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Betrachtungen zum Satz von Bernstein

Markus Meiringer

Markus Meiringer, geboren 1969, studierte in Regensburg Mathematik und Physik.
Nach dem Diplom in Mathematik, dem Staatsexamen in Mathematik und Physik
und dem Studium der katholischen Religionslehre als Erweiterungsfach unterrichtet
er seit 1999 am St.-Gotthard-Gymnasium der Benediktiner in Niederalteich.

1 Einleitung

Schon Georg Cantor wollte zeigen, dass zwei Mengen, von denen jede einer Teilmenge
der anderen gleichméchtig ist, auch untereinander gleichméchtig sind. Oder anders for-
muliert; falls [M| < [N| und |[M]| > |N|, gilt sogar |M| = |N]| fiir beliebige Mengen M
und N. Sein Schiiler Felix Bernstein hat als 19jdhriger im Jahre 1897 in Cantors Seminar
in Halle einen ersten Beweis dieses Aquivalenzsatzes vorgetragen.

Der Beweis von Bernstein wurde 1898 leicht vereinfacht von Emile Borel im An-
hang zu seiner ,,Vorlesung zur Funktionentheorie* vertffentlicht (,,Lecons sur la théo-
rie des fonctions®, Paris). Bernstein hingegen publizierte seinen Beweis erst 1905 in
dem Artikel ,,Untersuchungen aus der Mengenlehre” in den Mathematischen Annalen
61. Hierin erwihnt Bernstein auch, dass Cantor die Vermutung des Aquivalenzsatzes
im Band 91 der ,,Zeitschrift fiir Philosophie* geduBert hatte und dass ein weiterer Be-
weis von Ernst Schroder im Artikel ,,Uber G. Cantorsche Sitze® im Jahresbericht der
Deutschen Mathematiker-Vereinigung, Band 5 (1896), zu finden ist. Dieser Beweis von
Schroder erwies sich jedoch als fehlerhaft, was Korselt erst 1911 entdeckte (,,Uber einen
Beweis des Aquivalenzsatzes“, Mathematische Annalen 70).

Auch Richard Dedekind beschiiftigte sich mit dem Aquivalenzsatz und fand bereits 1887
einen Beweis, den er aber nie veroffentlichte. Ein Manuskript wurde zwischen Dede-
kinds Papieren gefunden (Dedekind 1932, Band III, S. 447-448). Erst 1906 wurde von
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Ernst Zermelo der Beweis wiederentdeckt (,,Untersuchungen iiber die Grundlagen der
Mengenlehre I“, Mathematische Annalen 65).

Da viele Mathematiker am Beweis des von Cantor aufgestellten Satzes beteiligt waren,
war die Namensfindung nicht einfach. Dedekind hat also als erster den Aquivalenz-
satz bewiesen. Deshalb scheint es angemessen, den Satz nach ,,.Dedekind-Bernstein® zu
benennen. Jedoch hat sich im angelsichsischen und deutschen Raum die Bezeichnung
,»Theorem von Schroder-Bernstein® eingebiirgert, wihrend in Frankreich und Italien das
Resultat als ,,Theorem von Cantor-Bernstein® bekannt ist. Jedenfalls wird Bernstein im-
mer mit dem Theorem in Verbindung gebracht (vgl. hierzu auch [1, S. 15ff.] und [3,
S. 99)).

Trotz seiner Bedeutung fiir die Mengenlehre findet das Theorem von Schroder-Bemstein
im Unterricht der Gymnasien keine Anwendung, was sicherlich darauf zuriickzufithren
ist, dass von Michtigkeiten von unendlichen Mengen nur selten gesprochen wird. Der
Satz von Bernstein (so soll er hier kurz genannt werden — auch wenn dabei wichtige be-
teiligte Mathematiker unter den Tisch fallen) verwendet in einer anderen Formulierung,
auf die wir uns hier beziehen, nicht die Méchtigkeiten, sondern er ist mit den Begriffen
Hinjektiv® bzw. ,bijektiv® formuliert. Jedoch werden diese im Unterricht ebenfalls selten
erkliart. Hiufig begniigt man sich damit, unter der Injektivitit einer Funktion deren ,,Um-
kehrbarkeit™ zu verstehen. Natiirlich kann man den Zielbereich immer geeignet wihlen
(so dass die Funktion dann schon bijektiv ist), aber man verschweigt letztlich doch den
genauen Abbildungsbegriff.

