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Betrachtungen zum Satz von Bernstein

Markus Meiringer

Markus Meiringer, geboren 1969, studierte in Regensburg Mathematik und Physik.
Nach dem Diplom in Mathematik, dem Staatsexamen in Mathematik und Physik
und dem Studium der katholischen Religionslehre als Erweiterungsfach unterrichtet

er seit 1999 am St.-Gotthard-Gymnasium der Benediktiner in Niederalteich.

1 Einleitung
Schon Georg Cantor wollte zeigen, dass zwei Mengen, von denen jede einer Teilmenge
der anderen gleichmächtig ist, auch untereinander gleichmächtig sind. Oder anders
formuliert: falls \M\ < \N\ und \M\ > \N\, gilt sogar \M\ \N\ für beliebige Mengen M
und N. Sein Schüler Felix Bernstein hat als 19jähriger im Jahre 1897 in Cantors Seminar
in Halle einen ersten Beweis dieses Äquivalenzsatzes vorgetragen.

Der Beweis von Bernstein wurde 1898 leicht vereinfacht von Emile Borel im
Anhang zu seiner „Vorlesung zur Funktionentheorie" veröffentlicht („Leçons sur la théorie

des fonctions", Paris). Bernstein hingegen publizierte seinen Beweis erst 1905 in
dem Artikel „Untersuchungen aus der Mengenlehre" in den Mathematischen Annalen
61. Hierin erwähnt Bernstein auch, dass Cantor die Vermutung des Äquivalenzsatzes
im Band 91 der „Zeitschrift für Philosophie" geäußert hatte und dass ein weiterer
Beweis von Ernst Schröder im Artikel „Über G. Cantorsche Sätze" im Jahresbericht der
Deutschen Mathematiker-Vereinigung, Band 5 (1896), zu finden ist. Dieser Beweis von
Schröder erwies sich jedoch als fehlerhaft, was Korselt erst 1911 entdeckte („Über einen
Beweis des Äquivalenzsatzes", Mathematische Annalen 70).

Auch Richard Dedekind beschäftigte sich mit dem Äquivalenzsatz und fand bereits 1887

einen Beweis, den er aber nie veröffentlichte. Ein Manuskript wurde zwischen Dede-
kinds Papieren gefunden (Dedekind 1932, Band III, S. 447^48). Erst 1906 wurde von

Sind M, N Mengen, von denen jede einer Teilmenge der anderen gleichmächlig ist,

so liefen der Salz von Bernslein die Exislen/ einer bijckliven Abbildung /wischen M
und N. Wie eine solche Abbildung in einer konkrelen Silualion auszusehen liai, ist
dabei niclit offensichllich, Im erslen Teil der vorliegenden Arbeil wird ein Beweis des

Satzes von Bernstein gegeben. Im zweiten Teil wird dieser Beweis an Hand zweier
Beispiele von Mengen M ]0, oo[, N ]0,1 [ bzw. M N,N NxN und konkreter
injckliwr AbbikliuiLvn /wischen AI iiikI \- c\pli/il ucinaclu.
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Ernst Zermelo der Beweis wiederentdeckt („Untersuchungen über die Grundlagen der

Mengenlehre I", Mathematische Annalen 65).

Da viele Mathematiker am Beweis des von Cantor aufgestellten Satzes beteiligt waren,
war die Namensfindung nicht einfach. Dedekind hat also als erster den Äquivalenzsatz

bewiesen. Deshalb scheint es angemessen, den Satz nach „Dedekind-Bernstein" zu
benennen. Jedoch hat sich im angelsächsischen und deutschen Raum die Bezeichnung
„Theorem von Schröder-Bernstein" eingebürgert, während in Frankreich und Italien das

Resultat als „Theorem von Cantor-Bernstein" bekannt ist. Jedenfalls wird Bernstein
immer mit dem Theorem in Verbindung gebracht (vgl. hierzu auch [1, S. 15ff.] und [3,
S. 99]).

