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Eine konkrete Menge der Kardinalitat Aleph-1

Gerald Kuba

Gerald Kuba schlof 1985 sein Mathematikstudium an der Universitit Wien ab, um
danach als wissenschaftlicher Mitarbeiter an der wirtschaftstheoretischen Fakultat der
Universitit Bielefeld titig zu sein. Er promovierte 1991 an der Universitit Wien und ist
seit 2001 Dozent fiir Mathematik ebendort, sowie auB3erordentlicher Professor an der
Universitat fiir Bodenkultur Wien, wo er seit 1994 beschiftigt ist. Sein wissenschaftli-
ches Hauptinteresse gilt der analytischen Zahlentheorie, speziell der Gitterpunktlehre.

1 Einleitung

Eine unendliche Menge A heit abzihlbar bzw. von der Kardinalitdt g, wenn A gleich-
méchtig mit der Menge N der natiirlichen Zahlen ist. (Bekanntlich nennt man zwei Men-
gen X und Y gleichmdchtig, wenn X bijektiv auf ¥ abgebildet werden kann.) Einfache
Beispiele von Mengen der Kardinalitit 8¢ sind alle unendlichen Teilmengen der Menge
Q der rationalen Zahlen, insbesondere die Mengen N und Q. Unendliche Mengen, die
nicht abzidhlbar sind, nennt man #iberabzdhlbar. (Da jede unendliche Menge eine Teil-
menge der Kardinalitédt Ry enthélt, ist eine tiberabzihlbare Menge stets ,,grofer als eine
abzihlbare.) Das wichtigste Beispiel einer iiberabzihlbaren Menge ist die Zahlengerade
R. Da die Menge R gleichmiichtig mit der Potenzmenge von N ist, ordnet man R die




Eine konkrete Menge der Kardinalitit Aleph-1 109

Kardinalzahl 2% zu und dokumentiert die Uberabzihlbarkeit von R durch die Relation
2% > Rg. (Mit CANTORS unsterblichem Beweis dieser Relation im Dezember 1873
schlug die Geburtsstunde der Mengenlehre.)

Eine Menge M heiit von der Kardinalitit 81, wenn M iiberabzihlbar ist und jede un-
endliche Teilmenge von M entweder von der Kardinalitdt g oder gleichméchtig mit M
selbst ist. Selbstverstidndlich sind zwei Mengen der Kardinalitit Ry stets gleichméchtig, so-
daB X die nichstgroBere Kardinalzahl nach o darstellt und somit Ro < 81 <280 gilt. Die
(spezielle) Kontinuumshypothese besagt, daB 81 =2%0 gilt. Unter dieser Voraussetzung ist
die Zahlengerade R ein anschauliches Beispiel einer Menge der Kardinalitéit 8. Aller-
dings ist nach den beriihmten Sdtzen von GODEL und COHEN die Kontinuumshypothese
im Rahmen einer axiomatischen Standardmengenlehre weder beweisbar noch widerlegbar.

Unabhingig von der Kontinuumshypothese enthdlt R zwar unendlich viele Teilmengen der
Kardinalitit Ry, aber ohne Kontinuumshypothese 146t sich keine dieser Mengen konkret
realisieren. Tatsdchlich erweist es sich als gar nicht so einfach, auch nur irgendeine Menge
der Kardinalitdt 8¢ konkret anzugeben. Um das zu erreichen, wird in der Literatur stets
mit einem starken Instrumentarium aus ordinaler Mengenlehre hantiert. Dieses ist zwar
zum Studium der Mengenlehre unverzichtbar, zur Konstruktion eines ,,anschaulichen
Beispiels einer Menge der Kardinalitdt 87 kann man aber einen wesentlich einfacheren
Weg beschreiten, der unnotige Ausfliige in die ordinale Mengenlehre vermeidet.