Eine Moglichkeit, die Begriffe injektiv, surjektiv oder bijektiv genauer zu besprechen,
ist auch durch die Behandlung des Satzes von Bernstein in einer 11. Jahrgangsstufe
gegeben. Dabei kann die Bildung des Wertebereichs einer Funktion getibt werden und
Begriffe wie Abbildung oder Hintereinanderausfiihren von Funktionen (Verkettung) kon-
nen wiederholt und vertieft werden. Nicht zuletzt werden den Schiilern Fragestellungen
der Mengenlehre niher gebracht. Die Gleichmichtigkeit von unendlichen Mengen (wie
etwa |]0; 1[| = |R|) verwundert Schiiler immer wieder. So konnen vom Satz von Bern-
stein ausgehend viele Aspekte der Mengenlehre mit den Schiilern besprochen werden.
Die nachfolgenden Uberlegungen mégen hierzu zur Anregung dienen.

Auch aus diesem Grund wird in der folgenden Darstellung stets darauf geachtet, nicht nur
die Existenz von Abbildungen zu betrachten. Es geht besonders darum ,,WIE® abgebildet
wird und es soll mit den Abbildungen ,,gespielt werden.

2 Der Satz von Bernstein

Im Folgenden soll ein Beweis des Satzes von Bernstein (nach [2]) angegeben werden.
Dabei wird besonders auf die Konstruktion der im Satz geforderten Abbildung einge-
gangen. Im nichsten Abschnitt wird an einem konkreten Beispiel eine solche Abbildung
bestimmt.

Satz 2.1 (Bernstein) Es seien X, Y Mengen und f, g Abbildungen mit f : X — Y und
Y — X injektiv. Dann gibt es eine bijektive Abbildung von X nachY.
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Beweis. Fiir jede Menge E C X ist die Abbildung f|g : E — f(E) bijektiv. Auf der
Menge Y'\ f(E) ergibt sich nun die Abbildung g|y\ sy : Y\ f(E) — g(Y'\ f(E)), welche
wiederum bijektiv ist. Es wiire nun das Ziel erreicht, wenn X \ (¢(Y'\ f(E))) gerade die
Menge E wire.

Zum Beweis des Satzes betrachtet man die folgende Abbildung ¢ auf der Potenzmenge
(Menge aller Teilmengen) P(X) von X:

e 1 PX) — P(X),
E  — X\g(Y\f(E)).

Man mdochte nun eine Menge B finden, fiir die
¢(B) =B

¢gilt, dann ist die Behauptung fast gezeigt.
Da B = ¢(B) =X\ g(Y\ f(B)), ist ja wie gewiinscht

X\B=g(Y\f(B)).
Somit kann man (wie oben angedeutet) eine bijektive Funktion /1 wie folgt angeben:

B X — Y,

{f(x) falls x € B,
o g (x) falls x & B.

Dabei ist g~ ein Retrakt zur injektiven Abbildung g, d.h. fir x € X \ B gibt es ein
ye€ Y\ f(B) mit g(y) = x. Dieses y wird mit g~ (x) bezeichnet (siche Fig. 1). O

f

g
Fig. 1

Eine Menge B, die in obigem Zusammenhang B = (B) erfiillt, wollen wir eine Bern-
steinmenge der Funktionen f und g nennen (Reihenfolge der Funktionen ist wichtig!).

Fiir die Existenz einer Bernsteinmenge B zeigt man zunichst:
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Lemma 2.2 Falls E C F, so ist auch o(E) C o(F).

Beweis. Aus E C F kann man f(E) C f(F) schliefen, woraus Y \ f(E) D Y \ f(F)
folgt. Wendet man nun g an, ergibt sich g(Y \ f(E)) D g(Y'\ f(F)) , was sodann zu
X\g(Y\ f(E)) c X\ g(Y\ f(F)) fiihrt. Dies zeigt w(E) C ¢(F). O

Lemma 2.3 Mit Hilfe der nicht-leeren Menge € = {E € P(X) | E C p(E)} setzt man

B:=|JE.

Ec%
Dann ist B eine Bernsteinmenge.

