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Avoiding arithmetic progressions in cyclic groups

Lorenz & Stephanie Halbeisen

Stephanie Gloor und Lorenz Halbeisen lernten sich 1995 kennen, als sie beide
Assistenten an der ETH Ziirich waren. Vertieft wurde ihre Beziehung, wihrend sie
an der Universitit Ziirich promovierte und er Postdoc-Aufenthalte in der Normandie
und in Katalonien absolvierte. Nach einem gemeinsamen zweijdhrigen Aufenthalt in
Berkeley sind sie 2001 als kleine Familie nach dem anderweitig bekannten Belfast
gezogen, wo sie kiirzlich ein Nachdiplomstudium in Informatik abgeschlossen hat
und er Dozent an der Queen’s University Belfast ist.

0 Introduction

Van der Waerden’s theorem tells us that for any colouring of the positive integers with two
colours, there are arbitrarily long non-constant arithmetic progressions in one colout, i.e.,
for every length £ there are positive integers a and d such that all the numbers a, a +
d,a+2d,...,a+ (£ — 1)d have the same colour. Such arithmetic progressions are
called monochromatic. As a consequence, for any positive integer r there exists a positive
integer n such that each colouring of the numbers 1, 2, ..., n with two colours contains a
monochromatic non-constant arithmetic progression of length . In other words, we cannot
avoid arithmetic progressions of length r in both colours simultaneously.

Let us try to colour the numbers 1, 2, ..., 9 with two colours in such a way that neither
colour contains an arithmetic progression of length 3. Let © and @ denote the two colours
respectively. Without loss of generality we may assume that 1 is coloured ®. We now
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proceed by colouring successively the numbers 2, 3, ... such that neither colour contains
an arithmetic progression of length 3. This leads to the following graph:
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Firstly, this graph shows that it is possible to colour the numbers 1,2, ..., 8 with two
colours such that neither colour contains a non-constant arithmetic progression of length 3.
Secondly, we see that no matter how we colour the numbers 1, 2, ..., 9 with two colours,
there is always a monochromatic non-constant arithmetic progression of length 3.

For given positive integers n and r we can always ask how large a subset of {1, 2, ..., n}
may be such that it does not contain any arithmetic progression of length . To find op-
timal upper bounds for the cardinality (i.e., size) of such a set is still an open problem,
even in the case of r = 3. In order to make the problem more symmetric and to avoid
“boundary effects”, we shall consider the cyclic set (Z/ nZ) = Z,, instead of the linear
set 1,2,...,n, and ask for the maximum cardinality of a subset in Z, which does not
contain any non-constant arithmetic progression of a given length. More precisely, a non-
constant arithmetic progression with respect to Z, of length r is a non-constant sequence
in the cyclic group (Zy,, +) (i.e., modulo n) of the forma, a+d, a+2d, ...,a+(r—1)d,
where a € Z, and 1 < d < n. Notice that we do not require all elements of the sequence
to be different. Seeking for large sets in cyclic groups which do not contain arithmetic
progressions of a given length leads to the following question:

Given a cyclic group Zy and a positive integer r. What is the maximum car-
dinality of a set A € Z, such that A does not contain any non-constant
arithmetic progression with respect to Zy, of length r?

In order to give partial answers to this question we shall use finite affine planes, a result
in finite geometry, hypergraphs (a general form of graphs), a result for the linear case, as
well as some combinatorics.
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First we like to reformulate our question above in terms of hypergraphs, but before we can
do so, we have to introduce some terminology.

A hypergraph H = (V, E) is a finite set V of “vertices” together with a finite set E
of “edges” (sometimes called “hyperedges’), which are arbitrary non-empty subsets of
V (for a systematic study of hypergraphs we refer the reader to [1]). If all edges of a
hypergraph H have the same cardinality r, then the hypergraph H is called r-uniform.
In particular, a graph without loops is a 2-uniform hypergraph. A hypergraph is called
regular if all vertices belong to the same number of edges. A set of vertices of a hypergraph
H which does not (completely) contain any edge of H is called an independent set.
The complement of an independent set is a set of vertices which meets each edge of the
hypergraph. Such a set is called a transversal. For a hypergraph H, the independence
number o (H ) (in the literature also called stability number) is the maximum cardinality
of an independent set of H (see [1]). The transversal number 7 (H ) of a hypergraph H
is the smallest cardinality of a transversal of H. If each vertex of H is contained in at least
one edge of H, then the complement of a maximal independent set (i.e., an independent
set which is not properly contained in another independent set) is a minimal transversal
(i.e., does not properly contain another transversal) and vice versa. In particular, we get
that «(H) 4+ t(H) is equal to the number of vertices of H.