Trotz seiner Bedeutung für die Mengenlehre findet das Theorem von Schröder-Bernstein
im Unterricht der Gymnasien keine Anwendung, was sicherlich darauf zurückzuführen

ist, dass von Mächtigkeiten von unendlichen Mengen nur selten gesprochen wird. Der
Satz von Bernstein (so soll er hier kurz genannt werden - auch wenn dabei wichtige
beteiligte Mathematiker unter den Tisch fallen) verwendet in einer anderen Formulierung,
auf die wir uns hier beziehen, nicht die Mächtigkeiten, sondern er ist mit den Begriffen
„injektiv" bzw. „bijektiv" formuliert. Jedoch werden diese im Unterricht ebenfalls selten
erklärt. Häufig begnügt man sich damit, unter der Injektivität einer Funktion deren
„Umkehrbarkeit" zu verstehen. Natürlich kann man den Zielbereich immer geeignet wählen
(so dass die Funktion dann schon bijektiv ist), aber man verschweigt letztlich doch den

genauen Abbildungsbegriff.

Eine Möglichkeit, die Begriffe injektiv, surjektiv oder bijektiv genauer zu besprechen,
ist auch durch die Behandlung des Satzes von Bernstein in einer 11. Jahrgangsstufe
gegeben. Dabei kann die Bildung des Wertebereichs einer Funktion geübt werden und

Begriffe wie Abbildung oder Hintereinanderausführen von Funktionen (Verkettung) können

wiederholt und vertieft werden. Nicht zuletzt werden den Schülern Fragestellungen
der Mengenlehre näher gebracht. Die Gleichmächtigkeit von unendlichen Mengen (wie
etwa |]0; 1[| |R|) verwundert Schüler immer wieder. So können vom Satz von Bernstein

ausgehend viele Aspekte der Mengenlehre mit den Schülern besprochen werden.
Die nachfolgenden Überlegungen mögen hierzu zur Anregung dienen.

Auch aus diesem Grund wird in der folgenden Darstellung stets darauf geachtet, nicht nur
die Existenz von Abbildungen zu betrachten. Es geht besonders darum „WIE" abgebildet
wird und es soll mit den Abbildungen „gespielt" werden.

2 Der Satz von Bernstein

Im Folgenden soll ein Beweis des Satzes von Bernstein (nach [2]) angegeben werden.

Dabei wird besonders auf die Konstruktion der im Satz geforderten Abbildung
eingegangen. Im nächsten Abschnitt wird an einem konkreten Beispiel eine solche Abbildung
bestimmt.

Satz 2.1 (Bernstein) Es seien X, Y Mengen und f, g Abbildungen mit f : X —s- Y und

g :Y —> X injektiv. Dann gibt es eine bijektive Abbildung von X nach Y.
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Beweis. Für jede Menge E c X ist die Abbildung /|e : E —s- /(E) bijektiv. Auf der

Menge Y\/(E) ergibt sich nun die Abbildungg|y\/(E) : Y\f(E) -> g(Y\/(E))' welche
wiederum bijektiv ist. Es wäre nun das Ziel erreicht, wenn X \ (g(Y \/(E))) gerade die

Menge E wäre.

Zum Beweis des Satzes betrachtet man die folgende Abbildung <p auf der Potenzmenge
(Menge aller Teilmengen) SP(X) von X:

E -^ X\g(Y\/(E)).
Man möchte nun eine Menge B finden, für die

<p{B)=B

gilt, dann ist die Behauptung fast gezeigt.

Da B <p(B) X\g(Y \/(ß)), ist ja wie gewünscht

X\B=g(Y\f(B)).

Somit kann man (wie oben angedeutet) eine bijektive Funktion h wie folgt angeben:

h X —> Y,
' f(x) falls x G B,

'
(x) falls

Dabei ist g ein Retrakt zur injektiven Abbildung g, d.h. für x G X \ B gibt es ein

y G Y \ /(B) mit g(y) x. Dieses y wird mit g (x) bezeichnet (siehe Fig. 1). D

Eine Menge B, die in obigem Zusammenhang B <p(B) erfüllt, wollen wir eine

Bernsteinmenge der Funktionen / und g nennen (Reihenfolge der Funktionen ist wichtig!).

Für die Existenz einer Bernsteinmenge B zeigt man zunächst:
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Lemma 2.2 Falls E c F, so ist auch ip(E) C

Beweis. Aus E c F kann man /(E) c /(F) schließen, woraus Y \f(E) D Y \f(F)
folgt. Wendet man nun g an, ergibt sich g(Y \/(E)) D g(Y \/(F)) was sodann zu

X \g(Y \/(E)) cX\j(r \/(F)) führt. Dies zeigt y>(E) C ^(F). D

Lemma 2.3 Afö ffiZ/e der nicht-leeren Menge % {E e 2P(X) | E c ^(E)} s<?« man

Dann ist B eine Bernsteinmenge.