Beweis. Da nun als Folge von Lemma 2.2 fiir jedes E € € die Inklusion E C ¢(E) C
(B) besteht, ergibt sich die Inklusion B C ¢(B). Auf der anderen Seite gilt ¢(B) C
»(p(B)) und somit ist ¢(B) € €, also ¢(B) C B. Dies zeigt, dass B eine Bernsteinmenge
ist. Mit diesem B erhilt man die oben angegebene Bijektion. (I

Es gibt die verschiedensten Beweise dieses Satzes (vgl. v.a. [3, S. 99], [1, S. 15] oder [4,
S. 35]). Man unterscheidet hierbei im Wesentlichen zwei Arten. Einerseits gewinnt man
die Bernsteinmenge, wie im Beweis gezeigt, durch Vereinigung bestimmter Mengen. Da
bei dieser Methode, die auf Bernstein zuriickgeht, die Elemente der Menge € vereinigt
werden, ndhert man sich anschaulich gesprochen mit immer groBer werdenden Mengen
oder ,,von unten her* durch immer weitere Hinzunahme von Elementen von € einer
Bernsteinmenge an. Entsprechend dieser Bildungsmethode wird im dritten Abschnitt
eine Bernsteinmenge explizit konstruiert.

Andererseits kann ein Fixpunkt der Abbildung ¢ (nichts anderes ist ja eine Bernstein-
menge) auch als Durchschnitt gewonnen werden (vgl. das oben erwihnte Manuskript
von Dedekind). Man kann sich dabei das Vorgehen als eine Anndherung an die Bern-
steinmenge mit immer kleiner werdenden Mengen oder ,,von oben her* vorstellen.

Nun aber noch einige einfache Bemerkungen zu den Bernsteinmengen.

Bemerkung 2.4 Eine Bernsteinmenge zu zwei Funktionen f und g ist nicht notwendig
eindeutig bestimmit.

Es gilt aber:

Lemma 2.5 Die Bernsteinmenge B := | Jp .4 E aus Lemma 2.3 ist maximal (beziiglich
der Inklusion) und folglich eindeutig.

Beweis. Wihlt man fiir f und g jeweils die Identitit idy, gilt fiir jedes B C X die
Gleichheit ¢(B) = X\ (X \ B) = B, also ist jede Teilmenge von X eine Bernsteinmenge
und die Bemerkung ist gezeigt.

Eine beliebige Bernsteinmenge B’ ist nach Definition in der Menge ‘€ enthalten und
somit ist B’ C | Jp.4 E = B. Also ist auch jede maximale Bernsteinmenge B in der
im Beweis konstruierten Bernsteinmenge B enthalten. Damit muss B = B, sein, sonst
wire Bax nicht maximal. Dies zeigt nun das Lemma. O
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Es lasst sich auf entsprechende Weise (durch Bestimmung einer Bernsteinmenge B von
g und f) auch eine Abbildung / von Y nach X finden:

Y — X,

. gly) fallsye B,
/ f~(y) fallsy¢ B.

Lemma 2.6 Es gilt:
i) Sind die beiden Mengen B und B maximal, so gilt 1 o h(x) = x fiir x € X\ B und
hoh(y) =y fiirye Y \ B.
i) Auch wenn die Mengen B und B maximal sind, muss nicht hoh = idyx bzw.
hoh =idy gelten.
Beweis. 1) Da B = X \ g(Y \ f(B)), folgt Y\ f(B) =Y \ f(X\g(Y \ f(B))). Nun ist
Y\ f(B) C B, weil B maximal gewihlt wurde.
Ist nun x & B, folgt o h(x) =hog (x). Dag (x) € Y\ f(B) C B, gilt hog (x) =
gog (x) =x.
Analog folgt X \ g(B) C B und damit hoh(y) = y fiir y € Y \ B.
ii) Betrachtet man die beiden Abbildungen
f : R — R g : R — R,

und
X — 2% y — 3 y

erhilt man p(R) =R\ gR\ f(R)) =R\ gR\R) =R\ g(@) =R\ 0 =R.
Damit ist B = R (und analog B = R) maximale Bernsteinmenge.
Es ergeben sich die Abbildungen / und T zu:

B R — R,
2x falls x € R,
X —
{% falls x € 0,
und R
h R — R,
3y falls y € R,
y o= {g falls y € 0.
Esistnun fioh(1) =h(3) =6 #1und hoh(1) = h(2) =6 # 1. O

Die geforderte Menge B muss in einem konkreten Beispiel nicht auf die im Beweis
benutzte (abstrakte) Weise bestimmt werden. Man kann sich z.B. fiir zwei injektive
Funktionen ganz unbelastet und frischen Mutes auf die Suche nach einer geeigneten
Menge B machen.
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3 Beispiele fiir die Verwendung von Bernsteinmengen

Es erscheint auf den ersten Blick nicht sehr lohnend zu sein, sich auf die Suche nach
bijektiven Abbildungen von einem Intervall (offen oder abgeschlossen) der reellen Zahlen
in ein anderes Intervall zu begeben, da bei nach oben und unten beschrinkten Intervallen
das Gewiinschte schon durch affine Funktionen méglich ist:

fv mbl — Je;d[,
d—c bc —ad

X — b—a'er b—a

Dabei gilt: a,b,c,d e Runda < b, ¢ <d.