Let us now turn back to our question:

For a positive integer n, we identify the elements of the cyclic group Z, with the set
{0, 1,...,n — 1}. For a positive integer r with r < n, let H,, = (Vj, E;) be the hy-
pergraph defined as follows: V,, := Z, and a finite set ¢ < V, belongs to E, if and
only if there is a non-constant arithmetic progression P in Z, of length r, so that the
elements appearing in P are exactly the elements of e. Since Z, is completely sym-
metric, Hy » is always a regular hypergraph, but, in general, H, , is not r-uniform, e.g.,
Hys = {{O, 1,2}, {1, 2,3}, {2,3,0}, {3,0, 1}, {0, 2}, {1, 3}}. On the other hand, Hp, ; is
always r-uniform for n > r and n prime. To see this, let (a1, az, ..., a,) be an arithmetic
progression with respect to Z,, where n > r and n prime. Let d = ap —a; and assume that
ar = ag forsome 1 <k < ¥ <r.Then (k —£)d =0 mod #n, and since » is prime, this
implies that d = 0 or d = n, and therefore, the sequence (ay, az, . . ., d,) is constantin Z,,.
Since the set of edges of H, , corresponds to the set of all non-constant arithmetic progres-
sions in Z, of length r, it is easy to see that «(Hj ) is equal to the maximum cardinality
of aset A C Z, such that A does not contain any non-constant arithmetic progression of
length r. So, to keep the notation short, let o(n, r) := «(Hy r).

For small numbers #n and r, the value o (n, ) can be easily calculated by computer, us-
ing for example a fast Prolog program. However, for general statements like a(p?, p) =
(p — 1)? (for p prime) we have to seek combinatorial proofs. The following result for
hypergraphs gives us a lower bound on «(#, r) for n > r and n prime.

If n > r and Hy , is r-uniform, e.g., if # is prime, a lower bound for «(#n, r) is given by
the formula
an,r) >

’

n
m(Hy )17
where m(H, ;) denotes the number of edges of H, » (see [1, p. 136]). Let us give some
examples: Forn = 7 and r = 3 we get «(7,3) > 217W ~ 2.54, therefore, «(7,3) > 3,
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and indeed, «(7, 3) = 3. However, for n = 25 and r = 5 we get «(25,5) > 252551/ ~ 8.25
and therefore, (25, 5) > 9, but we will see later that «(25, 5) = 16.

In the next section we will give some other lower bounds for «(n, r) and in the last section
we will compute exact values of «(n, r) for certain numbers n and . As a matter of fact, we
like to mention that «(n, r) is increasing in r, i.e., if r > r’ > 1, then a(n, r) > a(n,r’).
But on the other hand, «(#n,r) is not increasing in #. For example, «(19,3) = 6 but
«(20,3) = 5.

1 Lower Bounds

For positive integers n, a, r let (n, a, r) be the following statement: There is a set A € Z,,
of cardinality ¢ which does not contain any non-constant arithmetic progression of length
r. As mentioned above, «(n, r) denotes the largest integer a with (n, a, r).

A set A € Z, of cardinality a witnesses (1, a, r) if it does not contain any non-constant
arithmetic progression of length r.

Remark If B € Z, witnesses (n, b,r) and «¢(n,r) > a > b, then, in general, it is
not true that there exists a set A 2 B which witnesses (n, a,r); or in terms of hy-
pergraphs, not every maximal independent set of H, , must have cardinality «(H, ).
For example, B = {0, 1, 3,4, 11, 20} witnesses (27,6, 3), «(27,3) = 8§, but there is
no A © B which witnesses (27,7, 3). A witness for (27, 8, 3) is, for example, the set
{0,1,3,4,9,10, 12, 13}.