Beweis. Da nun als Folge von Lemma 2.2 für jedes E G % die Inklusion E c f{E) C

f{B) besteht, ergibt sich die Inklusion B c f{B). Auf der anderen Seite gilt <p(B) C

ip(ip(B)) und somit ist ^(B) G ^,also^(B) c B. Dies zeigt, dass B eine Bernsteinmenge
ist. Mit diesem B erhält man die oben angegebene Bijektion. D

Es gibt die verschiedensten Beweise dieses Satzes (vgl. u.a. [3, S. 99], [1, S. 15] oder [4,
S. 35]). Man unterscheidet hierbei im Wesentlichen zwei Arten. Einerseits gewinnt man
die Bernsteinmenge, wie im Beweis gezeigt, durch Vereinigung bestimmter Mengen. Da
bei dieser Methode, die auf Bernstein zurückgeht, die Elemente der Menge % vereinigt
werden, nähert man sich anschaulich gesprochen mit immer größer werdenden Mengen
oder „von unten her" durch immer weitere Hinzunahme von Elementen von % einer

Bernsteinmenge an. Entsprechend dieser Bildungsmethode wird im dritten Abschnitt
eine Bernsteinmenge explizit konstruiert.

Andererseits kann ein Fixpunkt der Abbildung <p (nichts anderes ist ja eine Bernsteinmenge)

auch als Durchschnitt gewonnen werden (vgl. das oben erwähnte Manuskript
von Dedekind). Man kann sich dabei das Vorgehen als eine Annäherung an die

Bernsteinmenge mit immer kleiner werdenden Mengen oder „von oben her" vorstellen.

Nun aber noch einige einfache Bemerkungen zu den Bernsteinmengen.

Bemerkung 2.4 Eine Bernsteinmenge zu zwei Funktionen / und g ist nicht notwendig
eindeutig bestimmt.

Es gilt aber:

Lemma 2.5 Die Bernsteinmenge B :=\JEe%E aus Lemma 2.3 ist maximal (bezüglich
der Inklusion) und folglich eindeutig.

Beweis. Wählt man für / und g jeweils die Identität idx, gilt für jedes B c X die
Gleichheit <p(B) X\ (X\B) B, also ist jede Teilmenge von X eine Bernsteinmenge
und die Bemerkung ist gezeigt.

Eine beliebige Bernsteinmenge B' ist nach Definition in der Menge % enthalten und
somit ist B' c Ueg^ E =B. Also ist auch jede maximale Bernsteinmenge Bmax in der
im Beweis konstruierten Bernsteinmenge B enthalten. Damit muss B Bmax sein, sonst

wäre Bmax nicht maximal. Dies zeigt nun das Lemma. D
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Es lässt sich auf entsprechende Weise (durch Bestimmung einer Bernsteinmenge B von

g und f) auch eine Abbildung h von Y nach X finden:

h Y —>

y ^ r (y)

x,
falls

falls yï
B,

B.

Lemma 2.6 fo gzYf:

i) Sind die beiden Mengen B und B maximal, so gilt h o h(x) x für x e X \ B und

hoh(y) =yfürye Y\B.
ii) Auch wenn die Mengen B und B maximal sind, muss nicht h o h idx bzw.

hoh idy gelten.

Beweis, i) Da B X\g(Y \/(B)), folgt Y\f(B) Y \f(X\g(Y \/(B))). Nun ist
Y \/(B) C B, weil B maximal gewählt wurde.

Ist nun x gB, Mgthoh(x) =hog-(x). Dag~(x) e Y\f(B) c B, gilthog-(x)
gog (x) x.

Analog folgt X \ g(B) c ß und damit h o h{y) =yfür y eY \B.
ii) Betrachtet man die beiden Abbildungen

7 und
x i—> 2x y i—> 3y

erhält man ^(R) =R\^(R\/(R)) =R\g(R\R) =R\^(0) =R\0 R.

Damit ist B R (und analog B R) maximale Bernsteinmenge.

Es ergeben sich die Abbildungen h und h zu:

h R —> R,
2x falls x G R,

falls x G 0,

und
/̂z R —> R,

3y falls y g R,

\ falls y G 0.

