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Stirling numbers of the second kind and
Bonferroni’s inequalities

Horst Wegner

Horst Wegner studierte Mathematik an der Universitit Hamburg. Nach dem Diplom
1966 und kurzer Titigkeit in der Industrie promovierte er 1970 iiber ein Problem
zu Stirlingschen Zahlen zweiter Art an der Universitit Koln. Seit 1973 ist er als
Akademischer Oberrat an der Universitit Duisburg titig, zunéchst in der Lehreraus-
bildung und seit 1982 im Fachgebiet Stochastik.

1 Introduction

The number of ways of partitioning a set of # elements into k nonempty subsets is usually
denoted S(n, k). The numbers S(#n, k) are called Stirling numbers of the second kind. It is

well-known that
1k
Sn, k) =— -1 k—i)"
(n k) = ; )(l.)( i)

forn,k € N.
By an easy application of Bonferroni’s inequalities, it can be shown that the partial sums
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There are only a few textbooks on combinatorics, which present Bonferroni’s inequalities
(e.g. [1], [2]), and the representation is sometimes not very satisfactory to the reader (cf.
[1]). Therefore, we start with a deduction of Bonferroni’s inequalities in a concise and
elementary way (see Theorem 1).

2 Bonferroni’s inequalities

Bonferroni’s inequalities are closely related to the principle of inclusion and exclusion.

Theorem 1 Let Q2 be a nonempty set, and let Ay, . .., Ay, be finite nonempty subsets of 2.
Putting

mi=max [ |T]: 7 € (1,2,....n), () A £},

ieT
thenm > landforl=1,2,...,m
n
= (U Ai| if =m,
i=1
! X n
Z(_l)J—l Z ’ﬂ Aild{> |UAi|l if l<m, lodd,
j=1 Tc{12,.) i€l i=1
IT|= n
< |UAi| i l<m, leven
i=1

The proof of Theorem 1 becomes short and clear, if we apply the following lemma. For
this, a useful device is the so-called indicator function of a set A
1 if e A,
1a(@) = )
0 if o ¢ A.

n
Lemma Let Q2 be a nonempty set, and let Ay, ..., Ay C Q2 with U A; # 0. For each
i=1

n
o€ |J A putm(w) :=|{i - © € Aj}|. Then, m(w) > 1 and
i=1

1
Z(—l)f—l Z 1n @) =1-— (_1)1<m(a)) o 1)
j=1 ch},&z:?,n, ieT l

forl=1,2,...,n.

n
Proof. Let w € |J A;. For abbreviation we put I (o) := {i : @ € A;}. Hence I () # 0

i=1
and m(w) = |I(w)| > 1. Then, for j = 1,2, ...,n we have
m(w)
Yo las@= ) 1a 4@ = ( . )
ieT ieT J
Tc{1,2,...,n}) Tcl(w)

|T|=j IT|=j
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Hence,forl <[ <n

l l
2T S g a@) =Z<—1>"‘1<m§w))
J=l

Tc{l,2,...,n) j=1
IT|=j
B ()
Z i1 j
=13 (—1)1—1(’"("); - 1). O

n

Proof of Theorem 1. Obviously, m > 1. For abbreviation, we put A := | A;. Then, using
i=1

the notation and the result of the preceding lemma, we obtain

l l
YT Y NAl=XET Y Y@
j=1 | j=1

Tc{1,2,...n} ieT TC{l,2,...n} weA
|T|=j IT1=j
Sy
weA b
B T m(w) — 1
=|A| - (=1 Z( l )

weA

Obviously, m = maZ‘(m(a)). Therefore:
we

-1
l=m = (m(wl) >:O forallw € A,

m(w) — 1
l<m = I > (0 foratleastonew € A.
Thus, the result of Theorem 1 follows immediately. O

It is obvious that Theorem 1 could be obtained as a corollary to the following Theorem 2,
which should also be mentioned here. Nevertheless, we have presented an individual proof
of Theorem 1 to show its simplicity.