2 Die Konstruktion

Ausgangspunkt unserer Konstruktion ist die (abzéhlbare) Menge Q4 der nichtnegativen
rationalen Zahlen zusammen mit ihrer natiirlichen Ordnung <. Fine Teilmenge A von
Q. nennen wir wohlgeordnet, wenn jede nichtleere Teilmenge 7" von A ein kleinstes Fle-
ment enthilt. (Dieses eindeutig bestimmte Element bezeichnen wir wie iiblich mit min 7'.)
Speziell ist # wohlgeordnet, wihrend natiirlich Q4 nicht wohlgeordnet ist. Nun sei W die
Menge aller wohlgeordneten Teilmengen von Q4. Zur llustration fithren wir an: N e W,
sowie Ny € W mit Ny := {l—ﬁll | ne N}U{Z—n%1 | n € N}.Nebenbei erwahnt
ist es klar, daf endliche Vereinigungen und beliebige Durchschnitte von (mindestens zwei)
Mengen in W wieder in W liegen. In der Menge W haben wir allerdings noch nicht un-
sere Menge M der Kardinalitit ®; gefunden, da wegen T € W fiiralle T C N die
Menge W gleichmachtig mit R ist, wir aber die Kontinuumshypothese nicht vorausset-
zen wollen. Wir erhalten unsere Menge M durch eine zweckmiBige Verkleinerung der
Menge W. Konkret geschieht dies mit Hilfe einer Aquivalenzrelation. Wir nennen zwei
Mengen A, B € W dquivalent und schreiben A ~ B genau dann, wenn es eine monoton
wachsende Bijektion von A nach B gibt. Es ist klar, daf damit tatsichlich eine Aquiva-
lenzrelation auf W definiert wird. Zur Illustration stellen wir fest, da fiir eine unendliche
Teilmenge 7 von N stets 7'~ N gilt, daB3 aber z.B. die oben angefiihrte Menge N, offen-
sichtlich nicht mit N #quivalent ist. Abkiirzend bezeichnen wir fiir einen Repréisentanten
A € W mit [A] die Aquivalenzklasse {B € W | B ~ A}. Unsere Menge M entsteht
nun aus W, indem man zur Quotientenmenge W/~ iibergeht. Wir setzen also schlieBlich
M = {[A] | A € W} und behaupten:

Satz. Die Menge M besitzt die Kardinalitdit Ry.
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3 Vorbereitung des Beweises

Zunichst stellen wir fest, da M eine unendliche Menge darstellt. Denn sie enthilt jeden-
falls die Aquivalenzklassen aller endlichen Teilmengen von Q4 und zwei endliche Teil-
mengen von Q4 sind offensichtlich genau dann dquivalent, wenn sie gleich viele Elemente
enthalten. Den eigentlichen Beweis des Satzes zerlegen wir in zwei Teile:

Satz 1 Die Menge M ist iiberabzdhlbar.
Satz 2 Jede iiberabzihibare Teilmenge D von M muf3 mit M gleichmdichtig sein.

Zum Beweis der beiden Sitze ist unterschiedliche Vorarbeit vonnoten. Natiirlich ist der
Beweis von Satz 2 aufwendiger als der von Satz 1, den wir gleich im Anschlufl an das
folgende Lemma erledigen konnen.

Lemmal Wenn A €W und r € Qp und a € A, dann ist die (wohlgeordnete) Menge
AN [r,al niemals dquivalent mit A .

Beweis. Angenommen, es gibt eine monoton wachsende Bijektion f: A — AN[r,al.
Dann ist die Umkehrfunktion g = f ! natiirlich ebenfalls monoton wachsend. Ein schar-
fer Blick auf die Mengen {x € A | x > f(x)}und {y € AN [r,al| y > g()} lehrt
einen, dafl beide Mengen leer sein miissen, da sie wegen der strengen Monotonie von f
bzw. g kein Minimum besitzen konnen. Es giltalso x < f(x) fiirallex € Aundy < g(v)
fiiralley € AN[r,al.Ist nun x € A, so ist also einerseits x < f(x), andererseits ist
J(x) < g(f(x)) = x.Somit gilt f(x) = x fiir alle x € A und das steht im Widerspruch
zu f(a) < a. O

4 Beweis von Satz 1

Wir zeigen, daB, wenn immer 4 eine abzahlbar unendliche Teilmenge von M ist, dann
garantiert ein Element aus M in A fehlt. Es sei also A = {[A,] | n € N} € M mit
irgendwelchen paarweise nicht dquivalenten Représentanten A, € W. Nun betrachten wir
fiir jedes n € N die auf Q4 definierte streng monoton wachsende Funktion fj, die durch
hx)y=n+ l_f—x gegeben ist. Fiir jedes n € N ist dann die Menge A, dquivalent mit dem
Bild f,(A,) von A, unter f,, das eine Teilmenge des Intervalls [n, n + 1[ darstellt. Wir
konnen daher bei der Wahl der Reprédsentanten A, gleich vorweg A, C [n,n + 1[ an-
nehmen, sodall die Reprasentanten paarweise disjunkt sind und fiir n < m stets x < y fiir
allex € A, und y € A,, gilt. Wir betrachten nun die Menge A := |J A, und behaupten,

neN
daB A € W giltund A ~ A, fiir alle n € N falsch ist, sodaB also [A] € M \ A gilt.
DaB A eine wohlgeordnete Teilmenge von Q4 darstellt, ist leicht zu verifizieren. Wenn
@ #T C A, dann gilt @ # T = |J T N A, und somit min 7 = min(7T N A,,), wobei

neN
m die kleinste natiirliche Zahl mit T N A, # @ ist. Da A nicht mit einer Menge A,
dquivalent sein kann, folgt schlieBlich aus Lemma 1, da fiir alle n € N offensichtlich
A, = AN [min A,, min A, ([ gilt.
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5 Segmente