Esistnun/zo/z(l) =/z(3) =6^1 und/zo/z(l) =/z(2) =6^1. D

Die geforderte Menge B muss in einem konkreten Beispiel nicht auf die im Beweis
benutzte (abstrakte) Weise bestimmt werden. Man kann sich z.B. für zwei injektive
Funktionen ganz unbelastet und frischen Mutes auf die Suche nach einer geeigneten
Menge B machen.
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3 Beispiele für die Verwendung von Bernsteinmengen
Es erscheint auf den ersten Blick nicht sehr lohnend zu sein, sich auf die Suche nach

bijektiven Abbildungen von einem Intervall (offen oder abgeschlossen) der reellen Zahlen
in ein anderes Intervall zu begeben, da bei nach oben und unten beschränkten Intervallen
das Gewünschte schon durch affine Funktionen möglich ist:

/ : }a;b[ -^ ]c,d[,
d - c bc - ad

x i—> ¦x + —1b - a b - a

Dabei gilt: a, b, c, d e R und a <b, c <d.
Außerdem kann man mit der Tangens- und der Arcustangensfunktion ebenfalls auf stetige
Art und Weise Funktionen in unbeschränkte Intervalle und aus ihnen heraus angeben:

7T 7T r
- 2"; 2" [ —> ]-oo;oo[,

x i—> tan(x).

Diese stetigen Funktionen sind sämtlich bijektiv und haben Umkehrfunktionen, die ebenfalls

stetig sind. Man kann durch Komposition dieser Funktionen eine bijektive und
stetige Funktion mit stetiger Umkehrung von ]a;b[ nach ]c;d[ konstruieren, wobei sogar
a, b, c, d e R U {-oo; 00} gewählt werden kann.

In vielen Anwendungen genügt die Existenz einer bijektiven Abbildung, wie später zu
sehen sein wird. Der Beweis des Theorems von Bernstein liefert aber mehr als nur die
Existenz einer Bijektion. Man kann eine Bernsteinmenge B suchen, die die Angabe einer

Bijektion mit Hilfe der gegebenen Funktionen ermöglicht. Dies sei an einem expliziten
Beispiel gezeigt. Die Hauptarbeit besteht darin, eine Bernsteinmenge B zu bestimmen.

Die Konstruktion einer Bernsteinmenge durch die Vereinigung aller Elemente der Menge
% ist nicht sofort einzusehen. Aber die Idee einer Annäherung an die Bernsteinmenge

„von unten her" führt auf den Gedanken, zu einer Menge E, die E c <p(E) erfüllt,
solange Elemente hinzuzufügen, bis E ip(E) gilt. Dazu folgt nun

Eine explizite Konstruktion: Gegeben seien die injektiven Funktionen

/ : ]0;oo[ -^ ]0;l[, g : ]0;l[ -^ ]0;oc[,
1 1

X ~ ÏT2' y ~ y"

Es sollen mit Hilfe von Bernsteinmengen bijektive Abbildungen h von X =]0; 00 [ nach

Y =]0; 1[ und h in der anderen Richtung konstruiert werden.

Man benötigt zunächst eine „Startmenge" mit E c <p(E); dabei bezeichnet <p wieder die

Abbildung

X\g(Y\f(E))
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Da g(Y)Dg(Y\f(B)), gilt

E:=X\g(Y)cX\g(Y\f(E))
Im vorliegenden Fall ist g(Y) =]l;oo[ und somit E =]0;oo[\]l;oo[=]0; 1]. Also ist E
eine geeignete „Startmenge", da

X\(]l;2]U]3;oo[)=]0;l]U]2;3].

Also muss auch ]0; 1]U]2;3] in der Bernsteinmenge enthalten sein, also weiter:

0;s[u
X \ (] 1; 2]U]3; 4]U]5; oo[) =]0; 1]U]2; 3]U]4; 5].

Es drängt sich die Vermutung auf, dass eine Bernsteinmenge von / und g folgende
Gestalt hat:

B =]0; 1]U]2; 3]u]4; 5]u]6; 7] U • • • \J]2n; 2n
n=0

In der Tat ergibt sich:

n=\

=]0;l]uQ]2n;2n+l] Q]2n;2n+1] B.
n=\ n=0

Es wird noch gezeigt, dass B sogar eine maximale Bernsteinmenge ist. Dazu nimmt man

an, es gäbe eine Bernsteinmenge B' çt B. Es bezeichne Ho die kleinste natürliche Zahl
mit B'n }2n0 + 1; 2n0 + 2] ^ 0.

