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Eine konkrete Menge der Kardinalität Aleph-1

Gerald Kuba

Gerald Kuba schloß 1985 sein Mathematikstudium an der Universität Wien ab, um
danach als wissenschaftlicher Mitarbeiter an der wirtschaftstheoretischen Fakultät der

Universität Bielefeld tatig zu sein. Er promovierte 1991 an der Universität Wien und ist
seit 2001 Dozent fur Mathematik ebendort, sowie außerordentlicher Professor an der
Universität fur Bodenkultur Wien, wo er seit 1994 beschäftigt ist. Sein wissenschaftliches

Hauptinteresse gilt der analytischen Zahlentheorie, speziell der Gitterpunktlehre.

1 Einleitung

Eine unendliche Menge A heißt abzählbar bzw. von der Kardinalität Ko, wenn A
gleichmächtig mit der Menge N der natürlichen Zahlen ist. (Bekanntlich nennt man zwei Mengen

X und Y gleichmächtig, wenn X bijektiv auf Y abgebildet werden kann.) Einfache
Beispiele von Mengen der Kardinalität Ko sind alle unendlichen Teilmengen der Menge
Q der rationalen Zahlen, insbesondere die Mengen N und Q. Unendliche Mengen, die
nicht abzählbar sind, nennt man überabzählbar. (Da jede unendliche Menge eine

Teilmenge der Kardinalität Ko enthält, ist eine überabzählbare Menge stets „größer" als eine

abzählbare.) Das wichtigste Beispiel einer überabzählbaren Menge ist die Zahlengerade
R. Da die Menge R gleichmächtig mit der Potenzmenge von N ist, ordnet man R die

In der Hierarchie des Unendlichen ist Ko die kleinste Kardinalzahl und wird allen
abzahlbar unendlichen Mengen zugewiesen. Die nachstgroßere Kardinalzahl nach Ko

ist Ki. Der Prototyp einer Menge der Kardinalität Ki ist die sog. zweite Zahlklasse,
die für die Anwendung der ordinalen Mengenlehre in der Topologie und der
Maßtheorie von großer Bedeutung ist. Diese Menge wird mit Hilfe der abzahlbaren
Ordinalzahlen bzw. Wohlordnungstypen gebildet. Grundidee dieser Vorgehensweise ist es,
verschiedene Ordnungen auf einer festen Menge zu bcLrachl.cn. In der hier vorgestellten

Konstruktion einer Menge der Kardinalität Ki wird dagegen eine natürliche
Universalordnung auf verschiedenen Mengen verwendet. Dadurch laßt sich das Ganze in
der allgemein vertrauteren Sprache der Analysis erklären; sowohl das Konzept der
transflniten Ordinalzahl als auch die Begriffe Ordnungsisomorphiebzw. Ordnungstyp

M'inii vciiiik'Jcii werden.
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Kardinalzahl 2^° zu und dokumentiert die Überabzählbarkeit von R durch die Relation
2^° > Ko. (Mit Cantors unsterblichem Beweis dieser Relation im Dezember 1873

schlug die Geburtsstunde der Mengenlehre.)

Eine Menge M heißt von der Kardinalitat Ki, wenn M überabzählbar ist und jede
unendliche Teilmenge von M entweder von der Kardinalitat Ko oder gleichmächtig mit M
selbst ist. Selbstverständlich sind zwei Mengen der Kardinalitat Ki stets gleichmächtig, so-
daß Ki die nächstgrößere Kardinalzahl nach Ko darstellt und somit Ko < Ki < 2^° gilt. Die
(spezielle) Kontinuumshypothese besagt, daß Ki 2^° gilt. Unter dieser Voraussetzung ist
die Zahlengerade R ein anschauliches Beispiel einer Menge der Kardinalitat Ki. Allerdings

ist nach den berühmten Sätzen von Gödel und Cohen die Kontinuumshypothese
im Rahmen einer axiomatischen Standardmengenlehre weder beweisbar noch widerlegbar.

Unabhängig von der Kontinuumshypothese enthält R zwar unendlich viele Teilmengen der

Kardinalitat Ki, aber ohne Kontinuumshypothese läßt sich keine dieser Mengen konkret
realisieren. Tatsächlich erweist es sich als gar nicht so einfach, auch nur irgendeine Menge
der Kardinalitat Ki konkret anzugeben. Um das zu erreichen, wird in der Literatur stets

mit einem starken Instrumentarium aus ordinaler Mengenlehre hantiert. Dieses ist zwar

zum Studium der Mengenlehre unverzichtbar, zur Konstruktion eines „anschaulichen"
Beispiels einer Menge der Kardinalitat Ki kann man aber einen wesentlich einfacheren

Weg beschreiten, der unnötige Ausflüge in die ordinale Mengenlehre vermeidet.