Aufierdem kann man mit der Tangens- und der Arcustangensfunktion ebenfalls auf stetige
Art und Weise Funktionen in unbeschrénkte Intervalle und aus ihnen heraus angeben:

t:]—

Diese stetigen Funktionen sind sédmtlich bijektiv und haben Umkehrfunktionen, die eben-
falls stetig sind. Man kann durch Komposition dieser Funktionen eine bijektive und ste-
tige Funktion mit stetiger Umkehrung von |a; b nach |c;d| konstruieren, wobei sogar
a,b,c,d € RU{—o0; 00} gewihlt werden kann.

s

[ — 1-ooel,

= Ny
(ST}

— tan(x).

In vielen Anwendungen geniigt die Existenz einer bijektiven Abbildung, wie spiter zu
sehen sein wird. Der Beweis des Theorems von Bernstein liefert aber mehr als nur die
Existenz einer Bijektion. Man kann eine Bernsteinmenge B suchen, die die Angabe einer
Bijektion mit Hilfe der gegebenen Funktionen ermoglicht. Dies sei an einem expliziten
Beispiel gezeigt. Die Hauptarbeit besteht darin, eine Bernsteinmenge B zu bestimmen.

Die Konstruktion einer Bernsteinmenge durch die Vereinigung aller Elemente der Menge
€ ist nicht sofort einzusehen. Aber die Idee einer Anndherung an die Bernsteinmenge
,von unten her* fiihrt auf den Gedanken, zu einer Menge E, die E C ¢(E) erfiillt,
solange Elemente hinzuzufiigen, bis E = ¢(E) gilt. Dazu folgt nun

Eine explizite Konstruktion: Gegeben seien die injektiven Funktionen

foo 0ol — 011, g + 01— 0500,
1 . 1
X I y 3

Es sollen mit Hilfe von Bernsteinmengen bijektive Abbildungen i von X =]0; co[ nach
Y =]0; 1] und / in der anderen Richtung konstruiert werden.
Man bendtigt zunéchst eine ,,Startmenge” mit E C ¢(E); dabei bezeichnet ¢ wieder die

Abbildung
¢ 1 PX) — P(X),

E  — XA\Q(Y\f(E)).
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Da g(Y) 2 g(Y'\ f(B)), gilt
E =X \g(Y) C X\g(Y \ f(E)) = ¢(E).

Im vorliegenden Fall ist g(Y') =]1; oo und somit E =]0; co[\]1; 0o[=]0; 1]. Also ist E
eine geeignete ,,Startmenge*, da

o515 ) <o s

= X\ (]1;2]U]3; 00]) =]0; 1]U]2; 3] .

Also muss auch |0; 1]U]2; 3] in der Bernsteinmenge enthalten sein, also weiter:

eoioz3) =X \g (Y ([5:3)0|53]))
ool

— X\ (J1;2]U]3; 4|U]5; 0[) =]0; 1]U]2; 3]U]4; 5] .

Es dringt sich die Vermutung auf, dass eine Bernsteinmenge von f und g folgende
Gestalt hat:

B =0; 1]U]2;3]Uj4; 5]u6; 7| U - - = | J]2m; 20+ 1].
n=0
In der Tat ergibt sich:

w(B)—w<U12n;2n+ ) X\8<Y\U 241’ 2171D

n=0
“X\g<U Lln 2n1 D U 2=tz
=l0; 1)U U]Zn;2n+ 1] = D]zn;2n+ 11=B.
n=1 n=0

Es wird noch gezeigt, dass B sogar eine maximale Bernsteinmenge ist. Dazu nimmt man
an, es gibe eine Bernsteinmenge B’ ¢ B. Es bezeichne 1, die kleinste natiirliche Zahl
mit B'N 21 + 1; 200 + 2] # 0.

Da

@(]2ng + 152n9 +2]) = X\ g(X \ f(12n0 + 15210 + 2]))
1 1
:X\3<Y\ {2n0+4;2n0+3 D

SO oy

= X\ (]1;2n9 + 3]U]|2ng + 4; 00[) =]0; 1]U]2ng + 3; 210 + 4],
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kann B’M |2n0 + 1; 210 + 2] nicht in »(B’) enthalten sein, also kann B’ keine Bernstein-
menge sein.