Ist A € W, so nennen wir A selbst, sowie jede Teilmenge von A der Form A N [0, r[=
{a € A | a < r} mitirgendeinem r € Q4 ein Segment von A. Ein Segment von A ist also
ein Intervall in A, das min A enthilt oder leer ist. Zur Abkiirzung betrachten wir ferner die
Menge S(A) aller Segmente von A:

S(A) = {AN[0, x[ | x € Q4 U {oc}} (A eW).

Es ist klar, daB S(A) fiir jedes A € W eine abzihlbare Teilmenge von WV ist. Ferner gilt
fiir S1, Sp € S(A) stets S1 € Sy oder S € S1. SchlieBlich ist S(S) stets eine Teilmenge
von S(A) fiir § € S(A).

Lemma 2 Zwei verschiedene Segmente von A € W sind niemals dquivalent.

Beweis. Sind S1 und S, zwei verschiedene Segmente von A, so sei 0.B.d.A. §1 C S,
sodaB wir St = AN [0, x1[ und S, = AN [0, x2[ mit x1,x2 € Q4+ U {oo} und x1 < xp
schreiben konnen. Wegen A N [x1, x2[= S \ 1 # @ konnen wir das Minimum a von
S \ §1 hernehmen und dann gilt offensichtlich §; = S, N [0, @[ . Daher konnen S und $»
nach Lemma 1 nicht dquivalent sein. [

Nun betrachten wir fiir A € W die Menge X[A] := {[S] | § € S(A)} und stellen gleich
f¢st, daB X[A] eine Teilmenge von M darstellt, die nicht von A sondern nur von der
Aquivalenzklasse [A] abhingt. Dariiber hinaus gilt:

Lemma 3 Fiir A, B € W gilt ¥[A] = X[B] genau dann, wenn A ~ B gilt.

Beweis. Zunichst zeigen wir, daB wenn A ~ B gilt, dann 2[A] C X[B] gilt, was aus
Symmetriegriinden bereits mit 2[A] = X[B] gleichbedeutend ist. Es sei also f : A —
B bijektiv und monoton wachsend und S ein Segment von A, also [S] ein Element von
2[A]. Da das Bild f(S) von S unter f jedenfalls in W liegt und mit S dhnlich ist, somit
[f£(S)] = [5] gilt, geniigt es zum Nachweis von [S] € X[B] zu zeigen, dal3 f(S) ein
Segment von B ist. Das ist schnell erledigt: Im Falle S = A haben wir f(S) = B und
nichts zu zeigen. Im Falle § # A setzen wir ¢ = min(A \ S) und bekommen damit ein
a € A dergestalt,daB S = AN [0,a[ gilt. Wegen der Monotonie von f ist es klar, da
dann f(S) = B N[0, f(a)[ und somit f(S) € S(B) gelten mus.

Nun nehmen wir umgekehrt an, da X[A] = X[B] gilt. Speziell gilt [A] € X[B] und
[B] € Z[A], d.h. es ist A mit einem Segment von B und B mit einem Segment von A
dhnlich. Es gibt also x, y € Q4+ U {co} sowie monoton wachsende Bijektionen f : A —
BN[O,y[undg: B — AN[0,x[.Fallsa < x firallea € Aoderb < y fiiralleh € B
gilt, sind wir fertig, da dann via g oder via f die Ahnlichkeit von A und B gewihrleistet
ist. Angenommen also, es gibtein g € A mita > x und ein b € B mit b > y. Sind ¢ und
b minimal gewihlt, dann gilt AN [0, x[= AN [0,a[ und BN [0, y[= B N[O, »[.Dann
bildet die Funktion g o f aber die Menge A streng monoton wachsend auf die Menge
A N[0,alN[0, gb)[ = AN [0, min{a, g(b)}[ ab. Diese beiden Mengen konnen nach
Lemma 1 aber unmoglich dquivalent sein! O
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6 Beweis von Satz 2

Als unmittelbare Folgerung von Lemma 3 erhalten wir

Korollar Durch [A] — X[A] ist eine injektive Abbildung von M in die Potenzmenge von
M definiert. Insbesondere ist die Menge

M* = {Z[A] | Ae W)
von derselben Kardinalitdt wie die Menge M.
Dabher ist Satz 2 erledigt durch einen Beweis von
Satz 2’ Jede iiberabzihlbare Teilmenge D von M* muf3 mit M* gleichmdchtig sein.