2 Die Konstruktion

Ausgangspunkt unserer Konstruktion ist die (abzählbare) Menge Q+ der nichtnegativen
rationalen Zahlen zusammen mit ihrer natürlichen Ordnung <. Eine Teilmenge A von
Q+ nennen wir wohlgeordnet, wenn jede nichtleere Teilmenge T von A ein kleinstes
Element enthält. (Dieses eindeutig bestimmte Element bezeichnen wir wie üblich mit min 7".)

Speziell ist 0 wohlgeordnet, während natürlich Q+ nicht wohlgeordnet ist. Nun sei W die
Menge aller wohlgeordneten Teilmengen von Q+. Zur Illustration führen wir an: N e W,
sowie N2 eW mit N2 '¦= [l-^ I n e N} U {2 -^ neN]. Nebenbei erwähnt
ist es klar, daß endliche Vereinigungen und beliebige Durchschnitte von (mindestens zwei)
Mengen in W wieder in W liegen. In der Menge W haben wir allerdings noch nicht
unsere Menge M der Kardinalitat Ki gefunden, da wegen T e W für alle T c N die
Menge W gleichmächtig mit R ist, wir aber die Kontinuumshypothese nicht voraussetzen

wollen. Wir erhalten unsere Menge Ai durch eine zweckmäßige Verkleinerung der

Menge VV. Konkret geschieht dies mit Hilfe einer Äquivalenzrelation. Wir nennen zwei
Mengen A, B e VV äquivalent und schreiben A ~ B genau dann, wenn es eine monoton
wachsende Bijektion von A nach B gibt. Es ist klar, daß damit tatsächlich eine
Äquivalenzrelation auf VV definiert wird. Zur Illustration stellen wir fest, daß für eine unendliche
Teilmenge T von N stets T ~ N gilt, daß aber z.B. die oben angeführte Menge N2
offensichtlich nicht mit N äquivalent ist. Abkürzend bezeichnen wir für einen Repräsentanten
A e VV mit [A] die Äquivalenzklasse { B e W | B ~ A}. Unsere Menge M entsteht

nun aus VV, indem man zur Quotientenmenge W/~ übergeht. Wir setzen also schließlich
M := {[A] A e VV} und behaupten:

Satz. Die Menge M besitzt die Kardinalitat Ki.
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3 Vorbereitung des Beweises

Zunächst stellen wir fest, daß Ai eine unendliche Menge darstellt. Denn sie enthält jedenfalls

die Äquivalenzklassen aller endlichen Teilmengen von Q+ und zwei endliche
Teilmengen von Q+ sind offensichtlich genau dann äquivalent, wenn sie gleich viele Elemente
enthalten. Den eigentlichen Beweis des Satzes zerlegen wir in zwei Teile:

Satz 1 Die Menge M ist überabzahlbar.

Satz 2 Jede überabzählbare Teilmenge V von M muß mit M gleichmächtig sein.

Zum Beweis der beiden Sätze ist unterschiedliche Vorarbeit vonnöten. Natürlich ist der

Beweis von Satz 2 aufwendiger als der von Satz 1, den wir gleich im Anschluß an das

folgende Lemma erledigen können.

Lemma 1 Wenn A eW und r e Q+ und a e A, dann ist die {wohlgeordnete) Menge
A n [r, a [ niemals äquivalent mit A.

Beweis. Angenommen, es gibt eine monoton wachsende Bijektion /:A->An[r,a[.
Dann ist die Umkehrfunktion g f~x natürlich ebenfalls monoton wachsend. Ein scharfer

Blick auf die Mengen [x e A | x > f(x)} und [y e A n [r, a[ | y > g (y)} lehrt
einen, daß beide Mengen leer sein müssen, da sie wegen der strengen Monotonie von /
bzw. g kein Minimum besitzen können. Es gilt also x < f(x) für alle x e A und y < g (y)
für alle y e A n [r, a[. Ist nun x e A, so ist also einerseits x < f(x), andererseits ist

f(x) < g(f(x)) x. Somit gilt f(x) x für alle x e A und das steht im Widerspruch
zu f(a) < a. D

4 Beweis von Satz 1

Wir zeigen, daß, wenn immer A eine abzählbar unendliche Teilmenge von Ai ist, dann

garantiert ein Element aus A4 in A fehlt. Es sei also A {[An] n e Nj c M mit
irgendwelchen paarweise nicht äquivalenten Repräsentanten An e W. Nun betrachten wir
für jedes »eN die auf Q+ definierte streng monoton wachsende Funktion /„, die durch

fn(x) n + y^j gegeben ist. Für jedes n e N ist dann die Menge An äquivalent mit dem