Damit ist jedenfalls ein gewiinschtes B gefunden und die bijektive Abbildung wird auf
folgende Art festgelegt:

h @ X — Y,

5 falls x € U2, 12120 + 1],
T L fall b ;
= sx el ]2n—1;2n].

Der Retrakt von g @y — y ist § 1 X £.

Der Graph dieser Funktion hat unendlich viele Sprungstellen (Fig. 2).

Fig. 2

Um eine bijektive Abbildung Tt in der anderen Richtung zu konstruieren, betrachtet man

)
<
=
|

<
=

und sucht eine Menge B mit @(BA )= B.
Wir starten zuerst wieder mit Y\ f(X) =]0; 1[\]0; §[= [4; 1[ und erhalten:

[z =) s = [ o [

Die gesammelte Erfahrung ldsst uns nun vermuten, dass

" UL Jraf Jraf J1 NIER
B:'“U[gﬁ{u{a’g{u{z’i[u[i’l{iu{%’w—l{

n=1

die Bergsteimllenge von g und f ist, was wie oben durch entsprechendes Nachrechnen
von $(B) = B sofort Klar ist.

Abermals kann man leicht zeigen, dass B die maximale Bernsteinmenge ist.
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Nun kann man auch die gewiinschte Bijektion angeben:

Py — X,
. falls y € U2, 57 3 -
y — 1 ) e 1 .1
L_2 falsye U2, [5E 41

Wieder hat der Graph unendlich viele Sprungstellen (Fig. 3).

1
1

Fig. 3

Wie oben in Lemma 2.6 erwihnt, gilt hier lediglich To h(x) = x fir x € X\ B und
hoh(y) = y fiir y € Y \ B. Beim vorliegenden Beispiel sind jedoch /& und 7 invers
zueinander, was man leicht durch Vergleich (Spiegelung an der Winkelhalbierenden) der
Graphen erkennt.

4 Der Satz von Cantor

Bekannterweise gibt es eine bijektive Abbildung zwischen N und N x N. Diese liefert
eine Bijektion zwischen N und Q, oder anders gesagt: Es gibt ,,genauso viele* natiirliche
wie rationale Zahlen.
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Zum Beweis betrachtet man meist folgendes Diagramm:

1. 2. 3. 4. Diagonale
(1;1) (1) (3:1) (4;1)
/ / /
(1;2) (2;2) (3;2) (4:2)
/ /
(1;3) (2:3) (3;3) (4;3)
/
(L;4) (2;4) (3:4) (4:4)

Die Diagonalen {(ki1; k2) | k1 + k» = k+1; k = 1;2;...} werden nacheinander von
oben nach unten durchlaufen. Die Paare konnen auf diese Weise mit den natiirlichen
Zahlen ,,durchnummeriert” werden.

Klar ist nun, dass es eine bijektive Abbildung zwischen N und N x N gibt, da jeder
natiirlichen Zahl ein Tupel natiirlicher Zahlen zugeordnet wird und umgekehrt. Dies
lasst sich auch in Form von Abbildungsvorschriften genauer angeben. Aber wie findet
man zu einer natiirlichen Zahl 7 das ihr entsprechende Tupel?

Nach dem Durchlauf der s-ten Diagonale sind bereits die ersten 1 +2 +3 4 --- 45 =
@ natiirlichen Zahlen ,,verbraucht“. Es verbleiben somit 1 — @ zur Befiillung der
folgenden Diagonalen. Es ist also das groBte natiirliche s mit der Eigenschaft

s(s+1)
2

<n

gesucht. Die quadratische Gleichung s* + s — 21 = 0 hat die reellen Losungen %(—1 —
V1 + 8n) und %(—1 + 1+ 8n). Die erste scheidet aus, da sie negativ ist; mit Hilfe
der zweiten Losung erhilt man als groBie ganzzahlige Losung obiger Ungleichung

/1 3

Dabei bezeichnet man mit [x] fiir x € R die kleinste ganze Zahl, die groBer oder gleich
X ist.

5= E(—IJF\/H—M)—{‘ =
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Nach diesen s Diagonalen wird begonnen, die (s + 1)-te aufzufiillen, fiir die dann noch

ey _ VAR ([VE-4]4)

— =Hn - 3 Zahlen zum Besetzen verbleiben.