Theorem 1.1. For all positive integers n, m, a, b and r we have:

(n,a,r) and (m,b,r) implies (nm,ab,r).

Proof. For a sequence Z = (2o,...,2n—1) of O’sand 1's, let xz := {i : z; = 1} € Z,.
Further, let 0, = (0, ...,0). Suppose that x = (x0, ..., Xp—1) and ¥y = (Yo, -+ - Ym—1)
—

n—times

are such that yz and x5 witness (1, a, r) and (m, b, r), respectively, then x 5, where

X if yi=1,

B = (Byys 2159 Byay) Wil By = { 0, otherwise,

witnesses (nm, ab, r). Indeed, if x5 contains an arithmetic progression (ai, ..., d,) of
length r, then, since xz witnesses (n, a, r), the sequence (a; modn, . .., a, modn) is con-
stant. Thus, for every 1 < i < r we have ¢; = k; - n + ¢, where 0 < k; < m and
0 < ¢ < n. By construction, the k;’s belong to x5 and since x5 witnesses (m, b, r), all
the k;’s must be equal, and therefore, the sequence (ay, ..., dr) is constant. Hence, x5
witnesses (nm, ab, r), which completes the proof. O

As an immediate consequence of Theorem 1.1 we get the following:

Corollary 1.2. For all positive integers n, m, and r we have

amm,r) = an,r) -am,r).
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Remark In general, the lower bound for a(nm, r) given in Corollary 1.2 is not sharp. For
example, (4, 4) = 2, but «(16,4) = 6, witnessed by {0, 1,2,4,5, 7}; and «(6, 3) = 2,
but «(36, 3) = 8§, witnessed by {0, 1, 3,4, 9, 10, 12, 13}. Moreover, this lower bound is
not even sharp if #n and m are two distinct prime numbers. For example, o (5, 3) = 2 and
a(7,3) =3, but «(35, 3) = 9, witnessed by {0, 1, 3, 4, 10, 12, 22, 26, 28}.

For any positive integers n and r > 3, another lower bound for «(n, r) is given by the
following:
Proposition 1.3. For any positive integers n and r, where r > 3, we have

Ln/2)
7/2 )/ (nl/2) 7T

an,r) >

where |n/2] is the greatest integer which is less than or equalto n /2, s is a positive integer
such that 2° < r <25t and c(s) > 0 is a constant depending only on s.

Proof. Let m = |n/2], [m] = {0,1,...,m — 1} and let v,(m) be the cardinality of
a largest set A < [m], so that A does not contain any non-constant arithmetic progres-
sion with respect to [m] of length . Now, Robert Rankin proved in [5] that v.(m) >
m1=e@)/tnm) " where s is such that 2° < r < 25+1 and ¢(s) is a constant depending
only on 5. Hence, if A € [m] is such that A does not contain any non-constant arithmetic
progression with respect to [m] of length r, then, since n > 2m, A does not contain any
non-constant arithmetic progression with respect to Z, of length r, which completes the
proof. a

2 Exact Values

The table on the following page shows some exact values of «(n, ) for some small num-
bers n and for r = 3 and r = 5, respectively. The values of «(n, r) as well as the witnesses
we found with the help of the programming language Prolog.

In the following we compute the exact value of o (s, r) for certain positive integers # and
r. Let us begin with the case n = r.

Fact 2.1. If p is prime, then x(p, p) = p — L.

Proof. Obviously, we have o(p, p) < p. On the other hand, since p is prime, the set
{0,1,..., p—2} witnesses (p, p — 1, p). O

Theorem 2.2. If n = m - p, where p is the smallest prime number dividing n, then
a(n,n) =m(p —1) =n(l —1/p).