Bild fn(An) von An unter /„, das eine Teilmenge des Intervalls [n, n + 1[ darstellt. Wir
können daher bei der Wahl der Repräsentanten An gleich vorweg An c [n, n + 1 [
annehmen, sodaß die Repräsentanten paarweise disjunkt sind und für n < m stets x < y für
alle x e An und y e Am gilt. Wir betrachten nun die Menge A := [j An und behaupten,

daß A eW gilt und A ~ A„ für alle n e N falsch ist, sodaß also [A] e Ai\A gilt.
Daß A eine wohlgeordnete Teilmenge von Q+ darstellt, ist leicht zu verifizieren. Wenn
0 =/= T c A, dann gilt 0 =/= T IJ T n An und somit min T min(7" n Am), wobei

m die kleinste natürliche Zahl mit T n Am ^ 0 ist. Daß A nicht mit einer Menge An

äquivalent sein kann, folgt schließlich aus Lemma 1, da für alle n e N offensichtlich
An Ad [min An, min A„+i [ gilt.
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5 Segmente

Ist A e W, so nennen wir A selbst, sowie jede Teilmenge von A der Form A n [0, r [

{a e A | a < r} mit irgendeinem r e Q+ ein Segment von A. Ein Segment von A ist also

ein Intervall in A, das min A enthält oder leer ist. Zur Abkürzung betrachten wir ferner die
Menge S{A) aller Segmente von A:

S(A) := {An [0,x[ | x eQ+U{oo}} (AeW).

Es ist klar, daß S(A) für jedes AeW eine abzählbare Teilmenge von W ist. Ferner gilt
für Si, S2 e <S(A) stets Si C 52 oder S2 C Si. Schließlich ist S(S) stets eine Teilmenge
von S(A) für S e S(A).

Lemma 2 Zwei verschiedene Segmente von AeW sind niemals äquivalent.

Beweis. Sind S\ und S2 zwei verschiedene Segmente von A, so sei o.B.d.A. Si C S2,

sodaß wir Si A n [0, Xi[ und S2 A n [0, *2[ mit x\, X2 e Q+ U {00} und Xi < X2

schreiben können. Wegen A n [x\, X2[ S2 \ S\ ^ 0 können wir das Minimum a von
S2 \ S\ hernehmen und dann gilt offensichtlich S\ S2 n [0, a[. Daher können S\ und S2

nach Lemma 1 nicht äquivalent sein. D

Nun betrachten wir für A e W die Menge £[A] := {[S] | 5 e S(A)} und stellen gleich
fest, daß £[A] eine Teilmenge von Ai darstellt, die nicht von A sondern nur von der

Äquivalenzklasse [A] abhängt. Darüber hinaus gilt:

Lemma 3 Für A, B eW gilt £[A] £[Z?] genau dann, wenn A ~ ß gz/f.

Beweis. Zunächst zeigen wir, daß wenn A ~ B gilt, dann E[A] c X![ß] gilt, was aus

Symmetriegründen bereits mit £[A] E[ß] gleichbedeutend ist. Es sei also / : A ->¦

ß bijektiv und monoton wachsend und 5 ein Segment von A, also [5] ein Element von

E[A]. Da das Bild f(S) von 5 unter / jedenfalls in W liegt und mit S ähnlich ist, somit

[f(S)] [S] gilt, genügt es zum Nachweis von [S] e £[ß] zu zeigen, daß f(S) ein

Segment von B ist. Das ist schnell erledigt: Im Falle S A haben wir f(S) B und
nichts zu zeigen. Im Falle S =/= A setzen wir a min (A \ S) und bekommen damit ein

a e A dergestalt, daß S A n [0, a[ gilt. Wegen der Monotonie von / ist es klar, daß

dann f(S) B n [0, f(a)[ und somit f(S) e S(B) gelten muß.

Nun nehmen wir umgekehrt an, daß £[A] E[ß] gilt. Speziell gilt [A] e £[ß] und
[B] e £[A], d.h. es ist A mit einem Segment von B und B mit einem Segment von A
ähnlich. Es gibt also x,y e Q+ U {00} sowie monoton wachsende Bijektionen / : A ->¦

B n [0, y[ und g : B -+ A n [0, x[. Falls a < x für alle a e A oder b < y für alle & e ß
gilt, sind wir fertig, da dann via g oder via / die Ähnlichkeit von A und B gewährleistet
ist. Angenommen also, es gibt ein a e A mit a > x und ein b e B mit b > y. Sind a und
b minimal gewählt, dann gilt A n [0, x[ A n [0, a[ und ß n [0, y[ B n [0, &[. Dann
bildet die Funktion g o / aber die Menge A streng monoton wachsend auf die Menge
A n [0, fl[n[0, ^(&)[ A n [0, min{a, g(b)}[ ab. Diese beiden Mengen können nach

Lemma 1 aber unmöglich äquivalent sein D
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6 Beweis von Satz 2

Als unmittelbare Folgerung von Lemma 3 erhalten wir

Korollar Durch [A] i-> £ [A] ist eine injektive Abbildung von M in die Potenzmenge von

M definiert. Insbesondere ist die Menge

M* := {£[A] \ AeW}
von derselben Kardinalität wie die Menge M.