Da

f l;2no + 2]) X\£(X\/(]2no + l;2no + 2]))

u

X \ (]l;2n0 + 3]U]2n0 + 4; oo[) =]0; l]u]2no + 3;2n0 + 4],
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kann B'C\ ]2no + 1; 2no + 2] nicht in <p(B') enthalten sein, also kann B' keine Bernsteinmenge

sein.

Damit ist jedenfalls ein gewünschtes B gefunden und die bijektive Abbildung wird auf
folgende Art festgelegt:

h X Y,

Der Retrakt von g : y \-^ i ist g :x^\.
Der Graph dieser Funktion hat unendlich viele Sprungstellen (Fig. 2).

l-

Fia. 2

Um eine bijektive Abbildung h in der anderen Richtung zu konstruieren, betrachtet man

und sucht eine Menge B mit <p(B) B.

Wir starten zuerst wieder mit Y \/(X) =]0; l[\]0; \[= [\;l[ und erhalten:

Die gesammelte Erfahrung lässt uns nun vermuten, dass

"1

y
i
7

u
"1

6'
1

5
U

"1

4'
1

3
u

"1

2'
1

n=l

1 1

2n 2n-l

die Bernsteinmenge von ^ und / ist, was wie oben durch entsprechendes Nachrechnen

von (p(B B sofort klar ist.

Abermals kann man leicht zeigen, dass B die maximale Bernsteinmenge ist.
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Nun kann man auch die gewünschte Bijektion angeben:

h : Y —> X,
\ falls y G U~ i [

y ^ \ i ,oo

Wieder hat der Graph unendlich viele Sprungstellen (Fig. 3).

5-

4-

3-

1-

1

Fig. 3

Wie oben in Lemma 2.6 erwähnt, gilt hier lediglich h o h(x) x für x e X \ B und

h o h{y) =y für yG Y \B. Beim vorliegenden Beispiel sind jedoch h und h invers

zueinander, was man leicht durch Vergleich (Spiegelung an der Winkelhalbierenden) der

Graphen erkennt.

4 Der Satz von Cantor
Bekannterweise gibt es eine bijektive Abbildung zwischen N und NxN. Diese liefert
eine Bijektion zwischen N und Q, oder anders gesagt: Es gibt „genauso viele" natürliche
wie rationale Zahlen.
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Zum Beweis betrachtet man meist folgendes Diagramm:

1. 2. 3. 4. Diagonale

(1;2) (2; 2) (3; 2) (4; 2)

(1;3) (2; 3) (3; 3) (4; 3)

(1;4) (2; 4) (3; 4) (4; 4)

Die Diagonalen {{k\, fo) | fci + fo fc + 1; fc 1*2;...} werden nacheinander von
oben nach unten durchlaufen. Die Paare können auf diese Weise mit den natürlichen
Zahlen „durchnummeriert" werden.

Klar ist nun, dass es eine bijektive Abbildung zwischen N und NxN gibt, da jeder
natürlichen Zahl ein Tupel natürlicher Zahlen zugeordnet wird und umgekehrt. Dies
lässt sich auch in Form von Abbildung sVorschriften genauer angeben. Aber wie findet
man zu einer natürlichen Zahl n das ihr entsprechende Tupel?

Nach dem Durchlauf der s-ten Diagonale sind bereits die ersten l+2 + 3+-+s
s^~ ' natürlichen Zahlen „verbraucht". Es verbleiben somit n —

s

^
' zur Befüllung der

folgenden Diagonalen. Es ist also das größte natürliche s mit der Eigenschaft

s(s
< n

gesucht. Die quadratische Gleichung s2 + s - 2n 0 hat die reellen Lösungen \{-l -
VI + 8n) und \{—\ + VI + 8n). Die erste scheidet aus, da sie negativ ist; mit Hilfe
der zweiten Lösung erhält man als größte ganzzahlige Lösung obiger Ungleichung

Dabei bezeichnet man mit \x\ für x G K die kleinste ganze Zahl, die größer oder gleich
x ist.