Proof. Foreach h with O < h < m,lete, := {h+mi : 0 <i < p}. Notice that each e,
is equal to the set h +mZy = {h +mi : i € Zp}, which gives us an arithmetic preserving
bijection between Z, and ey, and thus, each ey is an arithmetic progressions preserving
copy of Zp. Therefore, each ¢ is an infinite non-constant arithmetic progression in Zj,
with common difference d = m. Consider the hypergraph H, , = (Zy, En), where Ej, is
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n r an,r) witness
91 3 4 {0, 1, 3, 4}
10| 3 4 110,1,3,4)
1|3 4 |{0,1,3,4)
2] 3 4 {0, 1,3, 4}
171 3 5 {0, 1,3,7, 8}
18| 3 5 {0,1,3,7, 8}
19| 3 6 | {0,1,3,12, 14,15}
20 3 5 {0, 1, 3,4, 9}
24 | 3 6 {0, 1, 3,4, 9, 10}
251 3 7 {0,1,3,4,9,10, 12}
27| 3 8 {0,1,3,4,9,10, 12, 13}
91 5 5 11{0,1,2,3,5)
10| 5 5 {0,1,2,4,8)
1|5 6 {0,1,2,3,5,6}
12| 5 6 {0,1,2,3,5,10}
171 5 9 {0,1,2,3,5,6,7,8, 10}
18] 5 8 {0,1,2,3,5,6,7,8)
191 5 10 {0,1,2,3,5,6,7,8, 10, 12}
20| 5 10 {0,1,2,4,5,7,8,9,13, 16}
24 | 5 11 {0,1,2,3,5,6,7,8,10, 11,21}
25| 5 16 {0,1,2,3,5,6,7,8, 10, 11, 12, 13, 15, 16, 17, 18}
27 5 15 {0,1,2,3,5,6,7,8, 10, 11, 12, 13, 15, 17, 25}

the set of all arithmetic progressions of length #n in Z,. Since each ¢, has p elements and
p < n, e, € E,. Further, since p is prime, by Fact 2.1 we have «(p, p) = p — 1, which
implies that for any j with O < j < p — 1, e \ {h +mj} ¢ E,. Finally, since there are m
edges ey and the ep’s are pairwise disjoint, we get a(n, n) < m(p — 1).

On the other hand, theset A = {0, 1, ..., m(p—1)—1} witnesses (n, m(p —1), n). Indeed,
assume that (ay, . .., a,) is anon-constant arithmetic progression with common difference
d < n, built with elements of A. Since |A| = m(p — 1), the arithmetic progression
uses at least one element of A twice. Let 1 < kg < n be the least number such that
ay = dx, = a1 + (ko — 1)d. Then (ko — 1)d = £n, which implies that {a; +k% :0<k <
ko} = {a; : 1 <i < ko}. Because of the gap of length m in A, % > m, but since m is the
greatest proper divisor of 7, this is a contradiction.

Therefore we have a(n, n) = m(p — 1), which completes the proof. O
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As an immediate consequence of Theorem 2.2 we get the following:

Corollary 2.3. For any positive integer m we have «(2m, 2m) = m.

Moreover, combining Fact 2.1 and Corollary 1.2 we get the following:

Corollary 2.4. For any prime number p and any non-negative integer k, a(p*, p) >
(p— D~

Moreover, by Proposition 1.3, for large numbers k and for %)rime numbers p > 2 we

have «(pk, p) > (p — DK, To see this, let e(k) = —S— and note that since
(In| B pys/stt

r §/s+1
limg_,  In L%J — o0 we get limg_. (k) — 0. Therefore, by taking the loga-

rithm on both sides of the following expression, one verifies that for k large enough we

have e (@)
k 8
(£)™" o

and since «(p*, p) > (L’;—kj)l_s(m (by Proposition 1.3), it follows that for k large enough
we have a(p¥, p) > (p — 1)¥. Thus, the lower bound for «(p¥, p) given in Corollary 2.4
is, in general, not sharp. On the other hand, this lower bound is sharp for £ = 2. Before we
can prove this result we have to introduce some terminology.

An affine plane of order p, where p is prime, is a set P containing p2 points, together
with p + 1 so-called parallel classes consisting of subsets of P which are called lines,
such that the following hold:

(i) Each parallel class contains p pairwise disjoint lines.
(ii) Each line contains p points of P.
(iii) For any two distinct points of P, there is exactly one line in some parallel class
which contains these two points.