Daher ist Satz 2 erledigt durch einen Beweis von

Satz 2' Jede überabzählbare Teilmenge V von M* muß mit M* gleichmächtig sein.

Dazu müssen wir die Menge M* genauer unter die Lupe nehmen.

Lemma 4 Für alle A, B e M* gilt A dB oder B c A

Beweis. Sind A, B e W, so setzen wir F {(a,b) e AxB | An[0, a[ ~ fln[O, b[}.Im
Lichte von Lemma 3 ist durch F eine Injektion definiert, die auf ihrem Definitionsbereich
dorn F monoton wachsend ist. Ferner stellen wir fest, daß dorn F ein Segment von A
ist. Tatsächlich gilt im Lichte des Beweises von Lemma 3An[0,a[ c dorn F für alle

a e dorn F und daher dorn F A n \J [0, a] A n [0, x[ für ein x e Q+ U {oo}.
aedoraF

Auf analoge Weise sieht man, daß auch das Bild im F von F ein Segment von B ist. Da
es ferner zu zwei äquivalenten Segmenten Si e S(A) \ [A] und S2 e S(B) \ [B] stets

äquivalente Segmente S[ bzw. S'2 von A bzw. B gibt, die echte Obermengen von S\ bzw. ^2

darstellen, ist es ausgeschlossen, daß sowohl dorn F ^ A als auch imF ^ B gilt. Im Falle
dorn F A ist via F A ~ im F e S(B) und damit nach Lemma 3E[A] c X)[ß]
gewährleistet, während im Fall im F B via F~l B ~ dorn F e S(A) und damit

c S [A] gilt. D

Der wesentliche Schritt zum Beweis von Satz 2' liegt nun in

Lemma 5 Für alle A e M* ist die Menge {B e M* \ B c A] abzahlbar.

Beweis. Nach dem vorigen Beweis ist es klar, daß für alle AeW

{B e M* | B c E[A]} {£[5] | S e S(A)}

gilt, sodaß damit also stets eine abzählbare Menge vorliegt. D

Nun haben wir alles beieinander, um Satz 2' zu beweisen. Es sei V eine überabzählbare

Teilmenge von M*. Dann kann es wegen Lemma 5 kein A e M* geben, sodaß B c A
für alle B e V gilt. Mit Lemma 4 gibt es somit zu jedem A e M* ein B e V mit
B D A. Daher können wir M* lj{^e-^*l^c^} schreiben. Die überabzählbare

Menge Ai* ist auf diese Weise als Vereinigung von abzählbaren Mengen dargestellt. Die
Indexmenge T> dieser Vereinigung muß daher von der Kardinalität der Menge Ai* sein. D



Eine konkrete Menge der Kardinalitat Aleph-1 113

7 Eine unzweckmäßige Variation

Wir sind von Q+, einer Menge der Kardinalitat Ko, ausgegangen und haben mit M eine

Menge der Kardinalitat Ki gewonnen. Was passiert, wenn man das gleiche Spiel mit der

Menge R+ der nichtnegativen reellen Zahlen startet, die (so wie R) von der Kardinalitat
2^° ist? Bekommt man dann eine Menge M der Kardinalitat (2^°)+? (So wie Ki K^
die nächstgrößere Kardinalzahl nach Ko ist, soll k+ die nächstgrößere Kardinalzahl nach

k sein. Ist also eine Menge K von der Kardinalitat k, dann ist K+ von der Kardinalitat
k+, wenn K+ gleichmächtig mit einer Obermenge K' von K ist, die nicht gleichmächtig
mit K ist, sodaß aus K c X c K' stets folgt, daß X entweder mit K oder mit K'
gleichmächtig ist.) Es ist auf den ersten Blick vielleicht verwunderlich, aber man bekommt
nicht nur nicht eine Menge Ai der Kardinalitat (2!<0)+: Egal wie groß die Kardinalitat
2^° des Kontinuums tatsächlich ist, die Menge Ai hat, auch wenn man bei R+ startet,
wieder nur die Kardinalitat K i Der Grund dafür liegt darin, daß R+ den wohlgeordneten
Mengen nicht mehr Raum bieten kann als die in R+ dicht liegende Menge Q+. Tatsächlich
ist jede wohlgeordnete Teilmenge A von R+ zu einer Teilmenge B von Q+ äquivalent
und damit insbesondere abzählbar. Man nehme etwa B [p(a) \ a e A] mit p{a) e

Qn]fl, min(A \ [0, a])[ für a e A und a ^ max A, sowie p{a') e QC\]a', oo[ im Falle,
daß a! max A existiert.
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