Auch in der anderen Richtung findet sich sehr leicht die Abbildung, die dieses Abzih-
lungsverfahren beschreibt, und es ergibt sich somit der

Satz 4.1 Die Abbildungen

v : N — NxN,

T <[x/m—%g\/i+ﬁ+%w e M/M—%g\/m—%w)
v NxN — N,

(K13 o) ¥ ko _;)(k1+k2) — kit 1

sind bijektiv und invers zueinander.
Beweis. Nachrechnen, dass v o7 = idyxy und 7 o v = idy. O

Es ldsst sich aber auch ein sehr kurzer Beweis des Satzes von Cantor mit Hilfe des
Satzes von Bernstein fiihren:

Satz 4.2 (Cantor) Es gibt eine bijektive Abbildung zwischen N und N x N oder kurz:
IN| = N x NJ.
Beweis. Man betrachtet die beiden Abbildungen
f : NxN — N,
(mym) +— 2".3"

und
g : N — NxN,

n —  (ml).
Als Inklusion ist die Injektivitit von ¢ klar und wegen der Eindeutigkeit der Primfaktor-

zerlegung ist auch f injektiv. Nach Bernstein gibt es also eine Bijektion zwischen N x N
und N. O

Leider informiert dieser Beweis nicht dariiber, wie die Bijektion von X = N X N nach
Y = N abbildet. Zum Abschluss soll die Abbildung, deren Existenz nach Bernstein
sofort klar ist, noch hinsichtlich ihrer Abbildungsvorschrift untersucht werden.

Wir beginnen wieder mit unseren Uberlegungen zur Bestimmung einer Bernsteinmenge:
Bi=NxN\gN)={(m;m) |neN; m>1},
(Br) = X\ g(Y \ f(B1))
=X\g(Y\{2"3" |neN; m > 1})
=X\g{xeN|x#2"3" mit neN; m > 1})
=X\ {(x;1) | x £2"3" mit neN; m>1}
={(mym)|neN; m>11U{(x;1) | x=2"3"-3 mit n,me N} =:B;.
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Fiir (B;) ergibt sich
{(m;m) | neN;m>1}U{(x;1) | x=2"3"-3 mit n,me N}

u{(x;l) |x=8"%" 3 mit n,me N}.

Es dringt sich die Vermutung auf, dass
o0 oot oo )

Bf{(n,m)|neN,m>l}UiL£ (1) | x= (8 ) -3 mit n,meN .
= i—mal
i onam
Dabei moge (88 ) lediglich 2"3™ bedeuten. Nun zur Berechnung:
~

0—mal

i—mal . 3

mit n,m e N})

o0 oo o3
_X\g<{x|x7é2”3"’ mitneN;m>lv\/x7é<88 ) 3

i=0 i+1—mal

mit n,m e N})

@)
= N~
©(B) X\g(Y\{2”3m |neN; m> l}UU{Z

i=0

o0 2n3m
X\{(x,1)|x7é2”3m~3 mit n,meN Vv \/x;é(SS ) 3

i=1 i—mal

mit 7,m € N}
X [ee] 8---8 pnam ) B
=X\ (x,1)|\/0x7é (8 ) -3 mit nyme N} =B.
= i—mal
Also ergibt sich als Bijektion:
h : NxN — N,
273" falls (n,m) € B,
(n,m)  +—
n falls (n,m) & B.

Um eine Bijektion 71 in der anderen Richtung zu erhalten, ist eine geeignete Bernstein-
menge B zu suchen. Man kann nachrechnen, dass die Menge

= it o
B{x|x7£<83 ) -3 mit mmeN;ieNo}

i—mal

die gewiinschte Eigenschaft hat.
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Es ist doch iiberraschend, wie kompliziert es sein kann, eine Abbildung, deren Existenz
theoretisch schnell nachzuweisen ist, explizit anzugeben. Schon bei den beiden injektiven
Hyperbelstiicken war es nicht offensichdich, wie die Bernsteinmenge und somit die
Bijektion aussehen soll. Und bei der Bijektion zwischen N und N x N wird die Rechnung
ziemlich aufwendig. Man sieht, wie viel Rechenarbeit eine gute Theorie spart. Das kann
man aber nur in rechter Weise wiirdigen, wenn man die explizite Rechnung wirklich
durchgefiihrt hat.

AbschlieBender Dank gilt den Herren Prof. Dr. G. Pickert, Dr. U. Riegel und StD J. Rung
fiir etliche Vorschlige und Hinweise.
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