Theorem 2.5. For any prime number p we have a(p?, p) = (p — 1)~

Proof. By Corollary 2.4 we get «(p?, p) = (p — 1)?. Now, Robert Jamison in [3] and
Andries Brouwer and Alexander Schrijver in [2] have shown that a set which intersects
each line of the affine plane of order p, i.e., a transversal, must contain at least 2p — 1
points. Notice, that the complement of a set which intersects each line of an affine plane
cannot contain a line. Thus, in order to prove Theorem 2.5 it is enough to prove that there
exists an affine plane of order p such that each line forms an arithmetic progression with
respect (o Z 2, since we then can conclude that a(pZ p)<p*—Qp—-1=(p—-17>%

So, let us show that there is an affine plane of order p such that every line forms an
arithmetic progression of length p. Let {a; ; : 0 < i, j < p} be the set of points, where
aij =i+ jp(forall 0 < i,j < p). The p? + p lines ¢ are defined as follows: For
O0<j<pand0 <5 <pletls:={a (sit+jymodp:0 =i < plandletl;, = {a;;:
0 <i < p}. By construction, for fixed j, {£; s : 0 < s < p} is the set containing the p + 1
lines going through ag, j, and for any s with 0 < s < p,theset Cy = {£; s : 0 < j < p}
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consists of p parallel lines, i.e., is a parallel class. Now, for every 0 < j < p and every
0 <s = p, £, forms an arithmetic progression with respect to Z,.. Indeed, for 0 < s <
D, £j s forms an arithmetic progression with common difference sp + 1 and £; , forms
an arithmetic progression with common difference p. Further, for any two distinct points,
there is exactly one line (in some parallel class Cy) which contains these two points.

Thus, for every prime number p there exists an affine plane of order p such that each line
forms an arithmetic progression with respect to Z P2 which completes the proof. O

The proof of the Jamison-Brouwer-Schrijver result is algebraic, using polynomial equa-
tions over a finite field, and no combinatorial proof is known (cf. [4, Problem 3.13%]). In
the case of p = 3 or p = 5, we were able to prove the equation «(p?, p) = (p — 1)?
in a purely combinatorial way. However, since the proof is already awkward for p = 5,
it is difficult to see how it could be extended to larger primes. In the following we like to
present a combinatorial proof just for the case of p = 3:

Proposition 2.6. «(9,3) = 4.
Proof. By Corollary 2.4 we get «(9, 3) > 4. So, assume towards a contradiction that there
isaset A C Zy which witnesses (9, 5, 3), or in other words, assume that A C Zg is a

set with five elements which does not contain any non-constant arithmetic progression of
length 3. Let Mo be the 3 x 3-matrix

0 3
My=| 1 4
25

[eoBR Bl o)}

and let Ry, Ry and R3 be the rows of M. Since each row R; is equal to the set i + 3Z3,
each row is an arithmetic progression preserving copy of Zsz, and since «(3,3) = 2 for
each 1 < i < 3, we have |A N Ri| < 2 (where |A N R;| denotes the cardinality of the
set AN R;). Further, since |A| = 5, there must be two rows, say R; and R, such that
|A N Ry = |AN Ryl = 2, which — by checking the 9 possible cases — implies that
AN R3; = @, and hence, A does not witness (9, 5, 3), which completes the proof. O

As we have seen above, for any prime number p > 2 and sufficiently large £k we have
a(pk, p) > (p — D*. On the other hand, we also have seen that «(p?, p) = (p — 1)?
holds for any prime number p. Thus, it still might be the case that the equation «(p?, p) =
(p— 1)3 holds for all prime numbers p. A first step towards this conjecture is the following:

Proposition 2.7. «(27,3) = 8.
Proof . By Corollary 2.4 we get «(27,3) = 8. So, assume towards a contradiction that
there is a set A C Zy7 which witnesses (27, 9, 3). Let My7 be the 3 x 9-matrix

03 6 9 12 15 18 21 24
My=1|14 7 10 13 16 19 22 25
2 5 8 11 14 17 20 23 26

and let Ry, Ry and R3 be the rows of M»y7. Since each row R; is an arithmetic progressions
preserving copy of Zo and «(9,3) = 4, foreach 1 <i < 3, |AN R;| < 4. We partition
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Zy7 into the three pairwise disjoint sets

n = {0,1,2,9, 10,11, 18, 19, 20},
T, = {3,4,5,12,13,14,21,22,23},
Tz = {6,7,8,15,16,17,24,25,26}.