Theorem 2 Let (2,2, n) be a measure space, and let Ay, ..., A, € 2 with
n
0 < u(U Ai) < oo. Putting m := max {|T| : T C {1,2,....n}, u( ) Ai) > O},
i=1 ieT
thenm > landforl =1,2,...,m
n
= uw(UA) ifi=m,
! ljl
S Enict Y M(ﬂAl) > w(UA) ifl<m, lodd,
j=1 Tcl2n i€l i=1
! < w(UA) ifl<m, Lleven

I
=
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Proof. Since there is at least one A; with u(A;) > 0, itis clear that m > 1.

n
Moreover, |J A; # @. Thus we obtain by the lemma for all/ = 1,2, ..., 7 and all » €

i=1

l

() DT 1a 4@ =1 (@ - (D'Ri@)
j=1 Tc‘(%,‘z:,},n} i=1
with
(m(w) N 1) it @ | A,
Ri@) = : =1

n
0 if ¢ | A
i=1

n
Since M( U A,-) < 00, the functions 1 R 1 4;, Ry are p-integrable.

i=1 = i ieT
First we consider (%) for [ = n. Since R, = 0, it follows from (%) by integration with
respect to w that

i=1 Tcil2,..n) ieT
IT|=j

n n
p(Ua) =20 30 w(Na),
j=1
According to the definition of m, this means

u( Ai)zé(—nf“lz (A,

C-=

i=1 Tcl2yain} ieT
IT|=j

which is the asserted equality for [ = m.

Now let! < m. From the definition of m there is a subset 7o C {1, 2, ..., n} with |Tp| = m
such that i (| A;) > 0. Hence () A; # @ and m(w) = m for all @ € (1) A;. This

ieTy ieTp ieTy
implies
m—1
Rl(a)):< , )21 forall o € (1) A
ielp
Hence

/R, duz/IiQOAidM:u(ﬂAi) > 0.

ieTy

Integrating (%) with respect to w, the last result completes the proof of the asserted in-
equalities for I < m. O



128 H. Wegner

3 Inequalities for the numbers S(n, k)
Theorem 3 Let n, k € Nwithk < n. Then

L . S, k) ifl=k—1,
;Z<—1>j<j><’<—f>”
1

Il

v

Sn,k)y if0<l<k-—1, leven
Sn, k) if 1<l<k-—1, lodd

A

Proof. Because of S(n, 1) = 1, the statement is valid for k = 1.

Now suppose 2 < k < n. Then let X, Y be sets with |X| = n, |Y| = k. According to the
definition of S(n, k), it is evident that the number of surjective functions from X to Y is
k!'S(n, k). For abbreviation we define the nonempty sets

Ay ={feY iy g fX)}, yev.

Then we obtain for the number of non-surjective functions

) K — KIS, k) = ‘UAy].
yeyY
This suggests to apply Theorem 1.

Suppose yo € Y and define g(x) := yo forallx € X. Theng € () Ay. Otherwise, it
yeX¥\{yo}
is obvious that () A, = @. Thus, we have
yey

(i) m::max[|T|:TcY,ﬂAy7é®]:k—l.
yeTl

Furthermore, () Ay = {f € YX: f(X) C Y \ T}, and hence
yel

N4y = |\ 0¥ = @ -7
yeT
Thus, for j =1,2,...,k—1
(i) > Nal= Z(k—|T|>”=(.><k—/>".
¥iw yeT Tcy J
IT|=j |T=j
By (i), (ii), (iii) and Theorem 1 we obtain thereupon for/ =1,2,...,k — 1
j . = k" —kiS(n, k) ifl=k—1,
Z(—1)1_1<,)(k — "> K" —k!'S(n, k) if I <k—1, [odd,
j=1 # < K" —KIS(, k) if l<k—1, [even.

Then a simple rearrangement gives us the desired result for / > 1. Since (i) immediately
implies k" — k!S{(n, k) > 0, the result of Theorem 3 is also valid for [ = 0. O
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