Eiern. Math. 59 (2004) 75

Nach diesen s Diagonalen wird begonnen, die (s + l)-te aufzufüllen, für die dann noch

n - ^j^1 n- — l-Mp !—'- Zahlen zum Besetzen verbleiben.

Auch in der anderen Richtung findet sich sehr leicht die Abbildung, die dieses Abzahlung

sverfahren beschreibt, und es ergibt sich somit der

Satz 4.1 Die Abbildungen

v : N —> NxN,

'(¦ ~r

: NxN —> N,

(k-k) _^
(fci + fc2 - l)(fci + A:2)

(/Ci,/C2j i /Ci + 1

bijektiv und invers zueinander.

Beweis. Nachrechnen, dass v o V idNxN und F o v id^.

Es lässt sich aber auch ein sehr kurzer Beweis des Satzes von Cantor mit Hilfe des

Satzes von Bernstein führen:

Satz 4.2 (Cantor) Es gibt eine bijektive Abbildung zwischen N und NxN oder kurz:

|N| |NxN|.
Beweis. Man betrachtet die beiden Abbildungen

/ : NxN —> N,
(n;m) i—> 2" ¦ 3m

und
^ : N —> NxN,

n i—> (n;l).
Als Inklusion ist die Injektivität von g klar und wegen der Eindeutigkeit der Primfaktorzerlegung

ist auch / injektiv. Nach Bernstein gibt es also eine Bijektion zwischen NxN
und N. D

Leider informiert dieser Beweis nicht darüber, wie die Bijektion von X N x N nach
Y N abbildet. Zum Abschluss soll die Abbildung, deren Existenz nach Bernstein
sofort klar ist, noch hinsichtlich ihrer Abbildung sVorschrift untersucht werden.

Wir beginnen wieder mit unseren Überlegungen zur Bestimmung einer Bernsteinmenge:

Bi =NxN\£(N) {(n;m) \ n e N; m > 1}

X\g(Y\ {2"3m | n e N; m > 1})

X \g({x e N | x ï 2"3m mit n e N; m > 1})

X \ {(x; 1) | x + 2"3m mit n e N; m > 1}

{(n; m) \ n e N; m > 1} U {(x; l)\x 2"3m -3 mit n, m e N} =: B2.
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Für (p(B2) ergibt sich

{(n; m)\neN;m>l}u {(x; l)\x 2"3m -3 mit n, m e N}

u|(x;l) | x 82"3"" -3 mit w,mg

Es drängt sich die Vermutung auf, dass

oo

B {(n;m)\neN;m>l}u[jax;l)\x= -3 mit «,meN
l—mal

2"3"!

Dabei möge 8 j lediglich 2"3m bedeuten. Nun zur Berechnung:

0-mal

X\glY\{2n3m \neN; m>l}u{Jl2 '-- -3
V 1=0 [

mit n, m G N

X\d mit

X\Ux,l) mit n,

i=0 î+l-mal

mit n, m G N >

00 / \2"3m

i=1 î'-mal

X\ <^ (x,

Also ergibt sich als Bijektion:

h : NxN

(n,m)

f-mal

mit n, m G N

• 3 mit n, m G N > B

N,
2"3m falls (n, m) G B,

n falls (n, m) g' B.

Um eine Bijektion h in der anderen Richtung zu erhalten, ist eine geeignete Bernsteinmenge

B zu suchen. Man kann nachrechnen, dass die Menge

-3 mit n, m G N; i G No

f-mal

die gewünschte Eigenschaft hat.
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Es ist doch überraschend, wie kompliziert es sein kann, eine Abbildung, deren Existenz
theoretisch schnell nachzuweisen ist, explizit anzugeben. Schon bei den beiden injektiven
Hyperbelstücken war es nicht offensichtlich, wie die Bernsteinmenge und somit die

Bijektion aussehen soll. Und bei der Bijektion zwischen N und NxN wird die Rechnung
ziemlich aufwendig. Man sieht, wie viel Rechenarbeit eine gute Theorie spart. Das kann

man aber nur in rechter Weise würdigen, wenn man die explizite Rechnung wirklich
durchgeführt hat.

Abschließender Dank gilt den Herren Prof. Dr. G. Pickert, Dr. U. Riegel und StD J. Rung
für etliche Vorschläge und Hinweise.
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