geschlossenen Darstellung für die S{n,k) abwechselnd

obere und untere Schranken für die S(n. k) sind.
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There are only a few textbooks on combinatorics, which present Bonferroni's inequalities
(e.g. [1], [2]), and the representation is sometimes not very satisfactory to the reader (cf.
[1]). Therefore, we start with a deduction of Bonferroni's inequalities in a concise and

elementary way (see Theorem 1).

2 Bonferroni's inequalities
Bonferroni's inequalities are closely related to the principle of inclusion and exclusion.

Theorem 1 Let £2 be a nonempty set, and let A\,..., An be finite nonempty subsets of Si.

Putting

m :=max{ \T\ : T c {1,2,...,«}, f] A, ^ 0},

then m > 1 and for I 1, 2,..., m

rc{l,2,_,n)

>

<

n

[JA;
1=1

n

U A;
1=1

n

U ^i
1=1

(f I m,

if I < m, I odd,

if I < m, I even.

The proof of Theorem 1 becomes short and clear, if we apply the following lemma. For
this, a useful device is the so-called indicator function of a set A

lA(co)
|1 if co e A,

0 iî co é A.

Lemma Let Q. be a nonempty set, and let A\,..., An c £2 with (J A* ^ 0. For each
1=1

n
&) e U Ai putm{co) := \{i : co e At}\. Then, m{co) > 1 and

1=1

7=1

forl=l,2,...,n.

,/m(co) — 1

/ Let co e [j A;. For abbreviation we put I(co) := {j : «y e A;}. Hence I(co) ^ 0
1=1

and m(a>) |/(a>)| > 1. Then, for ; 1, 2,..., n we have

E
rc{i,2, ,»}

|r|=; \T\=j
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Hence, for 1 < I < n

\T\=j

D

Proof of Theorem I. Obviously, m > 1. For abbreviation, we put A := Q A*. Then, using
1=1

the notation and the result of the preceding lemma, we obtain

B-»'"1 E
7=1 rc{i,2, ,»} 7 1

E
rc{i,2, ,»}

Obviously, m maxm(&>). Therefore:
weA

m

I < m

0 for all co e A,

>0 for at least one« e A.

Thus, the result of Theorem 1 follows immediately. D

It is obvious that Theorem 1 could be obtained as a corollary to the following Theorem 2,

which should also be mentioned here. Nevertheless, we have presented an individual proof
of Theorem 1 to show its simplicity.

Theorem 2 Let (£2,21, /x) be a measure space, and let A\, An e 21 with

0 < fi( U At) < oo. Putting m := max {\T\ : T c {1,2,..., «}, /x( f| A,) > 0},
i=l ieT

then m > 1 and for I 1, 2,..., m

E(
7=1 rc{i,2,...,»}

/"-( U Ai) if I m,
1=1
n

> /x( U Ai) if I < m, I odd,
1=1
n

< /x( U Ai) if I < m, I even.
1=1
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Proof. Since there is at least one A; with fi(A{) > 0, it is clear that m > 1.

n

Moreover, (J A* ^ 0. Thus we obtain by the lemma for all I 1, 2,..., n and all co e £2

1=1

¦^ ÙT U
rc{l,2,_,n) i=l

with

- 1

/
1=1

n

if &> ^ U A[.
1=1

n

Since /x( U Af) < oo, the functions 1 « 1 n a,-, Si are /x-integrable.
1=1 ,^iA' >£T

First we consider (*) for / n. Since Rn 0, it follows from (*) by integration with
respect to fi that

1=1 /=i rc{i,2,.

According to the definition of m, this means

K41=1 /=i rc{i,2,...,«} iSr

which is the asserted equality for / m.

Now let/ < m. From the definition of m there is a subset 7b C {1, 2,...,«} with |7b| m

such that /x( Q Af) > 0. Hence Q Aj ^ 0 and m(a>) m for all co e Q A;. This
i€To l€To l€To

implies

(m ~ l
J > 1 for all co e f] A;.

Hence /rRi äß > /in A,-d/x /x( P) Af > 0.
J ÎG10 T

Integrating (*) with respect to /x, the last result completes the proof of the asserted

inequalities for / < m. D
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3 Inequalities for the numbers S(n, k)

Theorem 3 Let n, k eN with k < n. Then

' S(n,k) if l k-l,
S(n,k) if 0 </ <k- 1, I even,

: S(n,k) if 1 </ <k- 1, /odd.

Proof. Because of S(n, 1) 1, the statement is valid for k 1.

Now suppose 2 < k < n. Then let X, Y be sets with |X| n, \Y\ k. According to the
definition of S(n, k), it is evident that the number of surjective functions from X to Y is

klS(n, k). For abbreviation we define the nonempty sets

Ay := {/ e Yx : y £ f(X)}, y e Y.

Then we obtain for the number of non-surjective functions

(i) kn-k\S(n,k)
yeY

This suggests to apply Theorem 1.

Suppose yo e Y and define g(x) := yo for all x e X. Then g e P| Ay. Otherwise, it

is obvious that Ç\ Ay 0. Thus, we have
yeY

(11) m :=max{ \T\ : T c Y, f] Ay

yeT
=k- 1.

Furthermore, f| Ay {/ e Yx : f{X) cY\T], and hence
yeT

yeT

(y \ ry

Thus, for; 1, 2,..., k - 1

E
TcY
\T\=j

T<zY
\T\=j

{k-\T\f.

By (i), (ii), (iii) and Theorem 1 we obtain thereupon for / 1, 2,..., k - 1

kn -klS(n,k) if l k- 1,

> k" -k\S{n,k) \îl<k-l, /odd,

< kn -k\S{n,k) \îl<k-l, /even.

Then a simple rearrangement gives us the desired result for / > 1. Since (i) immediately
implies kn — klS(n, k) > 0, the result of Theorem 3 is also valid for 1 0. D
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