Let j, k,1 € {1, 2, 3} be three distinct numbers. The three sets 71, 75 and 73 are such that
foreach i with 1 <i < 3 we have

RNANT; #¢ and RRNANTc # ¢ implies R, NANT; =4. )

Indeed, let a € R, N T; and b € R; N Tx. Then, there are three different arithmetic
progressions of length 3 through a and b, say {a, b, c1} {a, b, cp} and {a, b, c3}, and by
construction we have {c1, c3, 3} = R; N T;. Since |A| = 9, there must be two rows, say
Ry and R», such that |A N Ryl = 3 and |A N R2| > 3. Hence, by (#), there must be
J1, j2 € {1,2, 3} such that |[R; N AN Tj| =[R2 AN T},| = 2. Consider the hypergraph
Hy; 3 = (Zy, E), where E consists of all instances of arithmetic progressions of length 3
inZy.Forae RiNANT;, andb € RaNANT), let Sap = {c € Ry : {a, b, c} € E}.
Then, |Ss,»| = 3 and it is easy to see that [S; p N 71| = |Sal7 NT| = 1SepNT3| = 1.
Moreover, for {ai, az} = RN AN T;, and {b1, b2} = Ro N AN T;, we have

Sa1,b1 U Sal,bz U Saz,bl U Saz,bz = R3 ’ (*)

which implies that AN Rz = @, and hence, A does not witness (27, 9, 3). Let us illustrate
(%) with the following example: Let j1 = 1, a1 = 0, ap = 9, and j, = 3, and consider the
six arithmetic progressions of length 3 going through a; or ap, Ry N T3, and R3 N T3:

ar RoNT3 R3ﬂT3| a RoNT; R3NT;

0 7 17 9 7 8
0 16 8 9 16 26
0 25 26 9 25 17

Hence, no matter which two numbers b and b, we take from Ry N 73, we always have
(R3 N T3) = (So,p; N T3) U (So,p, N T3) U (So.p, N T3) U (S9,p, N T3),
which, by symmestry, is true for any choice of a1 and ap from Ry N 7. Thus, we have
(R3 N T3) = (Say,6; N T3) U (Say,, N T3) U (Say,, N T3) U (Sayp, N T3).

Considering the six arithmetic progressions of length 3 going through a; or ap, Ry N 17,
and R3 N T, we get

(R3NT2) = (Say,0; N T2) U (Say,00 N T2) U (Say.00 N T2) U (Sap0, N T2) .

Similarly, by considering the six arithmetic progressions of length 3 going through a; or
az, Ry N 11, and R3 N T, we get

(R3 N TI) = (Sal,bl N Tl) U (Sal,bz n Tl) U (Saz,bl N Tl) ) (Saz,bz N Tl) .
Thus, we finally have

=(RsNT)UR3NT)UR3NT3) = Sq;p, U Say,0, U Sy, U Say b, - O
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3 Summary

The function «(#n, r) is monotone in r but not monotone in n. Howeyver, for any positive
integers n, m and r we have a(nm,r) > a(n,r) - «(m, r). In particular, for any positive
integers #, k, and  we have «(n, r) > «(n, r)¥, which implies that for any prime number
P, a(pf, p) = a(p, p)* = (p — ¥, On the one hand, for each prime number p > 2
there are integers k such that «(p¥, p) > (p — 1)¥, but on the other hand, for every prime
number p we have oc(pz, py=(p-— 1)? and a(p, p) = (p—1).In addition, we have seen
that (33, 3) = 23 (Proposition 2.7) but the authors were not able to prove a(5°, 5) = 43,
since the proof of Proposition 2.7 seems not generalisable. This leads to the open question
whether oz(p3, py=(p— 1)3 for all primes p larger than 3 (the authors could not agree
what they expect to be the answer). Further, we have seen that for any positive integer 7,
an,n) = n(l - %), where p is the smallest prime number dividing #n. In particular, for
any positive integer m we have a(2m, 2m) = m.
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