Dazu miissen wir die Menge M* genauer unter die Lupe nehmen.
Lemma 4 Fiir alle A, B € M* gilt A C Boder B C A

Beweis. Sind A, B € W, sosetzen wir F = {(a, D) € Ax B | AN[0,a[ ~ BNI[O, b[}.Im
Lichte von Lemma 3 ist durch F eine Injektion definiert, die auf ihrem Definitionsbereich
dom F monoton wachsend ist. Ferner stellen wir fest, daB dom F ein Segment von A
ist. Tatséchlich gilt im Lichte des Beweises von Lemma 3 A N [0, a[ C dom F fiir alle
a € dom F und daher dom ¥ = An |J [0,a]l = AN [0, x[ fiir ein x € Q4 U {o0}.

aedom F
Auf analoge Weise sieht man, daB auch das Bild im F von F ein Segment von B ist. Da

es ferner zu zwei dquivalenten Segmenten S; € S(A) \ {A} und $2 € S(B) \ {B] stets
dquivalente Segmente Sj bzw. S} von A bzw. B gibt, die echte Obermengen von Sy bzw. S»
darstellen, ist es ausgeschlossen, da3 sowohl dom F # A als auchim F # B gilt. Im Falle
domF = Aistvia F A ~ imF € S(B) und damit nach Lemma 3 X[A] C X[B]
gewihrleistet, wihrend im Fall im ' = B via F -1 B ~ domF e S(A) und damit
2[B] C X[A] gilt. |

Der wesentliche Schritt zum Beweis von Satz 2’ liegt nun in
Lemma 5 Fiir alle A € M* ist die Menge {B € M* | B C A} abzihlbar,

Beweis. Nach dem vorigen Beweis ist es klar, daf fiir alle A € W
{Be M* | BcCE[Al} = {Z[S] | S € S(A)}
gilt, sodaB damit also stets eine abzihlbare Menge vorliegt. |

Nun haben wir alles beieinander, um Satz 2’ zu beweisen. Es sei D eine iiberabzihlbare
Teilmenge von M*. Dann kann es wegen Lemma 5 kein .4 € M* geben, sodal B C A
fiir alle B € D gilt. Mit Lemma 4 gibt es somit zu jedem A € M* ein B € D mit

B > A. Daher konnen wir M* = [ J {4 € M* | A C B} schreiben. Die tiberabzihlbare
BeD
Menge M* ist auf diese Weise als Vereinigung von abzihlbaren Mengen dargestellt. Die

Indexmenge D dieser Vereinigung muf daher von der Kardinalitit der Menge M* sein. [
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7 Eine unzweckmaébBige Variation

Wir sind von Q4 , einer Menge der Kardinalitit 8o, ausgegangen und haben mit M eine
Menge der Kardinalitdt R gewonnen. Was passiert, wenn man das gleiche Spiel mit der
Menge R4 der nichtnegativen reellen Zahlen startet, die (so wie R) von der Kardinalitét
2% j5? Bekommt man dann eine Menge M der Kardinalitit 2%)*? (So wie 81 = X7
die niichstgroBere Kardinalzahl nach Ry ist, soll « die nichstgréRere Kardinalzahl nach
i sein. Ist also eine Menge K von der Kardinalitit «, dann ist K * von der Kardinalitit
«t, wenn K gleichmichtig mit einer Obermenge K’ von K ist, die nicht gleichméchtig
mit K ist, sodaB aus K C X C K’ stets folgt, daB X entweder mit K oder mit K’
gleichmichtig ist.) Es ist auf den ersten Blick vielleicht verwunderlich, aber man bekommt
nicht nur nicht eine Menge M der Kardinalitiit 2%yt Egal wie grofl die Kardinalitit
280 des Kontinuums tatsdchlich ist, die Menge M hat, auch wenn man bei Ry startet,
wieder nur die Kardinalitit 81! Der Grund dafiir liegt darin, das R4+ den wohlgeordneten
Mengen nicht mehr Raum bieten kann als die in R dicht liegende Menge Q.. Tatséchlich
ist jede wohlgeordnete Teilmenge A von Ry zu einer Teilmenge B von Q4 dquivalent
und damit insbesondere abzihlbar. Man nehme etwa B = {p(a) | a € A} mit p(a) €
QNJa, min(A \ [0, a])[ fiira € A und a # max A, sowie p(a") € QNla’, co[ im Falle,
daB a’ = max A existiert.
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